Lichtkristall mit Drehsinn
Seit mehr als 40 Jahren verfolgen Physiker das Ziel, das komplexe Verhalten von Elektronen in zweidimensionalen Kristallen unter dem Einfluss starker Magnetfelder experimentell zu erforschen.
Jetzt ist es einem Team von Wissenschaftlern um Prof. Immanuel Bloch (Lehrstuhl für Experimentalphysik an der Ludwigs-Maximilians-Universität München und Direktor am MPQ) in Zusammenarbeit mit der theoretischen Physikerin Dr. Belén Paredes (CSIC/UAM Madrid) gelungen, mit einer neu entwickelten experimentellen Methode zweidimensionale Festkörperkristalle mit künstlichen Gittern aus neutralen Atomen und Laserlicht zu simulieren. In diesen künstlichen Quantenmaterialien können die Atome effektiven Magnetfeldern ausgesetzt werden, die einige tausende Male stärker sind als es in natürlich vorkommenden Festkörpern zu realisieren wäre (Phys. Rev. Lett. 111, 185301, 2013).
Geladene Teilchen in Magnetfeldern erfahren eine Kraft senkrecht zu ihrer Bewegungsrichtung – die Lorentz-Kraft. Die Lorentz-Kraft zwingt die Teilchen, sich auf Kreisbahnen, sogenannten Zyklotron-Orbits, senkrecht zur Magnetfeldrichtung zu bewegen. Ein ausreichend großes Magnetfeld kann so die Eigenschaften eines Materials dramatisch verändern und neue Quantenphänomene wie z. B. den Quanten Hall Effekt hervorrufen. Der Radius der Zyklotron-Orbits nimmt dabei mit zunehmender Magnetfeldstärke ab. Für übliche Magnetfeldstärken ist er weit größer als der Abstand zwischen benachbarten Ionen im Material, so dass der Einfluss des Kristallpotentials zu vernachlässigen ist. Bei sehr starken Magnetfeldern sind Ionen-Abstand und Zyklotron-Bahnen jedoch vergleichbar groß, und das Zusammenspiel zwischen Magnetfeld und Kristallpotential führt zu eindrucksvollen neuen Effekten. Diese zeigen sich beispielsweise in einer fraktalen Struktur des Energiespektrums der Elektronene, welches erstmals 1976 von Douglas Hofstadter vorhergesagt wurde und als „Hofstadter-Schmetterling“ bekannt ist. Viele faszinierende elektronische Materialeigenschaften sind damit verbunden, jedoch war es bisher nicht möglich, das Problem in seiner vollen Komplexität zu untersuchen.
In natürlich vorkommenden Materialien ist der Abstand zwischen benachbarten Ionen sehr klein. Daher ist es schwierig, den Bereich des Hofstadter-Schmetterlings zu realisieren – man würde Magnetfeldstärken benötigen, die sich mit vorhandenen Mitteln nicht erzeugen lassen. Einen Ausweg stellen künstlich hergestellte Materialien dar, deren Gitterkonstanten effektiv größer sind, wie z.B. Systeme aus zwei überlagerten Schichten aus Graphen und Bornitrid.
Die Experimente des Münchner Wissenschaftlerteams folgen einem alternativen Ansatz. Hier werden starke Magnetfelder künstlich erzeugt, indem ultrakalte Atome speziell angelegten Laserfeldern ausgesetzt werden. Das untersuchte Quantensystem besteht aus Rubidium-Atomen, die mithilfe von stehenden Wellen in periodischen Strukturen gefangen werden. „Die Atome können sich nur in Bereichen hoher Lichtintensitäten aufhalten und ordnen sich daher in einer 2D Struktur an, die sich anschaulich mit der Form eines Eierkarton vergleichen lässt.“, erklärt Monika Aidelsburger, eine Physikerin im Team von Prof. Bloch. „Die Laserstrahlen übernehmen die Rolle des Ionenkristalls und die Atome die der Elektronen.“
Einen Haken gibt es dabei jedoch: da die Atome elektrisch neutral sind, erfahren sie auch in einem externen Magnetfeld keine Lorentz-Kraft, die sie auf kreisförmige Bahnen zwingt. Die Aufgabe bestand darin, mit einer neuen Technik diesen Effekt der Lorentz-Kraft für neutrale Teilchen nachzuahmen. Eine Verknüpfung aus Verkippen und gleichzeitigem Schütteln des Gitters mithilfe zweier zusätzlicher Laserstrahlen hatte die gewünschte Wirkung: die Atome bewegten sich im Gitter auf zyklotron-ähnlichen Bahnen, so wie geladene Teilchen in einem externen Magnetfeld. Auf diesem Weg gelang es dem Team künstliche Magnetfelder zu erzeugen, die stark genug sind um die Quantenphänomene im Bereich des Hofstadter-Schmetterlings zu untersuchen.
Wissenschaftlern den sogenannten Spin-Hall-Effekt zu beobachten: zwei Teilchen mit entgegengesetztem Spin spüren ein Magnetfeld derselben Stärke, jedoch mit jeweils entgegengesetzter Richtung. Infolgedessen sind auch die Richtung der Lorentz-Kraft und die Zyklotron-Bewegung für die beiden Spins entgegengesetzt. Die beiden Spin-Zustände werden in diesen Experimenten durch zwei verschiedene Zustände der Rubidium Atome realisiert.
In zukünftigen Experimenten könnte diese Methode dazu dienen die komplexe Physik des Hofstadter-Modells mithilfe des defektfreien und gut kontrollierbaren Systems von ultrakalten Atomen in optischen Gittern experimentell zu untersuchen. Die direkte Beobachtung der mikroskopischen Bewegung der Teilchen im Gitter mit neuen experimentellen Techniken wie z. B. dem Quantengas-Mikroskop könnte zu einem besseren Verständnis von Materialeigenschaften führen. Darüber hinaus könnte die neue Methode auch den Weg bereiten für die Entdeckung und Erforschung neuer Quantenphasen von Materialien unter extremen experimentellen Bedingungen. [M.A].