ansprechpartner

Dr. Stephan Dürr
Stephan Dürr
Gruppenleiter
Telefon: +49 89 3 29 05 - 291
Raum: A 2.22
Prof. Dr. Thomas Udem
Thomas Udem
Wissenschaftler
Telefon: +49 89 3 29 05 - 282 // -257
Raum: D 0.21 // D 0.39




kommende Kolloquien

  • The colloquium series will resume at the beginning of the next term in April/October.

Kolloquien

Kolloquien

Die Gastvorträge im Rahmen des MPQ-Kolloquiums finden von April bis Juli sowie von Oktober bis Januar jeweils dienstags um 14:30 Uhr statt.

Achtung! Ab Oktober 2017 finden die Vorträge, aufgrund der Bauarbeiten, vorübergehend im Interims-Hörsaal, Raum B 0.32 am Max-Planck-Instituts für Quantenoptik statt.

Ansprechpartner für die wissenschaftliche Organisation:

Dr. Stephan Dürr und Dr. Thomas Udem

Wenn Sie einen Vortrag im Livestream verfolgen möchten, ist es nötig, dass Sie sich in eine entsprechende Mailing Liste eintragen. Daraufhin erhalten Sie Instruktionen zum Empfang des Livestreams.

Monat:

SMT: Printing really small, really fast … and what to do when you are at the end of your rope

SMT: Printing really small, really fast … … and what to do when you are at the end of your rope (Dr. Andreas Dorsel)

This talk is intended to provide you with a solid notion of what can be achieved in nano-lithography today, what the present technical limitations are and what we consider at present fundamental boundaries of what may be possible in the future. Carl Zeiss SMT has been active in this field for more than 50 years and its history hence shows some of the technological milestones from the early beginnings of integrated circuits to present-day extreme integration allowing qualitatively new applications of micro- or rather nano-electronics. [mehr]

χ(2) Nanomaterials for Nonlinear Integrated Photonic Devices

χ(2) Nanomaterials for Nonlinear Integrated Photonic Devices (Prof. Rachel Grange)

Nonlinear optics is present in our daily life with many applications, e.g. light sources for microsurgery or green laser pointer. All of them use bulk materials such as glass fibres or crystals. Generating nonlinear effects from materials at the nanoscale can expand the applications to biology as imaging markers or sensors, and to optoelectronic integrated devices. However, nonlinear signals scale with the volume of a material. Therefore, finding nanostructured materials with high nonlinearities to avoid using high power and large interaction length is challenging. Here I will show several strategies to maximize nonlinear optical signals in nano-oxides with noncentrosymmetric crystalline structure and semiconductors. I will demonstrate how we enhance second-harmonic generation (SHG) by using the scattering properties of individual barium titanate (BaTiO3) nanoparticles1, and AlGaAs standing nanodisks2. Our results suggest that a strong increase of the SHG signal can be obtained without using plasmonics or hybrid nanostructures3 [mehr]

Quantum fluids of light in semiconductor lattices

Quantum fluids of light in semiconductor lattices (Prof. Jacqueline Bloch)

When confining photons in semiconductor lattices, it is possible to deeply modify their physical properties. Photons can behave as finite or even infinite mass particles, photons inherit topological properties and propagate along edge states without back scattering, photons can become superfluid and behave as interacting particles. These are just a few examples of properties that can be imprinted into fluids of light in semiconductor lattices. Such manipulation of light presents not only potential for applications in photonics, but is a great promise for fundamental studies. [mehr]

Connecting the Resource Theories of Purity and Coherence

Connecting the Resource Theories of Purity and Coherence (Prof. Dagmar Bruss)

The resource theory of quantum coherence studies the off-diagonal elements of a density matrix in a distinguished basis, whereas the resource theory of purity studies all deviations from the maximally mixed state. A direct connection between the two resource theories is established by identifying purity as the maximal coherence which is achievable by unitary operations. The states that saturate this maximum form a family of maximally coherent mixed states. Furthermore, purity bounds the maximal amount of entanglement and discord that can be generated by unitary operations, thus demonstrating that purity is the most elementary resource for quantum information processing. [mehr]

High Harmonic Generation Interferometry

High Harmonic Generation Interferometry (Prof. Nirit Dudovich)

Attosecond science is a young field of research that has rapidly evolved over the past decade. The progress in this field opened a door into a new area of research that allows one to observe multi-electron dynamics in in atoms, molecules and solids. One of the most exciting advances in atto-science is high harmonic generation (HHG) spectroscopy. It allows one to combine sub-Angstrom spatial with attosecond temporal resolution, holding the potential of resolving the structure of electronic wavefunctions as they evolve in time. [mehr]

 
loading content
Zur Redakteursansicht