Simulating quantum magnetism with quantum dot Arrays (Prof. Lieven Vandersypen)

Simulating quantum magnetism with quantum dot Arrays
Gate-defined quantum dots have recently emerged as an attractive platform for analog quantum simulation. A quantum dot array naturally emulates the extended Fermi-Hubbard model. The energy scales cover the most relevant parts of the phase diagram, with individually tunable hopping energies well below the on-site interaction energies and at the same time far exceeding the thermal energy. In addition, site-specific potential offsets are individually tunable, further extending the range of physical phenomena that can be explored. [mehr]
Traditional quantum interfaces between atomic ensembles and light have relied upon disordered three-dimensional atomic gases. Recently, however, there have been significant efforts toward exploring whether ordered arrays of atoms can give rise to qualitatively different quantum optical phenomena and functionality, specifically due to strong interference in light emission arising from spatial ordering. Here, we discuss ongoing work to explore this question in two-dimensional arrays. [mehr]
Zur Redakteursansicht