Das Entstehen von Ordnung
Physiker des MPQ, der LMU sowie der FUB untersuchen, wie schnell Ordnung in einem quantenmechanischen System entstehen kann.
Die entscheidende Frage bei allen Phasenübergängen ist: Wie kommt das System eigentlich von einer Phase in eine andere? Insbesondere für Quantensysteme gibt es darauf keine einfache Antwort, da die Dynamik typischerweise deutlich komplexer ist als die Phasen selbst. Dazu kommt, dass die Reaktionszeit des Systems in der Nähe des Phasenübergangs immer länger wird, das System also immer „zäher“ reagiert, da es sich immer stärker umordnen muss. Wie schnell diese Umordnung stattfinden kann, also wie schnell sich die dazu nötigen Korrelationen zwischen den Teilchen bilden und ausbreiten können, ist ein wichtiges Problem der Physik. Anschaulich kann man sich dieses System ähnlich einer Ansammlung vieler kleiner Pfeile vorstellen, die am Anfang ungeordnet sind, also in alle möglichen Richtungen weisen. Jenseits des Phasenübergangs wollen die Pfeile dann jeweils die gleiche Richtung wie ihre Nachbarn haben. Damit möchten sie ultimativ alle in die gleiche Richtung zeigen, aber in welche? Da im Prinzip alle Richtungen gleichwertig sind, so müssen sie sich die Atome auf eine Richtung einigen. Wie schnell kann das passieren?
Dieses Problem, das theoretische arbeitende Physiker schon seit langem beschäftigt, wurde in dieser neuen Arbeit unter extrem genau kontrollierten Bedingungen im Labor nachgestellt und experimentell vermessen. Basis sind hier künstliche Vielteilchensysteme, in denen tausende von ultrakalten Atomen in einem Lichtgitter anfangs auf ihrem Platz fest gehalten werden. In diesem Mott-Isolator gibt es also keine Korrelationen zwischen Gitterplätzen. Anschließend wird dann die Kopplung zwischen benachbarten Gitterplätzen kontrolliert erhöht, bis ein Quantenphasenübergang in einen Zustand stattfindet, in dem die Teilchen frei durch das Gitter fließen. Diese Supraflüssigkeit ist im Gleichgewicht hochgradig geordnet: die Teilchenwellen schwingen im Gleichtakt (sind also kohärent), und ihre Eigenschaften sind über weite Entfernungen stark korreliert. Die Dynamik des Übergangs vom Mott-Isolator in die Supraflüssigkeit haben die Münchner Physiker jetzt erstmals quantitativ vermessen. Sie konnten im Experiment im Detail nachverfolgen, wie sich die langreichweitigen Korrelationen ausbreiten, und die Messergebnisse mit theoretischen Modellen vergleichen. Diesen Untersuchungen zufolge sind die bislang verwendeten Modelle für real existierende Systeme zu einfach und müssen um (noch unbekannte) Beiträge ergänzt werden.
Zusätzlich konnten die experimentellen Resultate für eindimensionale Systeme - also eine Kette von Gitterplätzen - mit numerischen Rechnungen auf Supercomputern verglichen werden, die von dem Team um Jens Eisert an der Freien Universität Berlin durchgeführt wurden. Dieser Vergleich ermöglichte dabei einen unabhängigen Test des experimentellen Systems, welchen dieses mit Bravour bestanden hat. Das Experiment konnte dann für höherdimensionale Systeme (2D und 3D) wiederholt werden, in denen mit gegenwärtigen Rechnern keine numerischen Simulationen möglich sind. Die dabei gewonnenen experimentellen Resultate in höheren Dimensionen können nun verwendet werden, um neue theoretische Ansätze zu testen und damit unser Verständnis der Dynamik von Vielteilchensystemen fundamental voranzubringen. Damit wurde in dieser Arbeit nicht nur ein physikalisches Problem neu beleuchtet, sondern gleichzeitig ein Paradigma neu ausgelotet: Das der Quantensimulation, in dem komplexe Quantensysteme im Labor unter sehr präzisen Bedingungen nachgestellt werden, um so ihr Verhalten extrem genau nachmessen zu können und damit die Basis für ein neues, tieferes Verständnis zu liefern. [U.S./O.M]