Nonlinear optics is present in our daily life with many applications, e.g. light sources for microsurgery or green laser pointer. All of them use bulk materials such as glass fibres or crystals. Generating nonlinear effects from materials at the nanoscale can expand the applications to biology as imaging markers or sensors, and to optoelectronic integrated devices. However, nonlinear signals scale with the volume of a material. Therefore, finding nanostructured materials with high nonlinearities to avoid using high power and large interaction length is challenging. Here I will show several strategies to maximize nonlinear optical signals in nano-oxides with noncentrosymmetric crystalline structure and semiconductors. I will demonstrate how we enhance second-harmonic generation (SHG) by using the scattering properties of individual barium titanate (BaTiO3) nanoparticles1, and AlGaAs standing nanodisks2. Our results suggest that a strong increase of the SHG signal can be obtained without using plasmonics or hybrid nanostructures3
[mehr]