Ein neues Tor zum Mikrokosmos
Physiker des Labors für Attosekundenphysik haben eine Laserquelle entwickelt, deren Lichtpulse die Grundlagenphysik einen bedeutenden Schritt voranbringen könnte.
Immer besser lassen sich die elementarsten Bewegungen außerhalb des Atomkerns beobachten und kontrollieren. Das geschieht mit extrem kurzen, hochintensiven Laserpulsen. Die Elektronik der Zukunft könnte mit Licht gesteuert werden. Dann würde man die Datenverarbeitungs- und Informationstechnologie mit der Frequenz von Lichtwellenschwingungen betreiben, was in etwa einer 100.000fachen Beschleunigung im Vergleich zu heutiger Technik entspricht. Eine Weiterentwicklung der heutigen Lasertechnik spielt dabei eine entscheidende Rolle. Eine neue Lichtquelle, die diese Zukunftsszenarien ein Stück weiter Realität werden lässt, hat nun ein Physikerteam vom Labor für Attosekundenphysik (LAP) der Ludwig-Maximilians-Universität (LMU) München und des Max-Planck-Instituts für Quantenoptik (MPQ) entwickelt. Das Team berichtet darüber im Fachmagazin „Nature Communications“.
Bis heute kommen in Forschungslaboren vor allem Laser mit Titan:Saphir-Kristallen (Ti:Sa) zum Einsatz. Mehr als 20 Jahre haben diese Laser die Forschung mit ultrakurzen Laserpulsen dominiert. Das könnte sich ändern, denn immer mehr wird deutlich, dass die Zukunft den Scheibenlaser-Systemen gehört. Hier hat der Laserkristall ein scheibenförmiges Aussehen. Das LAP-Team hat nun einen Ytterbium:Yttrium-Aluminium-Granat Scheibenlaser (Yb:YAG, Disk-Laser) entwickelt, der Lichtpulse mit einer Dauer von 7,7 Femtosekunden und 2,2 Lichtwellenausschlägen aussendet (Eine Femtosekunde ist ein Millionstel einer milliardstel Sekunde). Diese Pulse verfügen über eine durchschnittliche Leistung von sechs Watt und 0,15 Mikrojoule Pulsenergie, eineinhalb Größenordnungen mehr als kommerziell erhältliche Ti:Sa Laser.
Die Wellenform von Licht in Laserpulsen kann man mittlerweile gut kontrollieren. Diese Kontrolle haben die LAP-Physiker bei ihrem neuen System noch einmal verbessert. Die Kontrolle über die Geometrie der elektromagnetischen Lichtwellen ist eine erste Voraussetzung für die gezielte Steuerung von Elektronen in Festkörpern oder einzelnen Atomen und damit einer lichtwellengesteuerten Elektronik. Die zweite Voraussetzung dafür besteht in der Verkürzung der Lichtblitze auf wenige Femtosekunden. Frühere Experimente des LAP-Teams haben bereits gezeigt, dass es möglich ist, elektrische Ströme mit gezielt geformten elektromagnetischen Wellen, also speziellen Laserpulsen, an- und auszuschalten (Schiffrin, Nat. 2012; Paasch-Colberg, Nat. Photon. 2014, Krausz & Stockman, Nat. Photon 2014). Allerdings ließen sich solche Experimente bisher nur bei Pulswiederholraten von wenigen Tausend pro Sekunde durchführen.
Das ändert sich nun, denn die hohe Wiederholungsrate von mehreren zehn Millionen Pulsen pro Sekunde mit hoher Spitzenleistung aus dem jetzt entwickelten Laser läutet in der Ultrakurzzeit-Physik eine neue Ära ein. Die Ultrakurzzeit-Physik beschäftigt sich u.a. mit der Erkundung von Attosekunden-kurzen Elektronenbewegungen in Molekülen und Atomen. Eine Attosekunde ist ein Milliardstel einer milliardstel Sekunde. In diesen Zeiträumen werden Elektronen „fotografiert“. Die „atomare Fotografie“, wie sie in heutigen Attosekundenlaboren stattfindet, erhält damit einen „Sportmodus“. Das bedeutet, dass seltene Ereignisse im Mikrokosmos, die mit den bisherigen Ti:Sa Systemen nur durch Beobachtung über Stunden, Tage oder sogar nicht zu beobachten waren, mit der neuen Technologie in einem wesentlich kürzeren Messzeitraum detaillierter erfasst werden können. Die Datenraten werden dabei um einen Faktor von 1000 – 100.000 erhöht.
Und auch in der Erkundung elementarster Naturphänomene könnte die neue Lasertechnologie eingesetzt werden. So wird der Laser künftig Lichtblitze generieren, die sich im extremen ultravioletten Bereich des Lichts (60 Nanometer Wellenlänge) befinden. Damit könnte man erstmals zum Beispiel Helium-Ionen anregen und deren Schwingungen pro Sekunde mit der von Prof. Theodor Hänsch entwickelten, mit dem Nobelpreis ausgezeichneten Frequenzkammtechnik exakt bestimmen. Solche Laserspektroskopie-Experimente dienen etwa dazu, Naturkonstanten zu überprüfen.
Die Scheibenlaser-Technik könnte in naher Zukunft in den Grundlagen-Forschungslaboren der Attosekundenphysik und der Laserspektroskopie Einzug halten. Die LAP-Wissenschaftler öffnen der Physik ein neues Tor zum Mikrokosmos. Thorsten Naeser