Representations in deep learning and quantum many-body physics (Dr. P. Wittek)

  • Datum: 19.06.2017
  • Uhrzeit: 14:00 - 15:00
  • Vortragende(r): Dr. Peter Wittek
  • ICFO The Institute of Photonic Sciences, Castelldefels, Spain
  • Raum: Herbert Walther Lecture Hall
  • Gastgeber: MPQ, Theory Division
Representation is of central importance in both quantum many-body physics and machine learning.

Until the advent of deep learning, a key task in machine learning was feature engineering, that is, constructing a space of raw data that would allow a learning algorithm to identify patterns. We see similar 'hand-crafted' representations in physics: for instance, the entanglement spectra often reveals phase transitions. Deep architectures in machine learning automated the extraction of representation, and tensor networks fulfil a similar role in many-body physics. Results proving equivalence between the two paradigms are beginning to emerge. In this talk, we present work-in-progress results on the correspondence between hierarchical tensor networks and deep learning architectures.

Zur Redakteursansicht