contact

Dr. Stephan Dürr
Stephan Dürr
Group Leader
Phone: +49 89 3 29 05 - 291
Room: A 2.22
Prof. Dr. Thomas Udem
Thomas Udem
Scientist
Phone: +49 89 3 29 05 - 282 // -257
Room: D 0.21 // D 0.39




next colloquium

Colloquia

Colloquia

Our series of Colloquium Talks takes place from October till January and from April till July, on Tuesdays, at 2.30pm.

Venue is the Herbert Walter Auditorium in the foyer of the Max Planck Institute of Quantum Optics.

Scientific organization of the talks: Dr. Stephan Dürr and Dr. Thomas Udem

If you wish to view the live stream of the MPQ colloquium, please use the link to subscribe to the corresponding mailing list. Detailed instructions will be sent to all subscribers.

Month:

Distillation of Single Photons based on Cavity QED

Geometry of variational methods

From Precision Spectroscopy to Symmetry-Breaking Dynamics in Ion Coulomb Systems

From Precision Spectroscopy to Symmetry-Breaking Dynamics in Ion Coulomb Systems (PD Dr. Tanja Mehlstäubler)

Single trapped and laser-cooled ions in Paul traps allow for a high degree of control of atomic quantum systems. They are the basis for modern atomic clocks, quantum computers and quantum simulators. Our research aims to use ion Coulomb crystals, i.e. many-body systems with complex dynamics, for precision spectroscopy. This paves the way to novel optical frequency standards for applications such as relativistic geodesy and quantum simulators in which complex dynamics becomes accessible with atomic resolution. [more]

Table-top precision measurements to test fundamental physics: Measurements of the proton charge radius, the fine-structure constant and the electron electric dipole moment

Table-top precision measurements to test fundamental physics: Measurements of the proton charge radius, the fine-structure constant and the electron electric dipole moment (Prof. Eric Hessels)

Fundamental physics (including physics beyond the Standard Model) can be tested using table-top precision measurements. The talk will describe measurements of the size of the proton, the fine-structure constant and the electric dipole moment of the electron. Two recently completed measurements will be described. [more]

Non-perturbative Cavity QED

Non-perturbative Cavity QED (Prof. Peter Rabl)

In quantum optical systems the coupling between a single dipole and a single cavity mode is always much smaller than the absolute energy scales involved, which allows us to understand and model light-matter interactions in terms of well-defined atomic and photonic excitations. With recent advances in the field of circuit QED it is now possible to go beyond this well-established paradigm and enter a fully non-perturbative regime, where the coupling between a single artificial atom (e.g. a superconducting qubit) and a microwave photon exceeds the energy of the photon itself. Such conditions can be associated with an effective finestructure constant of order unity and in this talk I will give a brief introduction about the basics models and novel effects that govern the physics of light-matter interactions in this previously inaccessible regime. [more]

 
loading content
Go to Editor View