Physical Review Letters
“Squeezing Quantum Many-Body Scars”
We develop an analytical approach for the description of quantum many-body scars in PXP models. We show that the scarred dynamics in the PXP model on a complete bipartite graph can be interpreted as a one-dimensional chiral scattering problem, and solve this problem analytically. The insights from this analysis allow us to predict that dynamical signatures of scars in PXP models can be enhanced by spin squeezing the initial states. We show numerically that this stabilization mechanism applies not only to the complete bipartite graph but also to one- and two-dimensional lattices, which are relevant for Rydberg atom array experiments. Moreover, our findings provide a physical motivation for Hamiltonian deformations reminiscent of those known to produce perfect scars.
Acces to the paper: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.128.090606