Attosekundenkamera für Nanostrukturen

Physiker des Labors für Attosekundenphysik am Max-Planck-Institut für Quantenoptik und der Ludwig-Maximilians-Universität haben in Zusammenarbeit mit Wissenschaftlern der Friedrich-Alexander-Universität Erlangen-Nürnberg ein Licht-Materie-Phänomen in der Nanooptik beobachtet, das nur Attosekunden dauert.

Die Wechselwirkung zwischen Licht und Materie ist von besonderer Bedeutung in der Natur, insbesondere in der Photosynthese. Licht-Materie Wechselwirkungen werden auch technisch angewendet und sind für die Elektronik der Zukunft wichtig. Denn eine Technologie, die auf Lichtwellen kodierte Daten überträgt oder speichert, wäre fast 100.000 Mal schneller als heutige Systeme. Eine Licht-Materie-Wechselwirkung, die den Weg ebnen könnte zu einer von Lichtwellen gesteuerten Elektronik, haben nun Wissenschaftler des Labors für Attosekundenphysik (LAP) der Ludwig-Maximilians-Universität (LMU) und des Max-Planck-Instituts für Quantenoptik (MPQ) in Zusammenarbeit mit Kollegen vom Lehrstuhl für Laserphysik der Friedrich-Alexander-Universität Erlangen-Nürnberg untersucht. Die Forscher schickten starke Laserpulse auf einen winzigen Nanodraht aus Gold. Die ultrakurzen Laserpulse regten die frei beweglichen Elektronen im Metall zu Schwingungen an. An der Oberfläche des Drahtes entstanden dadurch elektromagnetische „Nahfelder“. Die Nahfelder pulsierten dann um wenige hundert Attosekunden verschoben gegenüber der Welle des anregenden Lichtfeldes (eine Attosekunde ist ein Milliardstel einer milliardstel Sekunde). Mit Attosekunden Lichtblitzen, die die Forscher anschließend auf den Nanodraht schickten, konnten sie diese winzige Verschiebung der Nahfelder vermessen.

Fällt Licht auf Metalle, kann das im Mikrokosmos eigenartige Dinge an deren Oberfläche auslösen. Das elektromagnetische Feld des Lichts regt Elektronen in den Metallatomen zum Schwingen an. Durch diese Wechselwirkung entstehen sogenannte „Nahfelder“ – elektromagnetische Felder, die nahe der Oberfläche des Metalls lokalisiert sind.

Wie sich diese Nahfelder unter Lichteinfluss verhalten, hat jetzt ein internationales Team von Physikern im Labor für Attosekundenphysik der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik in enger Zusammenarbeit mit Wissenschaftlern des Lehrstuhls für Laserphysik der Friedrich-Alexander-Universität Erlangen-Nürnberg beobachtet.

Dazu schickten die Forscher starke Infrarot-Laserpulse auf einen Nanodraht aus Gold. Diese Laserpulse sind so kurz, dass sie nur über wenige Schwingungen des Lichtfeldes verfügen. Beim Auftreffen auf die Nanonadel regte das Licht kollektive Schwingungen der leitenden Elektronen in dem Verbund aus Goldatomen an. Die Elektronenbewegungen bewirkten die Ausbildung der Nahfelder an der Oberfläche des Drahtes.

Nun wollten die Physiker herausfinden, in welcher zeitlichen Relation die Nahfelder zu den Lichtfeldern standen. Dazu schickten sie kurz nach dem ersten Laserpuls einen zweiten, nur einige hundert Attosekunden kurzen Lichtblitz auf die Nanostruktur. Der zweite Blitz löste einzelne Elektronen aus dem Nanodraht aus. An der Oberfläche angekommen, wurden die Teilchen durch die Nahfelder beschleunigt und detektiert. Die Analyse dieser Teilchen ergab, dass die Nahfelder rund 250 Attosekunden zeitversetzt zum einfallenden Licht schwingen und seinem Feld quasi voraneilen. Das heißt: Die Nahfeld-Schwingungen erreichen 250 Attosekunden früher einen maximalen Ausschlag als die Schwingung des Lichtfeldes.

„Mit der von uns demonstrierten Messmethode können Felder und Oberflächenwellen an Nanostrukturen, welche in der Lichtwellen-Elektronik eine zentrale Rolle spielen, gestochen scharf abgebildet werden.“, erklärt Prof. Matthias Kling, der Leiter der Experimente in München.

Die Versuche ebnen den Weg hin zu komplexeren Studien der Licht-Materie Wechselwirkung an für die Nanooptik geeigneten Metallen und damit für eine lichtgetriebene Elektronik der Zukunft. Diese Elektronik würde mit Frequenzen von Licht betrieben. Licht schwingt etwa eine Million Milliarden Mal pro Sekunde, also mit Petahertz-Frequenzen. Ebenso viele Schaltvorgänge wären denkbar, rund 100.000 mehr als heute. Die ultimative Grenze der Datenverarbeitung wäre damit erreicht.

Thorsten Naeser

Weitere interessante Beiträge

Zur Redakteursansicht