Dr. Stephan Dürr
Stephan Dürr
Group Leader
Phone: +49 89 3 29 05 - 291
Room: A 2.22
Prof. Dr. Thomas Udem
Thomas Udem
Phone: +49 89 3 29 05 - 282 // -257
Room: D 0.21 // D 0.39

next colloquium



Our series of Colloquium Talks takes place from October till January and from April till July, on Tuesdays, at 2:30 p.m..

Attention! Due to the recontstruction of the foyer at the MPQ talks will take place at the interims Lecuture Hall in Room B 0.32.

Scientific organization of the talks: Dr. Stephan Dürr and Dr. Thomas Udem

If you wish to view the live stream of the MPQ colloquium, please use the link to subscribe to the corresponding mailing list. Detailed instructions will be sent to all subscribers.


Are we quantum computers, or merely clever robots? (Prof. M. Fisher)

Of course quantum information processing is not possible in the warm wet brain. There is, however, one \loophole" - oered by nuclear spins - that must be closed before acknowledging that we are merely clever robots. [more]

Collective quantum dynamics: from information scrambling to emergent hydrodynamics (Prof. M. Knap)

Generic, clean quantum many-body systems approach a thermal equilibrium after a long time evolution. In order to reach a global equilibrium, conserved quantities have to be transported across the whole system which is a rather slow process governed by diffusion. [more]

Quantum Measurements on Trapped Ions (Prof. J. Home)

Measurement as defined in quantum physics rarely corresponds to what is performed in the laboratory. [more]

Manipulating nuclei with laser light: the quest of Thorium-229 (Prof. T. Schumm)

The radio isotope Thorium-229 is expected to present a remarkably low-energy excited (isomer) state of the nucleus which is expected around 7.8(5) eV. [more]

9288 1490695352

Quantum optics with trapped ions – from single ion heat engines to ions in vortex laser fields (Prof. F. Schmidt-Kaler)

Trapped single ions and ion crystal exhibit excellent control of the internal spin– and the external motional-degree of freedom. Multi-particle quantum entangled states are generated with high fidelity in view of a future quantum computer with trapped ions. [more]

loading content
Go to Editor View