Dr. Stephan Dürr
Stephan Dürr
Group Leader
Phone: +49 89 3 29 05 - 291
Room: A 2.22
Prof. Dr. Thomas Udem
Thomas Udem
Phone: +49 89 3 29 05 - 282 // -257
Room: D 0.21 // D 0.39

next colloquium

  • The colloquium series will resume at the beginning of the next term in April/October.



Our series of Colloquium Talks takes place from October till January and from April till July, on Tuesdays, at 2:30 p.m..

Attention! Due to the recontstruction of the foyer at the MPQ talks will take place at the interims Lecuture Hall in Room B 0.32.

Scientific organization of the talks: Dr. Stephan Dürr and Dr. Thomas Udem

If you wish to view the live stream of the MPQ colloquium, please use the link to subscribe to the corresponding mailing list. Detailed instructions will be sent to all subscribers.


Quantum Measurements on Trapped Ions (Prof. J. Home)

Measurement as defined in quantum physics rarely corresponds to what is performed in the laboratory. [more]

Manipulating nuclei with laser light: the quest of Thorium-229 (Prof. T. Schumm)

The radio isotope Thorium-229 is expected to present a remarkably low-energy excited (isomer) state of the nucleus which is expected around 7.8(5) eV. [more]

9288 1490695352

Quantum optics with trapped ions – from single ion heat engines to ions in vortex laser fields (Prof. F. Schmidt-Kaler)

Trapped single ions and ion crystal exhibit excellent control of the internal spin– and the external motional-degree of freedom. Multi-particle quantum entangled states are generated with high fidelity in view of a future quantum computer with trapped ions. [more]

The Alchemy of Vacuum - Hybridizing Light and Matter (Prof. T. Ebbesen)

Strong coupling of light and matter can give rise to a multitude of exciting physical effects through the formation of hybrid light-matter states. [more]

First principles modeling of Light-Matter interactions within QED-TDDFT: From Weak to Strong Coupling in QED-Chemistry and Materials (Prof. A. Rubio)

Computer simulations that predict the light-induced change in the physical and chemical properties of complex systems, molecules, nanostructures and solids usually ignore the quantum nature of light. [more]

Go to Editor View
loading content