contact

Dr. Stephan Dürr
Stephan Dürr
Group Leader
Phone: +49 89 3 29 05 - 291
Prof. Dr. Thomas Udem
Thomas Udem
Scientist
Phone: +49 89 3 29 05 - 282 // -257




next colloquium

Colloquia

Colloquia

Our series of Colloquium Talks takes place from October till January and from April till July, on Tuesdays, at 2:30 p.m..

Attention! Due to the recontstruction of the foyer at the MPQ talks will take place at the interims Lecuture Hall in Room B 0.32.

Scientific organization of the talks: Dr. Stephan Dürr and Dr. Thomas Udem

Month:

"Optically Probing Quantum States in Artificial Atoms and Molecules."

The development of “hybrid” quantum nanosystems combining electronic and photonic functionality opens the door to manipulate light-matter interactions and engineer quantum properties in hand made optically active nano-materials. This talk will give an overview of several research themes that focus on this kind of systems. Specific examples include the electro-optical preparation, manipulation and readout of the spin of single electrons and holes in artificial atoms and molecules and the investigation of coupling to the solid-state environment. [more]

"The two-dimensional Bose gas: Thermodynamics and beyond"

A two-dimensional Bose fluid is a remarkably rich many-body system, which allows one to revisit several features of quantum statistical physics. Firstly, the role of thermal fluctuations is enhanced compared to the 3D case, which destroys the ordered state associated with Bose–Einstein condensation. However interactions between particles can still cause a superfluid transition, thanks to the Berezinskii–Kosterlitz–Thouless mechanism. Secondly, the weakly interacting Bose gas in 2D must be scale-invariant, a remarkable feature that manifests itself in the very simple form taken by the equation of state of the fluid. In this talk I will summarize the recent experimental progress in the investigation of 2d atomic gases, and draw some comparisons with other planar fluids such as exciton-polariton gases, which also provide spectacular illustrations of low dimensional many-body physics. [more]

"The two-dimensional Bose gas: Thermodynamics and beyond"

A two-dimensional Bose fluid is a remarkably rich many-body system, which allows one to revisit several features of quantum statistical physics. Firstly, the role of thermal fluctuations is enhanced compared to the 3D case, which destroys the ordered state associated with Bose–Einstein condensation. However interactions between particles can still cause a superfluid transition, thanks to the Berezinskii–Kosterlitz–Thouless mechanism. Secondly, the weakly interacting Bose gas in 2D must be scale-invariant, a remarkable feature that manifests itself in the very simple form taken by the equation of state of the fluid. In this talk I will summarize the recent experimental progress in the investigation of 2d atomic gases, and draw some comparisons with other planar fluids such as exciton-polariton gases, which also provide spectacular illustrations of low dimensional many-body physics. [more]

"Molecular Sciences: The Dynamical Perspective."

Ultrafast laser science has led to significant progress in molecular dynamics studies, particularly for the difficult but general case of non-Born-Oppenheimer dynamics. Quantum control methods further enhance molecular dynamics studies by permitting direct Molecular Frame measurements. As laser fields get stronger, a sub-cycle (attosecond) physics emerges, leading to new probes of driven multi-electron dynamics in polyatomic molecules. In condensed phases, ultrafast lasers permit the ‘triggered’ unzipping of double helix DNA, potentially leading to ‘light-induced genomics’, as well as simplified approaches to label-free CARS microscopy of live cells and tissues. [more]

 
Go to Editor View
loading content