contact

Dr. Stephan Dürr
Stephan Dürr
Group Leader
Phone: +49 89 3 29 05 - 291
Room: A 2.22
Prof. Dr. Thomas Udem
Thomas Udem
Scientist
Phone: +49 89 3 29 05 - 282 // -257
Room: D 0.21 // D 0.39




next colloquium

Colloquia

Colloquia

Our series of Colloquium Talks takes place from October till January and from April till July, on Tuesdays, at 2:30 p.m..

Attention! Due to the recontstruction of the foyer at the MPQ talks will take place at the interims Lecuture Hall in Room B 0.32.

Scientific organization of the talks: Dr. Stephan Dürr and Dr. Thomas Udem

If you wish to view the live stream of the MPQ colloquium, please use the link to subscribe to the corresponding mailing list. Detailed instructions will be sent to all subscribers.

Month:

SMT: Printing really small, really fast … and what to do when you are at the end of your rope

SMT: Printing really small, really fast … … and what to do when you are at the end of your rope

This talk is intended to provide you with a solid notion of what can be achieved in nano-lithography today, what the present technical limitations are and what we consider at present fundamental boundaries of what may be possible in the future. Carl Zeiss SMT has been active in this field for more than 50 years and its history hence shows some of the technological milestones from the early beginnings of integrated circuits to present-day extreme integration allowing qualitatively new applications of micro- or rather nano-electronics. [more]

Connecting the Resource Theories of Purity and Coherence

Quantum Logic Spectroscopy with Trapped Ions

Quantum Logic Spectroscopy with Trapped Ions (Prof. Dr. Dietrich Leibfried)

Quantum logic spectroscopy uses the quantized motion of trapped charged particles as a means to indirectly control charged quantum systems and gain information on their properties. A highly controllable atomic "logic" ion indirectly helps to manipulate the system under study and to report information back to the experimenter. This allows for precise quantum control of charged systems that are hard or impossible to directly control with light fields, such as atomic ions without convenient laser cooling transitions, molecular ions or charged elementary particles such as the proton. This talk will introduce the basic ideas behind quantum logic spectroscopy and illustrate its power based on example experiments in the NIST Ion Storage Group. [more]

Topology in finite‐temperature and non‐equilibrium systems

Cold and ultracold molecules for quantum information and particle physics

Cold and ultracold molecules for quantum information and particle physics (Prof. John Doyle)

Wide-ranging scientic applications have created growing interest in ultracold molecules. Heteronuclear bialkali molecules, assembled from ultracold atoms, enabled the study of long-range dipolar interactions and quantum-state-controlled chemistry, and recently have been brought to quantum degeneracy. Assembling such molecules one-byone in tweezers for quantum information applications is one exciting avenue of this work. [more]

 
loading content
Go to Editor View