Suchergebnisse

Zeitschriftenartikel (28)

  1. 1.
    Pancotti, N.; Knap, M.; Huse, D. A.; Cirac, J. I.; Bañuls, M. C.: Almost conserved operators in nearly many-body localized systems. Physical Review B 97 (9), 094206 (2018)
  2. 2.
    Bañuls, M. C.; Cichy, K.; Cirac, J. I.; Jansen, K.; Kühn, S.: Efficient Basis Formulation for (1+1)-Dimensional SU(2) Lattice Gauge Theory: Spectral Calculations with Matrix Product States. Physical Review X (2017)
  3. 3.
    Bañuls, M. C.; Yao, N. Y.; Choi, S.; Lukin, M. D.; Cirac, J. I.: Dynamics of quantum information in many-body localized systems. Physical Review B 96 (17), 174201 (2017)
  4. 4.
    Hinarejos, M.; Bañuls, M. C.; Perez, A.; de Vega, I.: Non-Markovianity and memory of the initial state. Journal of Physics A 50 (32), 335301 (2017)
  5. 5.
    Bañuls, M. C.; Cichy, K.; Cirac, J. I.; Jansen, K.; Kühn, S.: Density Induced Phase Transitions in the Schwinger Model: A Study with Matrix Product States. Physical Review Letters 118 (7), 071601 (2017)
  6. 6.
    August, M.; Bañuls, M. C.; Huckle, T.: On the Approximation of Functionals of Very Large Hermitian Matrices represented as Matrix Product Operators. Electronic Transactions on Numerical Analysis 46, S. 215 - 232 (2017)
  7. 7.
    Lubasch, M.; Fuks, J. I.; Appel, H.; Rubio, A.; Cirac, J. I.; Bañuls, M.-C.: Systematic construction of density functionals based on matrix product state computations. New Journal of Physics (2016)
  8. 8.
    Bañuls, M. C.; Cichy, K.; Jansen, K.; Saito, H.: Chiral condensate in the Schwinger model with matrix product operators. Physical Review D 93 (9), 094512 (2016)
  9. 9.
    de Vega, I.; Bañuls, M. C.: Thermofield-based chain-mapping approach for open quantum systems. Physical Review A 92 (5), 052116 (2015)
  10. 10.
    de Vega, I.; Bañuls, M. C.: Thermofield-based chain-mapping approach for open quantum systems. Physical Review A 92, 052116 (2015)
  11. 11.
    Bañuls, M. C.; Cichy, K.; Cirac, J. I.; Jansen, K.; Saito, H.: Thermal evolution of the Schwinger model with matrix product operators. Physical Review D 92 (3), 034519 (2015)
  12. 12.
    Kühn, S.; Zohar, E.; Cirac, J. I.; Bañuls, M. C.: Non-Abelian string breaking phenomena with matrix product states. Journal of high energy physics: JHEP (7), 130, S. 1 - 26 (2015)
  13. 13.
    Kim, H.; Bañuls, M. C.; Cirac, J. I.; Hastings, M. B.; Huse, D. A.: Slowest local operators in quantum spin chains. Physical Review E 92 (1), 012128 (2015)
  14. 14.
    Cui, J.; Cirac, J. I.; Bañuls, M. C.: Variational Matrix Product Operators for the Steady State of Dissipative Quantum Systems. Physical Review Letters (2015)
  15. 15.
    Hinarejos, M.; Bañuls, M. C.; Perez, A.: Wigner formalism for a particle on an infinite lattice: dynamics and spin. New Journal of Physics 17 (1), 013037 (2015)
  16. 16.
    Kühn, S.; Cirac, J. I.; Bañuls, M. C.: Quantum simulation of the Schwinger model: A study of feasibility. Physical Review A 90 (4), 042305 (2014)
  17. 17.
    Lubasch, M.; Cirac, J. I.; Bañuls, M. C.: Algorithms for finite projected entangled pair states. Physical Review B (Condensed Matter and Materials Physics) 90 (6), 064425 (2014)
  18. 18.
    Lubasch, M.; Cirac, J. I.; Bañuls, M. C.: Unifying projected entangled pair state contractions. New Journal of Physics (2014)
  19. 19.
    Lubasch, M.; Cirac, J. I.; Bañuls, M. C.: Unifying projected entangled pair state contractions. New Journal of Physics 16, 033014 (2014)
  20. 20.
    Bañuls, M. C.; Cichy, K.; Cirac, J. I.; Jansen, K.: The mass spectrum of the Schwinger model with matrix product states. Journal of high energy physics: JHEP (11), 158 (2013)
 
Zur Redakteursansicht
loading content