"Rydberg blockade, slow light and interacting dark-state polaritons."*

  • Datum: 23.10.2012
  • Uhrzeit: 11:30 - 11:30
  • Vortragende(r): Professor Matthias Weidemüller, Universität Heidelberg, Physics Institute and Center for Quantum Dynamics
  • Raum: Herbert Walther Lecture Hall
  • Gastgeber: MPQ
"Interfacing light and matter at the quantum level is at the heart of modern atomic and optical physics and is a unifying theme of many diverse areas of research. A prototypical realization is electromagnetically induced transparency (EIT), whereby quantum interference gives rise to long-lived hybrid states of atoms and photons called dark-state polaritons. In my talk I will give a general introduction into the field of ultracold Rydberg gases, with special emphasis on recent developments towards nonlinear quantum optics and the observation of strong interactions between dark-state polaritons in an ultracold atomic gas involving highly excited (Rydberg) states. By combining optical imaging with counting of individual Rydberg excitations we probe both aspects of this atom-light system. Extreme Rydberg-Rydberg interactions give rise to a polariton blockade, which is revealed by a strongly nonlinear optical response of the atomic gas. For our system the polaritons are almost entirely matter-like allowing us to directly measure the statistical distribution of polaritons in the gas. For increasing densities we observe a clear transition from Poissonian to sub-Poissonian statistics, indicating the emergence of spatial and temporal correlations between polaritons. These experiments, which can be thought of as Rydberg dressing of photons, show that it is possible to control the statistics of light fields, and could form the basis for new types of long-range interacting quantum fluids." * Work performed in collaboration with Christoph Hofmann, Georg Günter, Hanna Schempp, Martin Robert-de-Saint-Vincent and Shannon Whitlock
Zur Redakteursansicht