Dr. Stephan Dürr
Stephan Dürr
Telefon: +49 89 3 29 05 - 291
Raum: A 2.22
Prof. Dr. Thomas Udem
Thomas Udem
Telefon: +49 89 3 29 05 - 282 // -257
Raum: D 0.21 // D 0.39

kommende Kolloquien



Die Gastvorträge im Rahmen des MPQ-Kolloquiums finden von April bis Juli sowie von Oktober bis Januar jeweils dienstags um 14:30 Uhr statt. Verantaltungsort ist der Herbert-Walther-Hörsaal im Foyer des Max-Planck-Instituts für Quantenoptik.

Ansprechpartner für die wissenschaftliche Organisation:

Dr. Stephan Dürr und Dr. Thomas Udem

Wenn Sie einen Vortrag im Livestream verfolgen möchten, ist es nötig, dass Sie sich in eine entsprechende Mailing Liste eintragen. Daraufhin erhalten Sie Instruktionen zum Empfang des Livestreams.


Double Feature: Creating optical Schrödinger‐cat states with a cavity (Bastian Hacker)

Schrödinger's famous cat Gedankenexperiment investigates how the laws of quantum mechanics extend into the macroscopic realm. An experimentally accessible model system in quantum optics is the superposition of two well-distinguishable coherent states - a so-called "cat state" - with a tunable degree of macroscopicity. Applying a high-finesse cavity we demonstrate a new method to create flying optical cat states. They are entangled to a single trapped atom, much like Schrödinger's original cat. I show control over various degrees of freedom of the cat states, which is a great asset for their potential application to continuous-variable quantum computing. [mehr]

Quantum optics using atomic arrays (Prof. Dr. Darrick Chang)

Ensembles of atoms or other quantum emitters are envisioned to be an important component of quantum applications, ranging from quantum memories for light to photon-photon gates to metrology. It has historically been an outstanding challenge to exactly solve for the quantum dynamics of an optical field as it propagates through and interacts with an ensemble. The standard axiomatic approach is to use the one-dimensional Maxwell-Bloch equations, which assume that excited atoms emit independently into unwanted directions. This ignores the wave interference of the emitted light, which depends on correlations between the atoms. [mehr]

Superfluidity and Bose-Einstein Condensation Coherence (Prof. Dr. Lev Pitaevskii)

In 1938 Petr Kapitza, investigating properties of the low temperature phase of liquid 4He, discovered that viscosity of the liquid is more than 104 times smaller, than that of all known liquids. Kapitza concluded, that the liquid is in a new state of matter, a “superfluid”, which to some extend analogous to superconductors. Landau (1941) explained the phenomenon and predicted several its unusual properties. It occurs, that in a superfluid in any point of space at finite temperatures simultaneously exists two flow with different velocities. One is “normal” and has finite viscosity and the second one is “superfluid”, which viscosity is exactly zero. This results in presence of two type of sound, which were discovered experimentally in 1946. [mehr]

Label-free chemical imaging: Unveiling hidden signatures for molecule-based diagnosis and treatment (Prof. Ji-Xin Cheng)

Optical microscopy has been a fundamental tool to life science and materials science since its invention in the 17th century. [mehr]

Deciphering complex quantum systems (Prof. A. Buchleitner)

Not many ingredients are needed for a quantum system to turn complex, with the helium atom as the arguably most elementary example. [mehr]

loading content
Zur Redakteursansicht