MAX-PLANCK-INSTITUT FÜR QUANTENOPTIK

LAPLAS -

A one - dimensional code for laser plasma simulations

R.F.	Schmalz
Ρ.	Mulser
G.	Spindler

M P Q 75

Juli 1983

MPQ-Report 75

MAX-PLANCK-INSTITUT FÜR QUANTENOPTIK

LAPLAS -

laser plasma simulations

R.F. Schmalz

Mulser Ρ.

G.

Max-Planck-Institut für Quantenoptik

BIBLIOTHEK

Ludwig-Prandtl-Str. (0 D-8046 Garching Tel.-Nr.: (089) 32905-148

74683

M P Q 75

Dieser MPQ-Bericht ist als Manuskript des Autors gedruckt Alle Rechte vorbehalten

This MPQ-report has been printed as author's manuscript All rights reserved

Max-Planck-Institut für Quantenoptik 8046 GARCHING bei MÜNCHEN, Bundesrepublik Deutschland

A one - dimensional code for

Spindler

Juli 1983

MPQ 75

LAPLAS - A one - dimensional code for laser plasma simulations

Abstract

This report describes in detail a FORTRAN program called LAPLAS which was developed to support the laser plasma experiments carried out at MPQ. LAPLAS is a one-dimensional finite difference Lagrange code which solves the gasdynamical equations allowing for two temperatures (electronic and ionic). The formulation is explicit for the hydrodynamics and implicit in the energy equations. A tabulated equation of state is used.

This work was supported, in part, by Euratom.

R.F. Schmalz, P. Mulser and G. Spindler

Contents:

Abstract

Contents

I)	Introduction	3
II)	Basic equations	4
III)	Lagrange coordinates	5
IV)	The Richtmyer - von Neumann scheme	6
V)	The implicit scheme for the energy equations	8
	1) Version 1: The ideal gas	8
	2) Version 2: Tabulated EOS	11
VI)	Solution of the implicit difference scheme	12
VII)	Meaning of the variables used in LAPLAS	18
	1) COMMON variables	18
	2) Input parameters	19
	3) Output	21
VIII)	Short description of the subroutines	22
IX)	Output of a typical run	27
X)	Concluding remarks	42
Refer	ences	43

I) Introduction

Experiments connected with inertial confinement fusion (ICF) and related topics are being carried out at MPQ, mainly with the ASTERIX III laser. In order to achieve a thorough theoretical understanding of the processes going on in such experiments a numerical simulation code was developed [1]. This report describes in detail the FORTRAN program together with the output from a typical run.

The code is called LAPLAS (= <u>LAser PLASma</u> code) and solves the one-dimensional gasdynamics equations with two temperatures (electrons and ions). It includes flux limited thermal conductivity, energy exchange between electrons and ions, inverse Bremsstrahlung absorption in the corona and fast electron preheat. It uses a tabulated equation of state (EOS) from the SESAME library [4]. A hybrid scheme is chosen which treats the hydrodynamic part explicitly and the coupled energy equations implicitly. A geometry option is built in which allows the treatment of plane, cylindrical or spherical symmetric cases. There are two versions of the code: version 1 uses a totally ionized ideal gas EOS while version 2 uses the SESAME data.

in the end of the an

and the state of the take the contract cost in the

The electron density is simply given by

$$n_e = Z_{ef}$$

where Z_{eff} is the ionic charge. The transport coefficients (according to Spitzer) are taken from [2]:

$$\kappa_{e} = \gamma_{e}(Z_{eff}) \ 3 \ k^{7/2} \ T_{e}^{5/2} / (4\sqrt{m_{e}})$$

$$\kappa_{i} = \gamma_{i}(Z_{eff}) \ 3 \ k^{7/2} T_{i}^{5/2} / (4\sqrt{m_{i}})$$

$$v_{ei} = 4 \ \sqrt{2\pi} \ e^{4} \ln \Lambda \ Z_{eff} \ n_{e} / \ (3\sqrt{m_{e}})$$

 $\gamma_{a}(Z)$ and $\gamma_{i}(Z)$ are given in [2], ln \wedge denotes the Coulomb logarithm. (Actually, mean values are used: $\gamma_e = 7.$, $\gamma_i = 3.9$, $\ln \Lambda = 10.$) Accomplished by an equation of state $p(\rho,T)$, $U(\rho,T)$, the system (1) to (4) is closed.

III Lagrange coordinates

Because of the violent plasma expansion, it is very convenient to have a coordinate system which is tied to the mass of the system. In onedimensional geometry the conservation of the mass reads R r

$$4\pi\rho_{0}\int_{r_{4}}r^{(\alpha-1)} dr = 4\pi\int_{\mathcal{R}_{4}}\rho(R)$$
$$\frac{\partial R}{\partial r} = (\rho_{0}/\rho(r,t))(r/R(r,t))$$

$$R(r,0) = r$$
, $\rho_0 = \rho(r,0)$.

 $\alpha = 1$: plane geometry (foils) $\alpha = 2$: cylindrical geometry $\alpha = 3$: spherical geometry.

R = Euler coordinate

r = Lagrange coordinate.

II Basic equations

We have two fluids, namely electrons and ions with masses m and m;,

- 4 -

number densities n and n., temperatures T and T., and partial pressures p and p. The hydrodynamic motion is dominated by the heavy ions, so only one fluid needs to be modeled: The total mass density ρ is approximated by n.m., the bulk velocity is $\mathbf{v} \cong \mathbf{v}$. The continuity equation then begaloved to be a contracted on the beam of the summired to the second seco [1]. This report describes in detail the FORTRAN program together with the

$$\inf_{i \in \mathcal{V}} f := f_{i} = f_{i} = f_{i} = (\underline{v}_{i}, \mathbf{n}) \cdot \nabla + \mathbf{i} + \mathbf{i}$$

The code is called LAPLAS (= TAGer PLASma code) and solves the one-domen-The momentum equation acquires the form rional gasdynamics equations with two temperatures felectrons and ions).

It follows thus limited thermal conductivity, energy exchange between (2) $(q+q)\nabla - = tb/vb \underset{m}{m} \frac{n}{m}$ electrons and sons, inverse breastrailing bbooption in the corona and

nori (40.1) side is an issue of the substantial derivative d/dt = 0.200 (1.0.1) is a set of the substantial derivative d/dt = 0.200 V. V.

The energy equations follow directly from the first law of thermodynamics. dynamic part explicitly and the coupled energy equa We use (1) and write and which allows the treatment of plane, or p

drival of spherical symmetric cases. Incre are two versions of the code: (d, sc) thc (d, sc) tb, tb, tb, tb, tb, tb, tb, tb, tb, tbc, tbc version 1 uses a totally denored theas gastfold while version 2 uses the

for electrons and ions j = e, i. Here $c_v^j := (\partial U_i / \partial T)_0$

is the specific heat derived from the internal energy per mass U. $\rho Q_{_{\rm H}}$ represents the energy sources for each species:

$$\dot{\rho Q}_{e} = \nabla \Phi + \nabla \cdot (\kappa_{e} \nabla T_{e}) + 2\rho \omega_{c} (T_{i} - T_{e}) , \qquad (4a)$$

 $\rho \dot{Q}_{i} = \nabla \cdot (\kappa_{i} \nabla T_{e}) - 2\rho w_{c} (T_{i} - T_{e}) .$ (4b)

 Φ is the laser energy flux coupling to the electrons only, κ_{p} and κ_{i} are the heat conductivity coefficients and w_{c} is related to the electron-ion collision frequency v_{ei} by

$$\rho \omega_{\rm c} = 3 \, n_{\rm e} km_{\rm e} v_{\rm ei} / 2/m_{\rm i}$$

 $(k = 1.38 \cdot 10^{-16} eV/K \text{ is the Boltzmann constant}).$

SESAME data.

$$ff^{n}i$$
 (5)

 $\sqrt{2\pi} e^4 Z_{eff} \ln \Lambda$ (6) $\sqrt{\pi} e^4 Z_{eff}^4 \ln \Lambda$, (7) $k^{3/2} T_e^{3/2}$ (8)

 $R)R^{(\alpha-1)}dR$ or

 α^{-1} with (9) Now we choose the Euler coodinate at t = 0 as a new independent variable and transform our equations into the comoving Lagrangian system ($\underline{v} = 0$):

$$\partial n_i / \partial t = - (n_i^2 / n_i^0) r^{1-\alpha} \partial (R^{\alpha-1} v) / \partial r$$
 (10)

$$\partial v/\partial t = -\rho_0^{-1} (R/r)^{\alpha-1} \partial (p+q)/\partial r$$
 (11)

$$\partial R/\partial t = v$$
 (12)

$$\rho c_{v}^{e} \partial T_{e} / \partial t = (n_{i} / n_{i}^{\circ}) r^{1-\alpha} \partial (R^{\alpha-1} \phi) / \partial r +$$

$$+ (n_{i} / n_{i}^{\circ}) r^{1-\alpha} \partial (R^{\alpha-1} \kappa_{e} (n_{i} / n_{i}^{\circ}) (R/r)^{\alpha-1} \partial T_{e} / \partial r) / \partial r + (13a)$$

$$+ 2\rho \omega_{c} (T_{i}^{-} T_{e}) -$$

$$- T_{e} (\partial p_{e} / \partial T)_{\rho} (n_{i} / n_{i}^{\circ}) r^{1-\alpha} \partial (R^{\alpha-1} v) / \partial r \qquad (13b)$$

(ions analogous, insert q).

An artificial viscosity q is introduced (see [3]) which is defined by

 $q: = \begin{cases} \rho \ell^2 \ (\partial v / \partial R)^2 & \text{if } \partial v / \partial R < o \\ \\ 0 & \text{otherwise.} \end{cases}$

The dimensionless viscosity length ℓ should be around 1.5 to 2.0 thus giving the shocks a thickness around 3 to 5 zones.

IV) The Richtmyer-von Neumann scheme [3]

The velocities v are defined at the zone boundaries R_{i} , whereas the temperatures and densities are defined at the center j+1/2. The time centering is at $t^{n+1/2}$. The scheme is now

$$(R_{j}^{n+1}-R_{j}^{n})/\Delta t = -\rho_{o}^{-1}(R_{j}^{n}/r_{j})^{\alpha-1}(P_{j+1}^{n})^{\alpha-1}(P_{$$

Instead of (10) we used equation (9) which guarantees total and global mass conservation.

Boundary conditions:

a) free surface:

$$P_{J+1/2}^{n} = -P_{J-1/2}^{n} + 2p_{o}$$
 for all n

prevent an ideal gas from running away). b) rigid wall:

$$v_J^n = 0$$
 for all n.

In addition for the center of a sphere: $R_J^n = 0$ for all n. Courant-Friedrichs-Lewy stability criterion

 $c\Delta t/(R_{j+1}^n-R_j^n) \leq 1$ for all n, j $(c^2 = \partial p / \partial \rho \text{ sound velocity}).$

 $\Delta t = v_{j}^{n+1} ,$ (14) $1/2^{-P_{j-1/2}^{n}} +$ (15) (r_{j+1}-r_j) , $R_i^{n+1})^{\alpha}$). (16)

The boundary conditions are formulated at the integer points j = J.

including an applied external pressure p (for instance, p is used to

The system (14) to (16) is explicit. The time step Δt is given by the

- 8 -

Sequence of computation:

Given the state of the hydrodynamic system at time $t = t^n$ together with the boundary conditions at j = 1 and j = M. Then equation (15) gives the the boundary conditions at j = 1 and j = H. Then equation (13) gives the new velocities v_j^{n+1} (j=2, ..., M-1). From the boundary conditions we infer v_1^{n+1} and v_M^{n+1} . Eq. (14) yields the new coordinates R_j^{n+1} (j = 1, ..., M) and eq. (16) the new densities $\rho_{j+1/2}^{n+1}$. The solution of the implicit scheme for the energy equations finally gives $T_{j+1/2}^{n+1}$ and with the EOS $P_{j+1/2}^{n+1}$. So the new state at $t = t_{j+1}^{n+1} = t_{j+1/2}^{n+1}$ and with the artificial viscosity $q_{j+1/2}^{n+1}$ is calculated from ρ_{j+1}^{n+1} and v_j^{n+1}).

V) The implicit scheme for the energy equations

1) Version 1: The ideal gas

For an ideal gas we have the EOS ($\gamma = 5/3$)

$$P_{j} = n_{j}kT_{j} \quad (j = e, i)$$

$$U_{j} = P_{j}/\rho/(\gamma - 1) = 3 k T_{j}n_{j}/2\rho.$$
(17)

We immediately derive $c_V^j = 3/2 \text{ k n}_j / \rho$ and $T_j (\partial p / \partial T)_\rho = P_j$. Assuming total ionization we obtain the relation

$$n_e = Zn_i$$

with the atomic number Z.

Eqs. (13) are then given by

$$\partial Te/\partial t = (2/3kn_{e}^{0})r^{1-\alpha} \partial (R^{\alpha-1}\Phi)/\partial r + + (2/3 kn_{e}^{0})r^{1-\alpha} \partial (R^{\alpha-1} \kappa_{e}(n_{e}/n_{e}^{0})(R/r)^{\alpha-1}\partial T_{e}/\partial r)/\partial r + + 2 (m_{e}/m_{i}) v_{ei} (T_{i}-T_{e}) - (18a) - (2/3) T_{e} (n_{e}/n_{e}^{0}) r^{1-\alpha} \partial (R^{\alpha-1}v)/\partial r$$

$$\partial T_{i} / \partial t = (2Z/3kn_{e}^{0})r^{1-\alpha} \partial (R^{\alpha-1} \kappa_{i}(n_{e}/n_{e}^{0})(R/r)^{\alpha-1} \partial T_{i} / \partial r) / \partial r$$

$$+ 2 Z (m_{e}/m_{i}) v_{ei} (T_{e} - T_{i}) - (2/3)(T_{i}+qZ/(n_{e}k))(n_{e}/n_{e}^{0})r^{1-\alpha} \partial (R^{\alpha-1}v) / \partial r \qquad (18b)$$

The thermal conductivities are redefined

and expressions like $T_i^{5/2} \partial T_i / \partial r$ are replaced by $(2/7) \partial T_i^{7/2} / \partial r$.

Heat flux limitation:

The electronic heat flux is limited by an upper bound which is called the "free streaming" value. In addition, we apply a constant factor f (= parameter) and write

$$q_{max} = fn_e kT_e (kT_e)$$

Redefining the electronic heat conductivity to

$$q_e = - \overline{\kappa}_e \nabla T_e = \kappa_e \nabla T_e / 6$$

amounts to interpolating by the harmonic mean

$$1/|q_e| = 1/\kappa_e \nabla T_e$$

So we have

$$\bar{\kappa}_{e} = \kappa_{e} (1 + |\kappa_{e} \nabla T_{e}| / q_{max})$$

An explicit numerical scheme of the diffusive equations (18) would require a much more restrictive stability criterion than the one for the hydrodynamics. Therefore an implicit scheme is chosen.

By central difference δf_i or $(\delta f)_i$ of a quantity defined at j we mean

$$_{j}^{5/2}$$
 (j = e,i) (19)

$$(e/m_e)^{1/2}$$

 $/(1+\kappa_{P}\nabla T_{P}/q_{max})$ (20)

 $| + 1/q_{max}$.

 $)^{-1} =: \xi \kappa_{a}.$ (21)

In the code we denote the indices j-1/2 with J, j+1/2 with J+1 and so forth.

- 10 -

f(j+1/2)-f(j-1/2). The evaluation of some expression f at the intermediate time $t^{n+\theta}:=t^n+\theta\Delta t$ is abbreviated by

$$[f]^{n+\theta}: = \theta \cdot f^{n+1} + (1-\theta) \cdot f^{n}.$$

 $F := \phi R^{\alpha-1}$

 $(0 \leq \theta \leq 1, \theta = 0$ is fully explicit, $\theta = 1$ means fully implicit, stability requires 1/2 $\leq \theta \leq 1$). Then eq. (18) reads (TE = T_e, TI = T_i)

$$(\text{TE}_{j+1/2}^{n+1} - \text{TE}_{j+1/2}^{n}) / \Delta t = \alpha_1 (\delta F_{j+1/2})^n + \alpha_2 [\delta(\sigma_e \delta \text{TE}^{7/2})_{j+1/2}]^{n+\theta}$$
(22a)
- $\alpha_3 [(n_e)_{j+1/2}/(\text{TE}_{j+1/2})^{3/2} (\text{TE}-\text{TI})_{j+1/2}]^{n+\theta}$ - $\alpha_4 [(\text{TE} n_e)_{j+1/2} \delta(R^{\alpha-1}v)_{j+1/2}]^{n+\theta}$

with

$$\sigma_{e} := \xi n_{e} R^{2(\alpha-1)} / (n_{e}^{o} r^{\alpha-1})$$

$$\alpha_{1} := 2/(3 k n_{e}^{o}) \alpha / (r_{j+1}^{\alpha} - r_{j}^{\alpha})$$

$$\alpha_{2} := 4 \kappa_{e}^{*} / (21 k n_{e}^{o}) \alpha / (r_{j+1}^{\alpha} - r_{i}^{\alpha}) / \Delta r$$

$$\alpha_{3} := 2(m_{e} / m_{i}) v_{ei}^{*} (v_{ei} = : v_{e}^{*} n_{e} / T_{e}^{3/2})$$

$$\alpha_{4} := 2\alpha / (3 n_{e}^{o}) / (r_{j+1}^{\alpha} - r_{j}^{\alpha}) .$$

Furthermore, $\Delta r = r_{j+1} - r_j$ and $r^{\alpha-1}\Delta r$ is replaced by $(r_{j+1}^{\alpha} - r_j^{\alpha})/\alpha$. Analogously, for the ions (22b).

2) Version 2: Tabulated EOS:

Due to the history of this code version 2 is written in a way that it appears as a correction to version 1 without changing the structure of the implicit energy routine.

two temperature tables of SESAME will be available)

The electronic pressure at temperature ${\tt T}_{\rm p}$ then becomes

$$p_e = p_s(\rho_s)$$

for the internal energy gives the specific heat for the electrons:

$$\rho c_V^e = \rho (\delta$$

We now define the correction factors which arise due to the EOS being different from an ideal gas:

RC: =
$$((2m_i/3k) (\partial U_s/\partial T)_{\rho} - 1)/Z_{eff}$$
 (23)
PT: = $((1/kn_i)(\partial p_s/\partial T)_{\rho} - 1)/Z_{eff}$ (24)

For an ideal gas (= version 1) we have RC = PT = 1, $Z_{eff} = Z$. Eq. (13a) then reads

$$\frac{\partial T_{e}}{\partial t} = \frac{1}{RC} \frac{1}{Z_{eff}} \frac{2}{3kn_{i}^{\circ}} \frac{1}{r^{\alpha-1}} \frac{\partial}{\partial r} \left(R^{\alpha-1} \phi \right) + \frac{1}{RC} \frac{1}{Z_{eff}} \frac{2}{3kn_{i}^{\circ}} \frac{1}{r^{\alpha-1}} \frac{\partial}{\partial r} \left(R^{\alpha-1} \kappa_{e} \frac{n_{i}}{n_{i}^{\circ}} \left(\frac{R}{r} \right)^{\alpha-1} \frac{\partial T_{e}}{\partial r} \right) + \frac{1}{RC} \frac{2}{Z_{eff}} \frac{m_{e}}{M_{i}^{\circ}} V_{ei} \left(T_{i} - T_{e} \right) - \frac{PT}{RC} \frac{2}{3} T_{e} \frac{n_{i}}{n_{i}^{\circ}} \frac{1}{r^{\alpha-1}} \frac{\partial}{\partial r} \left(R^{\alpha-1} v \right)$$
(25a)

Some comments on the EOS tables in advance: The SESAME data we have access to so far only contain one temperature, so we have to decompose the pressure $p = p_e + p_i$ and the internal energy by some reasonable assumption. We assume the ions to be still an ideal gas. (In future,

$$(r_e) - n_i kT_e$$

where $p_s(\rho, T_e)$ is the SESAME interpolated value. An analogous treatment

$$\partial U_s / \partial T)_{\rho} - 3 kn_i / 2$$

- 13 -

and for the ions

$$\frac{\partial T_{i}}{\partial t} = \frac{2}{3kn_{i}^{\circ}} \frac{1}{r^{\alpha-1}} \frac{\partial}{\partial r} \left(R^{\alpha-1} \kappa_{i} \frac{n_{i}}{n_{i}^{\circ}} \left(\frac{R}{r} \right)^{\alpha-1} \frac{\partial T_{i}}{\partial r} \right) + 2 Z_{eff} \frac{m_{e}}{m_{i}} v_{ei} \left(T_{e} - T_{i} \right) - \frac{2}{3} \left(T_{i} + \frac{q}{kn_{i}} \right) \frac{n_{i}}{n_{i}^{\circ}} \frac{1}{r^{\alpha-1}} \frac{\partial}{\partial r} \left(R^{\alpha-1} v \right).$$
(25b)

Now we see that all the corrections can be put into the coefficients $\alpha_1 \ \dots \ \alpha_4$ provided we formulate the equations with n_i instead of n_e . The information about Z of course is hidden in the EOS. A first crude estimate is given by the relation

$$Z_{eff} = U_{s}(\rho, T_{e})/(3kT_{e}/2m_{i}) - 1 \quad \text{for } Z_{eff} \leq Z$$
(26)

(This will be improved in the future).

One problem with the tabulated EOS is interpolation. We found it most adequate to interpolate linearly in the logarithms which gives correct values for the ideal gas. In cases where they are not explicitly needed, negative pressure values are being suppressed. The target density $\rho_{\rm c}$ is calculated from the tables by finding the density where the pressure vanished at given initial temperature.

VI) Solution of the implicit difference scheme

The system (22a,b) must be solved for $\text{TE}_{j+1/2}^{n+1}$ and $\text{TI}_{j+1/2}^{n+1}$. To this end, the nonlinear parts are linearized:

a) The heat conduction term

$$(TE^{\frac{3}{2}})_{j}^{n+1} = (TE^{\frac{3}{2}})_{j}^{n} + \frac{7}{2}TE_{j}^{\frac{5}{2}}(TE_{j}^{n+1} - TE_{j}^{n}) + \cdots$$

=: W_{j}^{e}

$$\begin{aligned} \overline{\alpha}_{2} \left[\delta \left(\delta_{e} \delta^{T} E^{\frac{3}{2}} \right)_{j+\frac{3}{2}} \right]^{n+\theta} &= \\ = \overline{\alpha}_{2} \left[\left(\delta_{e} \right)_{j+1}^{n} \left(T E^{\frac{3}{2}} \right)_{j+\frac{3}{2}}^{n} - T E^{\frac{3}{2}} \right]_{j+\frac{3}{2}}^{n} \\ &= \overline{\alpha}_{2} \Theta \left(\left(\delta_{e} \right)_{j+1}^{n+1} \left\{ \left(T E^{\frac{3}{2}} \right)_{j+\frac{3}{2}}^{n} - \left(T E^{\frac{3}{2}} \right)_{j+\frac{3}{2}}^{n} - \left(T E^{\frac{3}{2}} \right)_{j+\frac{3}{2}}^{n} \right]_{j+\frac{3}{2}}^{n} \\ &- \left(\delta_{e} \right)_{j}^{n+1} \left\{ \left(T E^{\frac{3}{2}} \right)_{j+\frac{3}{2}}^{n} - \left(T E^{\frac{3}{2}} \right)_{j+\frac{3}{2}}^{n} - \left(T E^{\frac{3}{2}} \right)_{j+\frac{3}{2}}^{n} \right]_{j+\frac{3}{2}}^{n} \\ &+ \overline{\alpha}_{2} \left(A - \Theta \right) \left(\left(\delta_{e} \right)_{j+1}^{n} \left\{ \left(T E^{\frac{3}{2}} \right)_{j+\frac{3}{2}}^{n} - \left(T E^{\frac{3}{2}} \right)_{j+\frac{3}{2}}^{n} - \left(T E^{\frac{3}{2}} \right)_{j+\frac{3}{2}}^{n} \right]_{j+\frac{3}{2}}^{n} \\ &= \overline{\alpha}_{2} \left(A - \Theta \right) \left(\left(\delta_{e} \right)_{j+1}^{n} \left\{ \left(T E^{\frac{3}{2}} \right)_{j+\frac{3}{2}}^{n} - \left(T E^{\frac{3}{2}} \right)_{j+\frac{3}{2}}^{n} \right]_{j+\frac{3}{2}}^{n} \right]_{j+\frac{3}{2}}^{n} \\ &= \overline{\alpha}_{2} \left(A - \Theta \right) \left(\left(\delta_{e} \right)_{j+1}^{n} \left\{ \left(T E^{\frac{3}{2}} \right)_{j+\frac{3}{2}}^{n} - \left(T E^{\frac{3}{2}} \right)_{j+\frac{3}{2}}^{n} \right)_{j+\frac{3}{2}}^{n} \right]_{j+\frac{3}{2}}^{n} \\ &= \overline{\alpha}_{2} \left(A - \Theta \right) \left(\left(\delta_{e} \right)_{j+1}^{n} \left\{ \left(T E^{\frac{3}{2}} \right)_{j+\frac{3}{2}}^{n} - \left(T E^{\frac{3}{2}} \right)_{j+\frac{3}{2}}^{n} \right)_{j+\frac{3}{2}}^{n} \right]_{j+\frac{3}{2}}^{n} \\ &= \overline{\alpha}_{2} \left(A - \Theta \right) \left(\left(\delta_{e} \right)_{j+1}^{n} \left\{ \left(T E^{\frac{3}{2}} \right)_{j+\frac{3}{2}}^{n} - \left(T E^{\frac{3}{2}} \right)_{j+\frac{3}{2}}^{n} \right)_{j+\frac{3}{2}}^{n} \right)_{j+\frac{3}{2}}^{n} \\ &= \overline{\alpha}_{2} \left(A - \Theta \right) \left(\left(\delta_{e} \right)_{j+1}^{n} \left\{ \left(T E^{\frac{3}{2}} \right)_{j+\frac{3}{2}}^{n} \right)_{j+\frac{3}{2}}^{n} \right)_{j+\frac{3}{2}}^{n} \\ &= \overline{\alpha}_{2} \left(A - \Theta \right) \left(\left(\delta_{e} \right)_{j+\frac{3}{2}^{n} \left\{ \left(T E^{\frac{3}{2}} \right)_{j+\frac{3}{2}}^{n} \right\}_{j+\frac{3}{2}}^{n} \right)_{j+\frac{3}{2}}^{n} \\ &= \overline{\alpha}_{2} \left(A - \Theta \right) \left(\left(\delta_{e} \right)_{j+\frac{3}{2}^{n} \left\{ \left(T E^{\frac{3}{2} \right)_{j+\frac{3}{2}}^{n} \right\}_{j+\frac{3}{2}}^{n} \right)_{j+\frac{3}{2}}^{n} \\ &= \overline{\alpha}_{2} \left(A - \Theta \right) \left(\left(\delta_{e} \right)_{j+\frac{3}{2}^{n} \left\{ T E^{\frac{3}{2} \right\}_{j+\frac{3}{2}}^{n} \right)_{j+\frac{3}{2}}^{n} \\ &= \overline{\alpha}_{2} \left(A - \Theta \right) \left(\left(\delta_{e} \right)_{j+\frac{3}{2}^{n} \left\{ \left(T E^{\frac{3}{2} \right)_{j+\frac{3}{2}}^{n} \right\}_{j+\frac{3}{2}}^{n} \right)_{j+\frac{3}{2}}^{n} \\ &= \overline{\alpha}_{2} \left(A - \Theta \right) \left(\left(\delta_{e} \right)_{j$$

- b) The relaxation term
- We define

Then we have

$$F_{TE} := \frac{\partial F}{\partial TE} = n_i \frac{3/2}{TE} \frac{TE^{-n_i} TI}{TE^{-3}}$$

$$F_{TI} := \frac{\partial F}{\partial TI} = -\frac{n_i}{TE^{-3/2}}$$

$$F_{n_i} := \frac{\partial F}{\partial n_i} = (TE - TI) /$$

The linearized relaxation term then can be written

$$\overline{\alpha_{3}} \left(\Theta \left\{ \overline{+}_{j+\frac{\eta_{2}}{2}}^{n} + \left(\overline{+}_{TE}\right)_{j+\frac{\eta_{2}}{2}}^{n} W_{j+\frac{\eta_{2}}{2}}^{e} \right. \right. \\ \left. + \left(\overline{+}_{u_{i}}\right)_{j+\frac{\eta_{2}}{2}}^{n} \left(\left(u_{i}\right)_{j+\frac{\eta_{2}}{2}}^{n+4} - \left(u_{i}\right)_{j+\frac{\eta_{2}}{2}}^{n} \right) \right]$$

$$\overline{\alpha}_3 := \alpha_3 \overline{Z}_{eff}$$

(27a)

 $(-(6_e)_{1}(TE_{j+\%}^{\frac{1}{2}}-TE_{j-\%}^{\frac{1}{2}})]^{n+\Theta} =$ $+\frac{7}{2}(TE^{5/2})_{j+3/2}^{n}W_{j+3/2}^{e}-\frac{7}{2}(TE^{5/2})_{j+3/2}^{n}W_{j+3/2}^{e}$ $+\frac{7}{2}(TE^{\frac{5}{2}})_{j+\frac{1}{2}}^{n}W_{j+\frac{1}{2}}^{e}-\frac{7}{2}(TE^{\frac{5}{2}})_{j-\frac{1}{2}}^{n}W_{j-\frac{1}{2}}^{e}\left(\right)+$ $\binom{m}{j+1/2} \left\{ - \left(6e \right)_{j}^{m} \left\{ \left(T E^{\frac{3}{2}} \right)_{j+1/2}^{m} - \left(T E^{\frac{3}{2}} \right)_{j-1/2}^{m} \right\} \right\}$ RC

 $F(n_i, TE, TI) := \frac{n_i(TE - TI)}{TE^{3/2}}$ I - TE 3/2

TE 3/2

(27b) $+ (F_{TI})_{j+1/2}^{\prime\prime} W_{j+1/2}^{\prime} +$ $\left\{ \begin{array}{c} + (1 - \Theta) \end{array} \right\} + (1 - \Theta) = \left\{ \begin{array}{c} \\ + \\ \\ + \\ \end{array} \right\}$

RC.

C) The work term

$$\overline{\alpha}_{4} \left(\theta \left\{ \left(TE_{j_{1}+j_{2}}^{n} + w_{j+j_{2}}^{e} \right\} \left(n_{i} \right)_{j+1}^{n+1} \left\{ \left(R^{\alpha-1} \right)_{j+1}^{n+1} V_{j+1} - \left(R^{\alpha-1} \right)_{j}^{n+1} V_{j} \right\} + (1-\theta) \left(TE \right)_{j+j_{2}}^{n} \left(n_{i} \right)_{j+j_{2}}^{n} \left\{ \left(R^{\alpha-1} \right)_{j+1}^{n} V_{j+1} - \left(R^{\alpha-1} \right)_{j}^{n} V_{j} \right\} \right) \right)$$

$$\overline{\alpha}_{4} := \alpha_{4} \overline{Z}_{eff} \frac{PT}{RC}$$
(27c)

- 14 -

Some remarks

The laser flux appears only in the lower time level n, the same is true for the heat flux correction ξ . When calling the energy rountine the new values R_{j+1}^{n+1} and $n_{j+1/2}^{n+1}$ are already known, the old ones are stored. The new velocities v_{j+1}^{n+1} are known, too. Strictly speaking, they are centered between n and n+1 (cf. eq. (14)) and only enter as v_{j+1} . This underlines the hybrid character of the code. RC and PT are evaluated at the old time level n.

The linearization casts the scheme into the following form:

$$-\mathcal{H}_{j+1}^{e} W_{j+2}^{i} + \mathcal{B}_{j+1}^{e} W_{j+1}^{e} - C_{j+1}^{e} W_{j}^{e} + G_{j+1}^{e} W_{j+1}^{i} = \underline{\mathcal{D}}_{j+1}^{e} , \quad (28a)$$

$$-\mathcal{H}_{j+1}^{i} W_{j+2}^{i} + \mathcal{B}_{j+1}^{i} W_{j+1}^{i} - C_{j+1}^{i} W_{j}^{i} + G_{j+1}^{i} W_{j+1}^{e} = \underline{\mathcal{D}}_{j+1}^{i} . \quad (28b)$$

A, B, \ldots are the coefficients of the linearized system of equations and are known at time level n. The unknowns are $w_{j}^{k} = (TK)_{j}^{n+1} - (TK)_{j}^{n}, K = E, I, k = e, i.$ The coefficient matrix has a multi-diagonal structure and is solvable by Gauss elimination. We write (24) as

$$\sum_{m=j}^{j+2} H_m^{j+1} \overrightarrow{\Delta X}_m + \overrightarrow{D}_{j+1} = \overrightarrow{0}$$
(29)

with

$$H_{j}^{j+1} := \begin{pmatrix} -C_{j+1}^{e} & 0 \\ 0 & -C_{j+1}^{i} \\ H_{j+1}^{j+1} := \begin{pmatrix} B_{j+1}^{e} & G_{j+1}^{e} \\ G_{j+1}^{i} & B_{j+1}^{i} \\ G_{j+1}^{i} & B_{j+1}^{i} \\ H_{j+2}^{j+1} := \begin{pmatrix} -R_{j+1}^{e} & 0 \\ 0 & -R_{j+1}^{i} \\ 0 & -R_{j+1}^{i} \end{pmatrix}$$

$$\vec{D}_{j+1} := \begin{pmatrix} -D_{j+1}^{e} \\ -D_{j+1}^{i} \end{pmatrix} ,$$

A recursive solution is obtained by the ansatz

$$\overrightarrow{\Delta X_{j}} = E_{j} \overrightarrow{\Delta X_{j+1}} +$$

with

$$E_{j} := \begin{pmatrix} eE_{j}^{\dagger} & eE_{j}^{2} \\ iE_{j}^{\dagger} & iE_{j}^{2} \end{pmatrix} ,$$

$$E_{j+1} = -\left(H_{j}^{j+1}E_{j} + H_{j+1}^{j+1}\right)$$

$$\vec{F}_{j+1} = -\left(H_{j}^{j+1}E_{j} + H_{j+1}^{j+1}\right)$$

In our special case eqs. (30) are analytically solvable. From (30b) we obtain

$$\left(-C_{j+1}^{e} E_{j}^{1} + B_{j+1}^{e} \right)^{e} E_{j+1}^{1} + \left(-C_{j+1}^{e} E_{j}^{1} + B_{j+1}^{e} \right)^{e} E_{j+1}^{2} + \left(-C_{j+1}^{e} E_{j+1}^{1} + C_{j+1}^{e} \right)^{e} E_{j+1}^{2} + \left(-C_{j+1}^{e} E_{j+1}^{1} + C_{j+1}^{e} \right)^{e} E_{j+1}^{2} + \left(-C_{j+1}^{e} E_{j+1}^{2} + C_{j+1}^{e} \right)^{e} E_{j+1}^{2} + \left(-C_{j+1}^{e} E_{j+1}^{2} + C_{j+1}^{e} \right)^{e} E_{j+1}^{2} + \left(-C_{j+1}^{e} E_{j+1}^{2} + C_{j+1}^{e} \right)^$$

- 15 -

Inserting eq. (30) into eq. (29) gives by comparison with ΔX_{i+1} :

 $\int_{j+2}^{-1} H_{j+2}^{j+1}$ (30b,c)

 $-1 \left(H_{j}^{j \neq 1} \vec{F}_{j} + \vec{D}_{j \neq 1} \right).$

- 17 -

Boundary conditions:

At j = 1 and j = M we prescribe $\nabla T_e = \nabla T_i = 0$

In cylindrical or spherical geometry this is a consequence of the symmetry at the center. In all other cases, it corresponds to the requirement that no heat leaves the system.

a)
$$j = 1$$

From (30a) we have

 $w_1^e = e_{E_1}^1 w_2^e + e_{E_1}^2 w_2^i + e_{F_1}^e$ $w_1^i = {}^iE_1^1 w_2^e + {}^iE_1^2 w_2^i + {}^iF_1$ Condition (31) means $w_1^e = w_2^e$ and $w_1^i = w_2^i$ It follows ${}^{e}E_{1}^{1} = 1$, ${}^{e}E_{1}^{2} = 0$, ${}^{e}F_{1} = 0$ ${}^{i}E_{1}^{1} = 0, \quad {}^{i}E_{1}^{2} = 1, \quad {}^{i}F_{1} = 0.$ b) j = M

Eq. (31) gives $w^{e}(M+1) = w^{e}(M)$ and $w^{i}(M+1) = w^{i}(M)$. From (30a)

$$(1 - {}^{e}E_{M}^{1}) w_{M}^{e} - {}^{e}E_{M}^{2}w_{M}^{i} = {}^{e}F_{M}$$
$$- {}^{i}E_{M}^{1} w_{M}^{e} + (1 - {}^{i}E_{M}^{2}) w_{M}^{i} = {}^{i}F_{M}$$

with the result

$$w_{M}^{e} = D_{1} / D, \quad w_{M}^{i} = D_{2} / D \quad \text{where}$$

$$D: = (1 - {}^{e}E_{M}^{1}) \cdot (1 - {}^{i}E_{M}^{2}) - {}^{e}E_{M}^{2} {}^{i}E_{M}^{1}$$

$$D_{1}: = {}^{e}F_{M} (1 - {}^{i}E_{M}^{2}) + {}^{i}F_{M} {}^{e}E_{M}^{2}$$

$$D_{2}: = {}^{i}F_{M} (1 - {}^{e}E_{M}^{1}) + {}^{e}F_{M} {}^{i}E_{M}^{1}.$$

$$\left(-C_{j+1}^{i} \stackrel{i}{E_{j}}^{*} + G_{j+1}^{i}\right)^{e} E_{j+1}^{*} + \left(-C_{j+1}^{i} \stackrel{i}{E_{j}}^{*} + B_{j+1}^{i}\right)^{i} E_{j+1}^{*} = 0$$

$$\left(-C_{j+1}^{i} \stackrel{i}{E_{j}}^{*} + G_{j+1}^{i}\right)^{e} E_{j+1}^{2} + \left(-C_{j+1}^{i} \stackrel{i}{E_{j}}^{*} + B_{j+1}^{i}\right)^{i} E_{j+1}^{2} = \mathcal{H}_{j+1}^{i}$$

The first and third as well as the second and forth equation form two systems for the unknowns ${}^{e}E_{j+1}^{1}$, ${}^{i}E_{j+1}^{1}$ and ${}^{e}E_{j+1}^{2}$, ${}^{i}E_{j+1}^{2}$. Analogously, eq. (30c) is treated to obtain ${}^{e}F_{j+1}$ and ${}^{i}F_{j+1}$. We are left with the following system of recursion formula:

$$\begin{split} \alpha_{2} &= \frac{C_{j+1}^{e} eE_{j}^{2} - G_{j+1}^{e}}{B_{j+1}^{e} - C_{j+1}^{e} eE_{j}^{4}} \\ \alpha_{3} &= \frac{C_{j+1}^{i} E_{j}^{2} - G_{j+1}^{i}}{B_{j+1}^{i} - C_{j+1}^{i} E_{j}^{2}} \\ \alpha_{4} &= \frac{C_{j+1}^{e} eF_{j}^{i} + D_{j+1}^{e}}{B_{j+1}^{e} - C_{j+1}^{e} eE_{j}^{*}} \\ \alpha_{4} &= \frac{C_{j+1}^{e} eF_{j}^{i} + D_{j+1}^{e}}{B_{j+1}^{e} - C_{j+1}^{i} eE_{j}^{2}} \\ \alpha_{5} &= \frac{C_{j+1}^{i} F_{j}^{i} + D_{j+1}^{i}}{B_{j+1}^{i} - C_{j+1}^{i} eE_{j}^{2}} \\ \alpha_{5} &= \frac{R_{j+1}^{i}}{B_{j+1}^{i} - C_{j+1}^{i} eE_{j}^{2}} \\ \alpha_{7} &= \frac{R_{j+1}^{i}}{B_{j+1}^{i} - C_{j+1}^{i} EE_{j}^{2}} \\ eE_{j+1}^{i} &= \frac{\alpha_{4}}{1 - \alpha_{2} \alpha_{3}} \\ eE_{j+1}^{i} &= \frac{\alpha_{4}}{1 - \alpha_{2} \alpha_{3}} \\ eF_{j+1}^{i} &= \frac{\alpha_{4} + \alpha_{2} \alpha_{5}}{1 - \alpha_{2} \alpha_{3}} \\ eF_{j+1} &= \frac{\alpha_{4} + \alpha_{2} \alpha_{5}}{1 - \alpha_{2} \alpha_{3}} \\ eF_{j+1} &= \frac{\alpha_{4} + \alpha_{2} \alpha_{5}}{1 - \alpha_{2} \alpha_{3}} \\ eF_{j+1} &= \frac{\alpha_{4} + \alpha_{2} \alpha_{5}}{1 - \alpha_{2} \alpha_{3}} \\ eF_{j+1} &= \frac{\alpha_{4} + \alpha_{2} \alpha_{5}}{1 - \alpha_{2} \alpha_{3}} \\ eF_{j+1} &= \frac{\alpha_{4} + \alpha_{2} \alpha_{5}}{1 - \alpha_{2} \alpha_{3}} \\ eF_{j+1} &= \frac{\alpha_{5} + \alpha_{3} \alpha_{4}}{1 - \alpha_{2} \alpha_{3}} \\ eF_{j+1} &= \frac{\alpha_{5} + \alpha_{3} \alpha_{4}}{1 - \alpha_{2} \alpha_{3}} \\ eF_{j+1} &= \frac{\alpha_{5} + \alpha_{3} \alpha_{4}}{1 - \alpha_{2} \alpha_{3}} \\ eF_{j+1} &= \frac{\alpha_{5} + \alpha_{3} \alpha_{4}}{1 - \alpha_{2} \alpha_{3}} \\ eF_{j+1} &= \frac{\alpha_{5} + \alpha_{3} \alpha_{4}}{1 - \alpha_{2} \alpha_{3}} \\ eF_{j+1} &= \frac{\alpha_{5} + \alpha_{3} \alpha_{4}}{1 - \alpha_{2} \alpha_{3}} \\ eF_{j+1} &= \frac{\alpha_{5} + \alpha_{3} \alpha_{4}}{1 - \alpha_{2} \alpha_{3}} \\ eF_{j+1} &= \frac{\alpha_{5} + \alpha_{3} \alpha_{4}}{1 - \alpha_{2} \alpha_{3}} \\ eF_{j+1} &= \frac{\alpha_{5} + \alpha_{3} \alpha_{4}}{1 - \alpha_{2} \alpha_{3}} \\ eF_{j+1} &= \frac{\alpha_{5} + \alpha_{3} \alpha_{4}}{1 - \alpha_{2} \alpha_{3}} \\ eF_{j+1} &= \frac{\alpha_{5} + \alpha_{3} \alpha_{4}}{1 - \alpha_{2} \alpha_{3}} \\ eF_{j+1} &= \frac{\alpha_{5} + \alpha_{3} \alpha_{4}}{1 - \alpha_{2} \alpha_{3}} \\ eF_{j+1} &= \frac{\alpha_{5} + \alpha_{5} \alpha_{3} \alpha_{4}}{1 - \alpha_{2} \alpha_{3}} \\ eF_{j+1} &= \frac{\alpha_{5} + \alpha_{5} \alpha_{3}}{1 - \alpha_{2} \alpha_{3}} \\ eF_{j+1} &= \frac{\alpha_{5} + \alpha_{5} \alpha_{3}}{1 - \alpha_{5} \alpha_{3}} \\ eF_{j+1} &= \frac{\alpha_{5} + \alpha_{5} \alpha_{3}}{1 - \alpha_{5} \alpha_{3}} \\ eF_{j+1} &= \frac{\alpha_{5} + \alpha_{5} \alpha_{3}}{1 - \alpha_{5} \alpha_{3}} \\ eF_{j+1} &= \frac{\alpha_{5} + \alpha_{5} \alpha_{3}}{1 - \alpha_{5} \alpha_{3}} \\ eF_{j+1} &= \frac{\alpha_{5} + \alpha_{5} \alpha_{5}}{1 - \alpha_{5} \alpha_{5}} \\ eF_{j+1} &= \frac{\alpha_{5} + \alpha$$

The boundary conditions at j = 1 determine ${}^{e}E_{1}^{1}$, ${}^{e}E_{1}^{2}$, ${}^{i}E_{1}^{1}$, ${}^{i}E_{1}^{2}$ as well as ${}^{e}F_{1}$ and ${}^{i}F_{1}$. The recursion gives the remaining quantities for $2 \leq j \leq M$. The boundary values at j = M fix w_{M}^{e} and w_{M}^{i} and eq. (30a) all w_{j}^{e} , w_{j}^{i} $(1 \leq j \leq M - 1)$

- 16 -

(31)

VII) Meaning of the variables used in LAPLAS:

1) COMMON block:

Further important quantities:

,		VVO
E02 (322)	Electrons per Debye sphere	VVI
DIVUO (322), V(322), Y(322),	Auxiliary arrays,	RHOTAR
ZEI (322), ENE (322)	needed for subrountine FLUG	DCR
VELO (322)	velocity v	PHTO
VELOV (322)	v at old time level	S2N, S2N1
WACHM (322)	Mach number	Jan, Jan
R (322)	Euler coordinate	HELK1 HELKS
HR (322)	" " at old time level	HELLI HELL?
RL (322)	Lagrange coordinate	
RHO (322)	electron density / critical density at j	2) Input parameters.
RH01 (322)	" " at j+ 1/2	2) input parameters.
RH01V (322)	RHO1 at old time	TEOS
RHOI (322)	ion density / critical density at j+1/2	CUT
RHI (322)	"" "atj	KETEST
RHOIV (322)	RHOI at old time	KITEST
TE (322)	electron temperature	TAIE
TI (322)	ion "	
VIS (322)	artificial viscosity	KABSO
PHI (322)	laser flux	NFE
FLUXL (322)	heat flux / flux limit	DELTAF
X3D (101), Y3D (101)	coordinates for 3-D plot	
P (322)	pressure	WELAE
E (322)	internal energy	JFL
RC (322), PT (322)	RC, PT, corrections in energy routine	FFL2
	due to EOS	THETA
KTE (322), KRHO (322)	position of T and ρ in EOS tables	KYE
ZEFF (322)	ionic charge	
ST (23)	temperature mesh in EOS	TONEN
SRHO (100)	density mesh in EOS	DIST
SP (100, 23)	EOS pressure table	NZIO
SEN (100, 23)	EOS internal energy table	
PP (100)	auxiliary array needed in RETTEN	IPLO
NR	number of mesh points in ρ (EOS)	KPR
NT	" " " in T (EOS)	KPR1
М	number of zones + 1	

```
(n_e/n_{cr})^{-1} at t = 0

(n_i/n_{cr})^{-1} at t = 0

target density in g/cm<sup>3</sup>

n_{cr} critical density

peak laser flux

square of sound velocity at j-1/2

and j+1/2

\xi = heat flux correction

q_{max} = heat flux limit
```

```
controls use of EOS
value at which the pressure is cut
controls ETEST
controls TESTI
time \geq TAUE necessary for calling
ETEST or TESTI
controls ABSORP
controls fast electron creation
fraction of energy which goes into
fast electrons
range of fast electrons
controls flux limiting
f - factor
θ
only version 1 : \kappa_e is reduced
initially, restored after KYE steps
controls FLUG
distance to detector
after NZIO time steps spectrum is
calculated
plot
first print output
repeated output
```

- 20 -

		3) Output
NZY	controls primitive plot, inactive	
IPRO	profile plot at time T(IPRO)	MODELL
KALP	geometry exponent α	ZEIT
KZEIT	maximum number of time steps	DZEIT
DELTA	fraction of anomalously absorbed	ABSORPTION
	energy at n cr	м
WK	wave number = $2 \pi / \lambda_{\text{Laser}}$	MPC
WLO	peak intensity of laser light in W/cm ²	J
PAN	external pressure	X(CM)
FOLDI	target thickness	NI/NKRIT
THOO	n/n_{cr} at t = 0	MACH
TEO	electronic temperature at $t = 0$	TT (K)
TIO	ionic """	TE(K)
GAMMA	c _n /c _y adiabatic index	HFL/RLL
Z	mean atomic number of target material	NDFB
FIO	mean mass " " "	I(cgs)
ZEIT	time	SCHIIR
ZF	factor applied to time step	I I FKIN FTH O FI.
IZEI1, IZEI2	multiply ZF after IZEI time steps with ZEIFA	
ZEIFA1, ZEIFA2 ∫		
DZMAX	maximum time step	
AEND	upper bound for change per time step	UVDDODVN UTPUINCSCDAD
KZO	controls way of fine zoning	TOTALE APCODDTION
MH	$M = 2 \cdot MH + 1$ (in ZONE2)	TMDIII S1
DIKOR	coronal thickness for ZONE1	
QX	q = factor for fine zoning	TMDIIICO
NPROF	controls initial target profile	IIIF0L52
AF	profile form	CORTED DIRITY OF CORL
JP	JP points are involved	SCHWERPUNKIGESCHW.
IPULS	controls laser pulse shape	ADIATION
TAU	half-width of laser pulse	ABLATION
ZEITM	total width ""	UP1. IRANSMISSION
KSHOCK	controls shock treatment	
VISL	viscosity length	
BB	material code for SESAME-EOS	

number of time steps time time step ∆t absorption of laser light (momentary) number of zones + 1 location of critical density zone index Euler coordinate ion density / n_{cr} Mach number ion temperature electron temperature heat flux / flux limit number of particles per debye sphere mass flow push 1. line: kinetic, thermal, total energy related to absorbed laser energy EL 2. line: same data for accelerated part of the target only hydrodynamic efficiency η total absorption till t total momentum/momentum of rear part of the target total momentum/momentum of front part of the target center of mass velocity v_{CM} mass * $V_{CM}/\Delta t$ ablation rate optical transmission

1) GET

Fetches the EOS data from disk (→ RETTEN, ARR, include data segment!), determines the target density and stores the logarithms of the EOS tables. For instance, the pressure is stored as log P (log ρ , log T). Ideal gas tables are created to compare with version 1. Entries smaller than CUT are replaced by CUT (however, there is a version which keeps negative pressures).

- 22 -

2) INTP

Interpolates the EOS data linearly in the logarithms. Corrections PT and RC are calculated as well as ZEFF. Derivatives are exact for the ideal gas case because of the linear nature of the EOS, for example

$$(\partial p/\partial T)_{\rho} = (p/T) (\partial \log p / \partial \log T)_{\rho}.$$

The search in the EOS tables is facilitated by using the information which lies in the logarithm of the temperature.

3) TIME

Controls the time step according to the explicit stability criterion

$$DZ = Min (DZ_j)$$
$$DZ_j := \frac{R_{j+1} - R_j}{S_{j+1}} \qquad (S_j = sound velocity).$$

The factor ZF is introduced to manipulate DZ, for example: The run begins with ZF = 0.05. After IZEI1 = 20 steps it is multiplicated by ZEIFA = 5 and after IZEI2 = 500 steps it is multiplicated by ZEIFA2 = 2. So the final ZF = 0.5, the intermediate ZF = 0.25 corresponds to the more stringent stability condition for strong shocks.

For accuracy reasons, an additional automatic time step control is applied in version 2. The maximum relative change DELMAX of all pressures and temperatures per timestep is calculated and the timestep adapted to allow DELMAX not to exceed a given value AEND. To this end, the time factor ZF is multiplied by the funtion

$$f = \begin{cases} (1 - (\Delta - 1)^2) \\ 1 - (1 - \Delta) \end{cases}$$

Implicit solution of the energy equations (see section VI).

5) ZONE1, ZONE2

/ $(1-(\Delta-1)^3)$ for $\Delta > 1$ log ∆ for $\Delta < 1$

Determine the spatial mesh. ZONE1 causes fine zoning only at the front side (to laser) while ZONE2 causes a symmetric fine zoning on both sides of the target. The width of the zones increases geometrically: a, qa, q^2a ..., $q^{n-1}a$, with a = width of the first zone and q > 1. The sum over the first n zones is $s_n = a(q^n-1)/(q-1)$. ZONE1: Given a fixed number MH of

zones in corona thickness DIKOR, we have a = DIKOR $\cdot (q-1)/(q^{MH}-1)$. If $q \cong 1$ and $q^n >> 1$, an approximation for the total number of zones M is

$$M \cong MH + (FOLDI / DIKOR - 1)/(q-1).$$

ZONE2 distributes MH zones into each half of the target.

Reasonable values for q are 1 < q < 1.1, $q \neq 1!$ (Attention: the combination of high f and q kills the energy conservation presumably because the centering is bad).

ETEST, TESTI 6)

Check energy and momentum (only for $\alpha = 1$) balance, ETEST forms the sum of kinetic and thermal energy of all zones and compares with the absorbed laser energy. Hydrodynamic efficiency: = (kin. + thermal) energy of backward moving part of the target / total energy of the target.

ABSORP 7)

Describes the absorption of laser light by inverse Bremsstrahlung absorption in the corona and anomalous absorption at the critical density. A fraction δ^{\star} of the anomalously absorbed energy may be used to create fast electrons which penetrate the target many times.

a) Inverse Bresmstrahlung absorption The laser light is collisionally absorbed when penetrating the corona to the critical density and back. The absorption coefficient is given by Johnston and Dawson [5].

b) Resonance (anomalous) absorption The fraction δ (= parameter) of the incoming laser flux is to be absorbed. To avoid numerical roughness, the energy is coupled into three cells around the location of the critical density. A weighting factor $\boldsymbol{\sigma}$ ensures the distribution of the energy to be correctly centered and coupled in smoothly.

- 25 -

c) Fast electrons

The fraction δ^* (= parameter) of the anomalously absorbed energy goes into fast electrons. In our model they are associated with an energy flux $\phi \, \sim \, e^{-x/d}$ where x is the Lagrange coordinate and d the range. This flux is reflected each time it hits a wall. At the creation $(x = x_c)$ it runs into the target only. After reflection at the rear side (x = 0) it penetrates to the front side (x = a), is reflected and so on:

$$\varphi_{1} = \varphi_{1}^{\circ} e^{-\frac{x}{d}}, \qquad \varphi_{1}^{\circ} = \varphi_{c}^{\circ}$$
$$\varphi_{2} = \varphi_{2}^{\circ} e^{-\frac{(a-x)}{d}}, \qquad \varphi_{2}^{\circ} = \varphi_{1}^{\circ}$$
$$\varphi_{3} = \varphi_{3}^{\circ} e^{-\frac{x}{d}}, \qquad \varphi_{3}^{\circ} = \varphi_{2}^{\circ}$$
$$\varphi_{4} = \varphi_{4}^{\circ} e^{-\frac{(a-x)}{d}}, \qquad \dots$$

The sum is

 $-q_1 + q_2 - q_3 + q_4 - \dots = \sum_{n=1}^{\infty} (-)^n q_n =$ $= -e^{-\frac{x}{\alpha}} - e^{-\frac{\alpha}{\alpha}} - e$

$$\Rightarrow \varphi(x) = \varphi_c^{\circ} e^{-\frac{X}{\alpha}} \left(1 - e^{-\frac{Z_q}{\alpha}} \right)^{-1}$$

e ž. $e^{-\frac{a}{d}}$ $e^{-\frac{a}{d}}$

 $= e^{-\frac{(a-x)}{a} - \frac{a}{a}} \left(1 + e^{-\frac{2a}{a}} + e^{-\frac{4a}{a}} + \cdots \right) - e^{-\frac{x}{a}} \left(1 + e^{-\frac{2a}{a}} + e^{-\frac{ra}{a}} + \cdots \right)$ $\int \left(e^{-\frac{2a}{d}} e^{-\frac{x}{d}} - e^{-\frac{x}{d}} \right)$

- 26 -

It remains to add the "main part"

$$\varphi_{o}(x) = \begin{cases} \varphi_{c}^{*} e^{-\frac{(\chi_{c} - x)}{\alpha}} & \text{for } x \leq x_{c} \\ 0 & \text{for } \chi_{c} < x \leq \alpha \end{cases}$$

In total we have

$$\phi(x) = \varphi(x) + \varphi(x)$$

Case $\delta^* = 1$, $x_c \cong a$:

i) $d \ll a \rightarrow \phi(x) \cong \varphi_0(x)$, exponential decay. ii) $d \gg a \rightarrow \phi(x) \cong \varphi_c^0 x/a$, uniform heating of the target.

8) FLUG (only for
$$\alpha = 1$$
)

Calculates the ionic velocity distribution function dF/dv as recorded with a detector at a distance D. We assume the velocity profile to be nearly frozen in after termination of the laser pulse. Then it follows

$$dF/dv = n_i dR/dv = n_i^0 dr/dv.$$

The detector records the ion current $I_i(t)$. This is derived from the following consideration: A target zone of Lagrange thickness Δr passes the detector in the time

$$\Delta t = t_2 - t_1 = D/v - D/(v + dv/dr \Delta r) = D\Delta v/(v^2 + v\Delta v).$$

In the limit $\Delta r \rightarrow 0$ we have

$$I_i = q_i n_i^{o} dr/dt = q_1 n_i^{o} dr/dv v^2/D \sim dF/dv.$$

 $(q_i = mean ionic charge, v = D/t).$

Defines laser pulse shape. Four different options are possible: sine square pulse, box pulse, pulse with prepulse and calculated pulse (Uchiyamacode).

10) RANDPL, D3PLOT, LINPL, PLOTPV

Create plot output, specific for Garching's computer installation.

The MAIN program solves the hydrodynamic equations and does the input/ output operations.

There is an additional subroutine calculating the radiation pressure (only with $\alpha = 3$, RADPR) which is normally not included (see [6]). Version 1 of the code is available without GET and INTP but can be generated equally well by version 2 with the option IEOS = 0.

IX) Output of a typical run

A very important diagnostic for analyzing the results of a code is an adequate graphic output. LAPLAS produces on request a maximum of eleven pages plot output: Page one repeats the input parameters, page 2 plots density, pressure, electronic and ionic temperatures in Euler coordinates at selected times given on the top (= input). On page 3 we see: pulse profile, energy balance, effective pressure, hydrodynamic efficiency and center-of mass velocity versus time. Page 4 enlarges the front profiles at a certain time (=input). Pages 5-8 cover the whole time history of temperature, density, pressure and ionic charge in 3-D plots. By choosing the Lagrange coordinate as radius all structures are nicely resolved. A linear plot of the density profile compared with the initial one follows on page 9. Finally, the motion of some selected mass elements in the log p - log ρ plane is shown on pages 10 and 11. The print output is described in section VII.

С		n on 100 20 20 20 20	****	75 92 92 94 94 95 92 72 92 92	======================================			====		==C
C	•		• •	•			•		,	c
C C C	LLL LLL			PPPPPPP PPPPPPP	PP					C C C
C C C	LLL LLL LLL		•	PPP PPP PPPPPPP	PPP PPP PP	-	· ·		•	C C C
C C C	LLL LLL		ААА АА АА	PPPPPPP PPP PPP	LL LL		ААА А АА	A	SSSSSSSS SS	с с с
C C	LLLLI LLLLI	LLLLLL	ΑΑ ΑΑ ΑΑ ΑΛ	PPP PPP	LLLI	LLLL	AA AA AAA	AA AA	SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	C C
C C	L'TTT]	LLLLL	AA A	A PPP	LLLI	LLLL	AA	AA	SSSSSSSS	C C
C C	•				·					. C
C		, 					=======================================		=======================================	==C
C C	LASI	ER PLAS	MA CODE	MPQ ========	MAY =====	1983 =====		VER =====	SION 2	С ==С
С					, ,			· ·		C
	EINGAN	GSDATEN * * * * * *	RES166	· · · ·		•		• -	~ ~ ~	•
	PARAMETI	ERFUER	ENERGIE - 1	UND IMPULS	TEST :				•	
	KETEST= KITEST=	1 6.00F	-13	· .	•				•	
,		200.0	-13 LASEDENERG	TEFTNKODDIJ		r		,		
1	KABSO =	1	DIDDIDIDIO.		-					
]	PARAMETH	ER FUER	SIMULATION	FUER ENER	GIEDEF	POSITIC	ON VON"S	CHNEL	LEN ELEKTI	RONEN"
]	NFE = DELTAF=	0 1.00E	=02		•					
1	WELAE =		06-04			• .	•			• , •
]	PARAMETE	ERFUER	ZUSTANDSGLI	EICHUNG :		, ·				
C	IEOS = CUT =	1 1.00	00E-10	•						
	·						· ·			
1	PARAMETE	ER FUER	ENERGIESAT	Z (WAERMEL	EITUNC	÷) :	•			
	JFL =	1	05-02	•						
-	THETA =	7.500	0E-01	•				•		
,	NYE =	1		· · ·	,				-	
]	PARAMETE IONEN =	ER FUER O	IONENFLUGZ	FITSPEKTRU	1:					
1	DIST =	1.400	0E+02	•	· · · ·	•				
	IPLO =	0		• • • • •						
,				, , ,						
I	KPR =		STEUERUNG DI	EK DATENAU	POVRE	* -				
י א ז	WRITE=	81	 NO	. •						
					. •					

	FOLIEN UND LASERDATEN : $-29 - $ KALP = 1 KZEIT = 90000 DELTA = 5.0000E-01
	WLO=2.0000E+14SPITZENINTENSITAET IN W PAN =0.0000E+00KONSTANTER TEST-DRUCK IN WK =4.7781E+04
	FOLDI = 1.0000E-04 RHOO = 1.1964E+03
	TEO = 3.0000E+02 TIO = 3.0000E+02
	GAMMA = 1.6667E+00
	Z = 1.3000E+01 FIO = 2.7000E+01
	DCR = 6.4472E+20
	MATERIAL : ALUMINIUM
	BERECHNETE TARGETDICHTE : 2.6753E+00
	PARAMETER FUER ZEITSCHRITTSTEUERUNG : ZEIT = 0.0000E+00 ZF = 1.0000E-03 IZEI1 = 50 IZEI2 = 200 ZEIFA1 = 1.00E+00 ZEIFA2 = 1.00E+00 DZMAX = 1.00E-12 AEND = 3.00E-01
	PARAMETER FUER FINE ZONING : KZO = 0 WENN KZO = 1: -> NUR FRONT FINE ZONING WENN KZO = 0: -> FRONT UND REAR FINE ZONING
	$\begin{array}{rcl} MH &=& 40 \\ DIKOR &=& 1.00E-04 \\ QX &=& 1.05E+00 \end{array}$
- -	PARAMETER FUER ANFANGSPROFIL DES TARGETS NPROF = 0 AF = $3.00E+00$ JP = 5 PARAMETER FUER LASER EIN - UND AUSSCHALTVORGANG IPULS= 1
	IPULS=1: SINUSQUADRAT IPULS=2: RECHTECK IPULS=3: JODLASERPULS MIT VORPULS IPULS=4: GERECHNETER PULS(UCHIYAMACODE TAU452)
	ZEITM=FUSS ZU FUSS PULSLAENGE= 6.00E-10
•	PARAMETER FUER SCHOCKBEHANDLUNG : KSHOCK= 1 VISL = $1.50E+00$

VTENSITAET IN W PRO CM**2 R TEST-DRUCK IN DYN/CM**2

.

R FINE ZONING

ARGETS

SCHALTVORGANG (LASERPULSFORM)

.

.

	MODELL= 3327 JOB:RES166	ZEIT= 1.000	E-09 S DZE	IT= 5.624E-1	L3 S ABSO	RPTION= 5.8	446-01	M ≈ 81	ttPC≈	25					
	J X (CM)	NI/NKRIT	МАСН	ТІ (К)	TE(K)	HFL/FLL	, HFL	NDER	J(CGS)	SCUUS	P(MBAR)	v(cH/s) .			
	$\begin{array}{c} 1 & 2.1897-(\\ 2 & 1.564F-(\\ 3 & 1.325E-(\\ 3 & 1.325E-(\\ 4 & 1.168E-(\\ 5 & 1.047E-(\\ 7 & 8.638E-(\\ 9 & 7.165E-(\\ 11 & 5.090E-(\\ 13 & 4.698E-(\\ 15 & 3.467E-(\\ 15 & 3.467E-(\\ 17 & 2.171E-(\\ 19 & 9.519E-(\\ 21 & 3.164E-(\\ 23 & -1.055E-(\\ 27 & -6.846E-(\\ 29 & -8.622E-(\\ 27 & -6.846E-(\\ 29 & -8.622E-(\\ 33 & -9.420E-(\\ 33 & -9.420E-(\\ 33 & -9.436E-(\\ 41 & -9.443E-(\\ 43 & -9.443E-(\\ 43 & -9.445E-(\\ 43 & -9.452E-(\\ 47 & -9.452E-(\\ 47 & -9.452E-(\\ 51 & -9.464E-(\\ 51 & -9.464E-($	01 -6.096E-04 01 -6.096E-04 01 2.673E-03 01 2.673E-03 01 2.673E-03 02 5.690E-03 02 5.690E-03 02 9.502E-03 02 1.104E-02 03 1.614E-02 03 3.490E-02 03 3.490E-02 03 1.054E-01 03 1.054E-01 03 6.834E-01 03 6.138E+00 03 6.361E+01 03 6.361E+01 03 8.138E+00 03 1.019E+02 03 1.036E-01 03 8.138E+00 03 1.019E+02 03 1.019E+02 03 1.019E+02 03 9.695E+01 03 9.447E+01 03 9.202E+01 03 9.010E+02	8.644E+00 6.373E+00 5.517E+00 4.943E+00 3.859E+00 3.3265+00 2.852E+00 2.852E+00 2.852E+00 1.191E+00 9.726E-01 2.101E-01 -2.8552-01 -9.525E-01 -1.994E+00 -1.657E+01 -1.096E+01 -1.297E+01 -1.297E+01 -1.207E+01 -1.224E+01 -1.549E+01	3.813E+05 3.813E+05 9.003E+05 1.323E+06 1.706U+06 2.414E+06 3.033E+06 3.570E+06 4.027E+06 4.027E+06 4.180E+06 5.154E+06 5.154E+06 2.956E+06 2.956E+06 1.267E+06 1.267E+06 1.267E+06 1.265E+061.265E+06 1.265E+06 1.265E+061.265E+06 1.265E+061.265E+06 1.265E+061.265E+06 1.265E+061.265E+06 1.265E+061.265E+06 1.265E+061.265E+06 1.265E+061.265E+06 1.265E+061.265E+06 1.265E+061.265E+06 1.265E+061.265E+06 1.265E+061.265E+06 1.265E+061.265E+06 1.265E+061.265E+06 1.265E+061.265E+061.265E+06 1.265E+061.265E+06 1.265E+061.265E+06 1.265E+061.265E+06 1.265E+061.265E+06 1.265E+061.265E+06 1.265E+061.265E+06 1.265E+061.265E+06 1.265E+061.265E+06 1.265E+061.265E+06 1.265E+061.265E+06 1.265E+061.265E+06 1.265E+061.265E	1.865E+07 1.855E+07 1.852E+07 1.851E+07 1.851E+07 1.827E+07 1.303E+07 1.705E+07 1.715E+07 1.721E+07 1.664E+07 1.721E+07 1.664E+06 2.182E+06 3.046E+06 2.182E+06 1.290E+06 5.123E+05 1.018E+05 1.2155E+04 1.406E+03 1.917E+03 1.800E+03 1.842E+03 2.034E+03 2.034E+03 2.407E+03 2.632E+03	$\begin{array}{c} 0.012+00 & 0 \\ -5.12-01 & -6 \\ -4.62-01 & -1 \\ -4.52-01 & -2 \\ -4.52-01 & -2 \\ -4.52-01 & -2 \\ -4.52-01 & -3 \\ -4.82-01 & -3 \\ -4.82-01 & -4 \\ -4.92-01 & -5 \\ -5.52-01 & -6 \\ -5.52-01 & -6 \\ -5.52-01 & -6 \\ -5.52-01 & -6 \\ -5.52-01 & -5 \\ -5.52-01 & -5 \\ -5.52-01 & -5 \\ -5.52-01 & -6 \\ -7.52-01 & -5 \\ -5.52-01 & -5 \\ -6.72-01 & -5 \\ -7.92-02 & -3 \\ -7.62-02-02 & -3 \\ -7.62-02-02 & -3 \\ -7.62-02-02 & -3 \\ -7.62-02-02-02 & -3 \\ -7.62-02-02-02-02-02-02-02-02-02-02-02-02-02$.0E+00 .3E+17 .1E+18 .5E+18 .9E+18 .9E+18 .9E+18 .9E+18 .0E+18 .3E+18 .3E+18 .3E+18 .3E+17 .1E+17 .1E+17 .1E+17 .0E+00 .0	$\begin{array}{c} 0.05+00\\ 2.41+03\\ 1.71+03\\ 1.45+03\\ 1.25+03\\ 9.95+02\\ 8.55+02\\ 7.55+02\\ 6.95+02\\ 6.95+02\\ 6.95+02\\ 6.95+02\\ 6.95+02\\ 8.45+01\\ 9.31+02\\ 3.21+02\\ 8.45+01\\ 9.31+00\\ 9.31+00\\ 3.25-01\\ -1.55-03\\ -1.55-04\\$	0.0E+00 4.5E+03 9.9E+03 1.4E+04 1.8E+04 2.3E+C4 2.3E+C4 2.3E+C4 2.0E+04 2.0E+04 2.0E+04 2.0E+04 2.0E+04 2.0E+04 2.0E+04 2.0E+04 2.0E+04 2.0E+04 1.5E+05 1.5E+05 1.5E+05 1.4E+05 1.4E+05 1.3E+05 1.3E+05 1.2	0.00:+00 1.21:+00 2.12:+00 2.72:+00 3.55:+00 3.55:+00 3.55:+00 1.92:+00 1.92:+00 1.92:+00 1.22:+00 3.51:-01 1.22:-01 3.51:-01 1.22:-02 2.02:-04 3.42:-02 5.72:-02 8.92:-02 8.95:-02 8.12:-02 8.12:-02 8.22:-02	-1.3E-02 1.3E-02 3.6E-02 5.8E-02 7.9E-02 1.2E-01 1.6E-01 2.3E-01 2.3E-01 2.4E-01 2.9E-01 2.9E-01 2.9E-01 2.9E-01 2.5E-01 2.5E-01 2.5E-01 2.5E-01 2.5E-01 2.5E-01 2.5E-01 -2.5E-02 -2.5E-	2.91:+03 2.11:+06 1.71:+08 1.71:+08 1.31:+06 1.11:+03 9.46:+07 7.81:+07 3.91:+07 3.91:+07 3.21:+07 3.21:+06 3.61:+07 1.31:+07 1.51:+	•		FINE ZONING KZO = 0 MH = 40
•	55 -9.470E-(57 -9.473E-(57 -9.473E-(57 -9.473E-(63 -9.430E-(65 -9.433E-(65 -9.433E-(71 -9.436E-(73 -9.436E-(73 -9.436E-(75 -9.431E-(75 -9.431E-(75 -9.431E-(79 -9.505E-(81 -9.62)E-(1= 1 J= 1= 24 J= HYDEODYMANISCI IMPULSI= 2.831 PT = 1.00255E+00 1.0035E+C0 1.01032E+C0	33 8.874E+01 33 8.655E+01 33 8.435E+01 33 8.435E+01 33 8.435E+01 33 8.405E+01 33 8.155E+01 33 7.495E+01 33 7.495E+01 33 6.511E+01 33 6.512E+01 33 6.316E+01 33 6.306E+01 34 326E+02 39 EKIK 80 EKIK 80 EKIK 80 EKIK 81E=02 IMPUI 1.00377E+00 1.003591E+00 1.003525E+00 1.00353E+00	1.782E+01 -2.176E+01 -9.990E+00 -3.139E+00 -1.014E+01 -1.030E+01 -1.510E+01 -1.524E+12 -1.5902E-02 RAD= 1.0956E -5.52E+00 -1.0052E+00 -1.	2.609E+03 2.809E+03 2.909E+03 3.415E+03 4.115E+03 4.6552+03 4.972E+03 5.107E+03 5.127E+03 5.457E+03 5.457E+03 7.015E+03 1.472E+04 LTU=1.7 ETH=1.7 -01 TOT -02 SCHWER 1.00470E+0 1.00592E+0 1.00143E+0 9.02172E-0	2.809E+03 2.991E+03 3.415E+03 4.115E+03 4.972E+03 5.107E+03 5.127E+03 5.452E+03 5.452E+03 1.470E+04 435E+01 316E-02 NEE ABSORPT PUNKTGESCH 0 1.004991 0 1.00592F 0 9.959051 2.272724	0.01+00 0 0.01+00 0 2.4E-05 3 3.92-05 7 6.7E-05 1 2.7E-05 8 0.0E+00 0 2.1E-05 9 1.3E-04 6 0.0E+00 0 2.2E-05 9 0.6E+00 0 0.6E+00 0	. 0E+00 . 0E+00 . E+10 . 7E+11 . 3E+12 . 3E+11 . 3E+12 . 0E+00 . 0E+11 . 9E+11 . 4E+12 . 0E+00 . 0E+11 . 4E+12 . 0E+00 . 0E+11 . 458E+07 200E+00 05E+00	2.10-04 - 2.10-04 - 2.20-04 - 2.68-04 - 3.40-04 - 4.40-04 - 4.50-04 - 4.20-04 - 4.20-04 - 4.20-04 - 4.50-04 - 4.50-04 - 4.50-04 - 0.02+00 - 0.02+00 - 0.02+00 - 0.02+00 - 0.025300+ 1.005500+ 1.005500+ 1.005500+ 1.005500+ 1.005500+ 1.005500+ 1.0055	1.20+05 1.38+05 1.38+05 1.32+05 1.32+05 1.32+05 1.32+05 1.32+05 1.32+05 1.50+05 1.5	8.3E-02 8.4E-02 8.3E-02 6.5E-07 8.6U-02 8.9E-02 8.9E-02 9.9E-02 9.9E-02 9.9E-02 9.9E-02 9.9E-02 1.6E-01 2.1L-62 1.3E-03 53E+00 79E+00 18E-61 53E+00	6.7E-02 - 4.6E-02 - 4.6E-02 - 3.7E-02 - 2.5E-07 - 2.1E-02 - 1.5E-02 - 1.5E-02 - 1.5E-03 - 4.7E-C3 - 3.6E-03 - 4.7E-C3 - 5.5E-04 - 4.7E-C3 - 5.5E-04 -	1.5%+07 1.5%		NGSDATEN ** *******	UND LASERDATEN
	3.24650E+00 3.61691E+00 2.58216E+00 2.12132E+00 RC = 9.90602E-01 1.01735E+00 1.17740E+00 1.43995E+00 1.4657E+00 1.4657E+00 6.82611E-01 ZEFF = 1.30000E+01	3.414115+00 3.413395+00 2.603365+00 2.076495+00 9.973255-01 1.019305+00 1.251535+00 1.554175+00 1.03655+00 1.138675+00 1.043505+00 5.955895-01	3.55949E+00 3.37019E+00 3.02090E+00 1.56707E+00 1.02143E+00 1.32146E+00 1.32146E+00 1.32146E+00 1.13061E+00 1.13293E+00 1.02178E+00 6.17959E-01	3.60951E+0 3.14533E+0 3.89664E+0 1.04977E+0 1.00347E+0 1.02360E+0 1.75812E+0 7.27811E-0 1.16304E+0 1.1861E+0 1.02030E+0 5.56368E-0	0 3.649587 0 2.987451 0 3.93099 0 3.024618 0 1.005788 0 1.025469 0 1.762507 1 8.349907 0 1.179227 0 1.109117 0 1.004968 1 7.039338 1 1.300007	2+00 3.709; 2+00 2.64; 2+00 4.754; 2-01 3.538; 2+00 1.007; 2+00 1.201; 2+01 1.201; 2+01 1.201; 2+01 1.201; 2+01 1.203; 2+00 1.201; 2+01 1.203; 2+00 9.910; 2+01 4.500;	312+00 74E+00 392+00 28E-02 82E+00 82E+00 56E-01 74E+00 56E-01 56E-01	3.82049E+ 2.4203E+ 4.17597E+ 1.95476E- 1.00074E+ 1.03458E+ 1.31693E+ 9.44013E- 1.2371E+ 1.07765E+ 2.96966E- 1.30000E+	00 3.915 00 2.372 00 4.430 01 2.212 00 1.011 00 1.055 00 1.055 00 1.461 01 9.915 00 1.069 01 9.465 01 2.544 01 1.300	330+00 400+00 000+00 420-01 630+00 410+00 630+00 910-01 910-01 910-01 870+00 800-01 200-01	4.61607E+0 2.37593E+0 3.49567E+0 3.94475E-0 1.01352E+0 1.08799E+0 2.46513E+0 1.05658E+0 1.24345E+0 1.6532E+0 8.74903E-0 3.45230E-0	0 3.77360E+0 0 2.39556E+1 0 3.14012L+0 2 3.0329HE-1 0 1.01541E+1 0 1.0565E+1 0 1.05458E+1 0 1.05458E+1 0 1.05458E+1 0 1.05458E+1 1.15100E+1 1.33762E-1 1.17184E+0		₩*** ***	FOLIEN KALP = K7EIT =
	1.300002+01 1.300002+01 1.046265+01 9.91365E-01 9.34331E-C1 1.07353E+00 1.42167E+00 KRHO = 0 0 0 0 24 24 24 24 24 KTE = 18 13 13 18 1 4 4 4 4 FOLIEN- UND	1.30000F+01 1.30000F+01 5.04764E+00 9.72313E-01 9.49494E-01 1.09187E+00 1.61465E+00 0 0 0 0 0 3 23 23 22 21 8 18 18 18 18 4 4 4 4 4 LASERDATEN *******	1.30000:+01 1.30000:+01 2.43195E+00 9.42234E-01 9.62174E-01 1.11613E+00 1.59359E+00 0 0 0 0 0 1.20 20 19 19 3.18 16 13 16 5.5 5 5 JCB:RES16 W CH-2 7	1.30000E+0 1.30000E+0 1.32327E+0 9.20196E-0 9.80132E-0 1.1828E+0 1.69349E+0 0 0 0 19 19 19 1 3 18 18 18 18 5 5 5 56 GESAMTER COTALE AESOR	1 1.300000 1 1.300000 0 1.299651 1 9.14009J 0 1.132430 0 1.80092F 0 0 0 0 9 19 18 18 8 18 17 17 5 5 5 5 CHENZ CIT(1/	1.3000 1.3000 2+01 1.3000 2+01 2-01 9.0864 2-01 1.013 2+00 1.144 2+00 2-01 0 0 18 18 16 16 5 5 2(100 SEK)= 38E-01 1	Control Con	1.30005+1 1.300005+1 1.31717E+1 8.967995-1 1.03161E+1 1.7137E+1 4.23934E+1 0 0 0 17 17 17 1 14 14 13 5 5 5 = 3.00E-02	21 1.300 21 1.300 21 1.300 20 1.066 20 9.038 20 1.182 20 4.735 0 3 5 17 16 15 12 12 10 5 5 5	9 16 26 9 3 44 9 3 44 5 5 6	1. 30000E+0 1. 30000E+0 1. 30000E+0 1. 02573E+00 1. 02575E+00 1. 25396E+00 3. 66134E+00 26 25 25 25 10 8 4 4 4 4 6 6 6	1 1.30000000 1 1.300000000 1 1.300000000 1 0.0746244 1 9.235735-(0) 1.0522204(0) 1.0522204(0) 1.2370124(0) 3.52158124(0) 24 24 2 0 4 4 7 8	11 10 10 10 10 10 10		-UND IMPULSTEST .60E-12
	FOLIENDICKE= 1 KERNLADUNGSZAH ABLATICN=1.715 MAXIMALTEMPERA	.000E-04 CM L= 1.360E+01 E-01 OPT: TUR AN KRITIS	ANZAHL DE ATCHMASS ISCHE TRAUSM SCHER DICHTE	2P NASSENSCH 3E= 2.700E+0 ISSICN =0.00 = 6.933E+07	ALEN= 80 1 07:+00 1 K	30N IUG-I łydrodynamie	PARAMETE SCHER WI	R= 1.05E+(00 D= 1.0960	-01	• .				ENERGIE KETEST= 1 KITEST= 1 TAUE = 0

.

- 30 -

= 0.1000E-03 01 NPROF = 0.0 AF = 0.30E 01 JP = 5 ANF ANGSPROF IL = 0.1050E 40 0 11 11 DIKOR KZO Ŧ Š

A = 0.5000E 00 = 0.2000E 15 = 0.4778E 05 = 0.4778E 05 = 0.1196E 04 = 0.1196E 04 = 0.1196E 04 = 0.1196E 04 = 0.1000E 03 = 0.3000E 03 = 0.3000E 03 = 0.1667E 01 = 0.1667E 01 = 0.1667E 01 = 0.1300E 02 = 0.2700E 02 00006 ----|| 11 KALP KZEIT DELTA DELTA WLO WLO WLO KHOO TEO TIO CAMMA

SCHNELLE ELEKTRONEN NFE = 0 DELTAF= 0.10E-01 WELAE = 0.1000E-03

ENERGIESATZ

IONENFLUGZEITSPEKTRUM IONEN = 0 DIST = 0.1400E 03 NZIO = 2400 IPLO = 0 JFL = 1 FFL2 = 0.3000E-01 THETA = 0.7500E 00 KYE = 1 KABSO = 1 DATENAUSGABE KPR = 1 KPR1 = 200 MuRITE= 81 NZY = 1000000 = 1000000

Z F IO

MATERIAL = ALUMINIUM

ZEITSCHRITTSTEUERUNG ZEIT = 0.0 ZF = 0.1000E-02 IZEI1 = 50 IZEI2 = 200 ZEIFA1= 0.1000E 01 ZEIFA2= 0.1000E 01 ZEIFA2= 0.1000E 01 DZMAX = 0.1000E-11

,	JLS 1452)		ίν _τ	
-ASERPULSFORM PULS = 1	IPULS = 1 : SINUSQUADRAT IPULS = 2 : RECHTECK IPULS = 3 : JODLASER MIT VORPUL IPULS = 4 : GERECHNET (UCH TAU4	EITM = 0.60E-09	CHOCK SHOCK= 1 ISL = 0.15E 01	JSTANDSGLEICHUNG 10s = 1 JT = 0.10F-09
 • •		N	$\infty \times >$	NHび

- 39 -

- 41 - 14

200, the convergence is sufficiently fast and gives reliable resul 4 A at the computing the ou the GMA-1 is of the order 2.5 * (8) jegral fiel my I a vol aux and A gate sold too acos wites up to 3000 tive strys depending on material. Typi little coercy routine consumes role thru 60 % of CPU time

0.0

X) Concluding remarks

LAPLAS runs on the CRAY-1 computer facility at the IPP Garching. It consists of 3500 card images (including plot) and needs roughly 200 k words of core memory and no external storage. The maximum number of zones (=M-1) is 320, the convergence is sufficiently fast and gives reliable results for M 80. The computing time on the CRAY-1 is of the order $2.5 \cdot 10^{-4}$ s per zone per time step. A 1 ns run for a 1 µm foil target (80 zones) requires up to 3000 time steps depending on material. Typically, the implicit energy routine consumes more than 60 % of CPU time.

Comment:

Based on LAPLAS, there are two extensions available at MPO:

- a) LAPLAS 2A simulates the collision of a laser accelerated foil with a second one at rest.
- b) LAPLAS HI simulates heavy ion beam experiments where the energy is deposited in small cylinders.

References:

- [1] Mulser P., Sigel R., Witkowski S., Physics Report 6, 187 (1973) and G. Spindler, private documentation.
- [2] Braginskii S.J., Reviews of Plasma Physics I, New York, Consultants Bureau, (1965)
- [3] Richtmyer R.D., Morton K.W., "Difference Methods for Initial Value Problems", New York: Interscience (1976)
- [4] Bennett B.I., et al., Los Alamos report UC-34, (1978)
- [5] Johnston T.W., Dawson J.M., Physics of Fluids 16, 722 (1973)
- [6] Mulser P., van Kessel C., J. Phys. D. 11, (1978) and Mulser P., Spindler G., PLF report 12, (1978).

·

.

