Lecture "Quantum Information" WS 19/20 — Exercise Sheet #4

Problem 1: Decay of entanglement.

Consider a Bell state $\rho = |\Phi^+\rangle\langle\Phi^+|$, where $|\Phi^+\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$. Superposition states like ρ generally are not stable, but decay over time. A typical evolution is that the populations (i.e., the diagonal elements) become equal, while the off-diagonal elements decay to zero. Suppose that the state evolves as

$$\rho(t) = p_+ |00\rangle \langle 00| + p_- |01\rangle \langle 01| + p_- |10\rangle \langle 10| + p_+ |11\rangle \langle 11| + \frac{1}{2}e^{-t/T_2} |00\rangle \langle 11| + \frac{1}{2}e^{-t/T_2} |11\rangle \langle 00| ,$$

with $p_{\pm} = \frac{1}{4}(1 \pm e^{-t/T_1}).$

For sufficiently long times, this state tends to $\lim_{t\to\infty} \rho(t) = \frac{1}{4}\mathbb{I}$, the maximally mixed state.

- 1. Write a matrix form of state $\rho(t)$.
- 2. Take its partial transpose $\rho(t)^{T_B}$ and write its matrix form.
- 3. Calculate the eigenvalues of $\rho(t)^{T_B}$. (You may use a computer algebra system, though it should not be necessary.)
- 4. Sketch how the eigenvalues change over time for $T_1 = T_2 = 1$. What it the asymptotic limit?
- 5. Find time after which the state $\rho(t)$ becomes separable.

Problem 2: Bell inequalities and witnesses.

The CHSH operator

$$C = \vec{n}_1 \vec{\sigma} \otimes \vec{n}_0 \vec{\sigma} + \vec{n}_1 \vec{\sigma} \otimes \vec{n}_2 \vec{\sigma} + \vec{n}_3 \vec{\sigma} \otimes \vec{n}_2 \vec{\sigma} - \vec{n}_3 \vec{\sigma} \otimes \vec{n}_0 \vec{\sigma}$$

with $\vec{n}_k = (\cos(k\pi/4), 0, \sin(k\pi/4))$ has the property that $|\text{tr}[C\rho]| \leq 2$ for all ρ which describe a local hidden variable (LHV) model. Note that any separable state $\rho = \sum p_i \rho_i^A \otimes \rho_i^B$ describes a LHV model.

- 1. Use C to construct an entanglement witness W. Provide an explicit form of the witness. (You may use that all separable states describe LHV models to prove that $tr[W\rho] \ge 0$.)
- 2. In which range of λ does this witness detect Werner states $\rho(\lambda) = \lambda |\Psi^-\rangle \langle \Psi^-| + \frac{1-\lambda}{4}\mathbb{I}$, with $|\Psi^-\rangle = \frac{1}{\sqrt{2}}(|01\rangle |10\rangle)$? How does it compare to the entanglement witness $W = \mathbb{F}$ discussed in the lecture?

Problem 3: Witnesses and reduction criterion.

Consider $W = \mathbb{I} - d|\Omega\rangle\langle\Omega|$, with $|\Omega\rangle = \frac{1}{\sqrt{d}}\sum_{i=1}^{d}|ii\rangle$.

- 1. Show that $tr[W\rho] \ge 0$ for separable states ρ , i.e., W is an entanglement witness.
- 2. Consider the family

$$\rho_{\rm iso}(\lambda) = \lambda \, \frac{\mathbb{I}}{d^2} + (1-\lambda) |\Omega\rangle \langle \Omega|$$

of *isotropic states*. In which range of λ is $\rho_{iso}(\lambda) \ge 0$? In which range of λ does W detect that $\rho_{iso}(\lambda)$ is entangled?

- 3. Consider the case d = 2. What does W do on the antisymmetric state $|\Psi^-\rangle = \frac{1}{\sqrt{2}}(|01\rangle |10\rangle)?$
- 4. Derive the positive map Λ corresponding to the witness W. Prove directly that it is indeed a positive map.
- 5. In which range of λ does Λ detect that $\rho_{iso}(\lambda)$ is entangled? What does Λ do on the antisymmetric state $|\Psi^{-}\rangle$?

Problem 4: Entanglement conversion of multiple copies.

Consider the problem of converting a state $|\chi\rangle = \sqrt{\frac{3}{4}}|00\rangle + \sqrt{\frac{1}{4}}|11\rangle$ to the Bell state $|\Phi^+\rangle = \sqrt{\frac{1}{2}}|00\rangle + \sqrt{\frac{1}{2}}|11\rangle$. As we have seen in the lecture, the maximum success probability for this conversion can be determined using the majorization criterion.

- 1. Determine the maximum success probability P_1 for converting $|\chi\rangle$ into $|\Phi^+\rangle$.
- 2. Show that there is a protocol which takes three copies of $|\chi\rangle$ and produces into 3 copies of $|\Phi^+\rangle$ with probability $p_3 = \frac{1}{8}$ and 2 copies with $p_2 = \frac{5}{8}$, respectively. What is the average yield P_3 of $|\Phi^+\rangle$ per copy of $|\chi\rangle$ used?
- 3. Show that by using 2 copies, the average yield does not improve as compared to one copy.