
Lecture “Quantum Information” WS 19/20 — Exercise Sheet #3

Problem 1: Dense coding.

Dense coding can be seen as the inverse protocol to teleportation. As in teleportation, Alice and Bob
have free entanglement – Bell states |Φ+〉 = 1√

2
(|00〉 + |11〉) – at their disposal, but now, they want to

use it to transmit classical information by sending quantum states as efficiently as possible, i.e., they
want to transmit the maximum amount of classical information per qubit sent. Clearly, by encoding one
classical bit into one qubit (e.g., as |0〉 and |1〉), they can transmit one classical bit per quantum bit sent.
The goal is thus to do better.

1. Show that by acting on her part of |Φ+〉, Alice can transform the shared Bell state |Φ+〉 into any
other Bell state.

2. Use this to set up a protocol where Alice can transmit two classical bits by sending only one
quantum bit, by using the pre-shared Bell states. This protocol is called dense coding, or sometimes
super-dense coding.

3. Use dense coding, together with teleportation, to show that both protocols are optimal given that
shared entanglement is free – this is, we cannot send more classical bits per qubit transmitted,
and teleportation of a qubit requires at least two classical bits to be sent (even if we use more
complicated protocols sending larger amounts of data at once).

Problem 2: CHSH inequality I: Local hidden variable and quantum mechanics.

Here we will derive another of Bell inequalities, the so-called CHSH inequality. Consider the following
scenario: Alice and Bob are each given an input with value (measurement setting) either 0 or 1. We will
call their input variables i and j respectively. Without communication between them, they each produce
output which is either value −1 or +1, which may depend on the input. We will call the output variables
a and b respectively. There is also a referee R, who distributes some information to Alice and Bob which
they can use to produce their output.
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Figure 1: CHSH scenario
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Figure 2: Axis along which Alice (blue)
and Bob (red) measure spin

Let us define the quantity 〈C〉:

〈C〉 = 〈a0b0〉+ 〈a1b0〉+ 〈a0b1〉 − 〈a1b1〉.

Here, 〈aibj〉 is the expected value of the product of the output variables, given some input i, j. The
distribution of the outcomes is described by some joint conditional probability distribution P (a, b|i, j)
[i.e.,

∑
a,b P (a, b|i, j) = 1], so

〈aibj〉 =
∑
a,b

a bP (a, b|i, j) .

1. Classical scenarios can be described by a local hidden variable (LHV) distribution:

P (a, b|i, j) =
∑
λ

pλP
A
λ (a|i)PBλ (b|j) .

Here λ is a variable distributed to Alice and Bob by the referee with a probability distribution pλ
(i.e.

∑
λ pλ = 1). Use this to derive the bound |〈C〉| ≤ 2. This should be done by explicitly using

the form of P (a, b|i, j), not by making any intuitive assumptions about LHV distributions.



2. For a possible quantum scenario, assume that the referee gives Alice and Bob each one qubit of the
singlet state |Ψ−〉 = 1√

2
(|01〉 − |10〉). For Alice, the input determines whether she’ll measure the

spin along the x axis or the y axis. For Bob, it determines whether he’ll measure the spin along
the x+y axis or the y-x axis (see Figure 2).

(a) Determine the observables ~σA0 , ~σ
A
1 , ~σ

B
0 , ~σ

B
1 corresponding to Alice and Bob doing their mea-

surments along the axes described above.

(b) The expected value of 〈aibj〉 can be calculated as

〈aibj〉 = 〈Ψ−|~σAi ~σBj |Ψ−〉.

Using that, calculate 〈C〉 for this particular scenario.

Problem 3: CHSH inequality II: Tsirelson’s bound. Here we will again consider the quantum
CHSH scenario, but in a more general point of view. Tsirelson’s inequality bounds the largest possible
violation of the CHSH inequality in quantum mechanics (namely 2

√
2). To this end, let A0, A1, B0, B1

be Hermitian operators with eigenvalues ±1, so that

A2
0 = A2

1 = B2
0 = B2

1 = 11 .

Here, A0 and A1 describe the two measurements of Alice, and B0 and B1 those of Bob. That means that
operators Ai act as identity on Bob’s system and vice versa. Therefore Alice’s and Bob’s measurements
commute, i.e. [Ai, Bj ] = 0 for all i, j = 0, 1. Define the operator

C = A0B0 +A1B0 +A0B1 −A1B1 .

1. Determine C2.

2. The operator norm of a bounded operator M is defined by

‖M‖ = sup
|ψ〉

‖M |ψ〉‖
‖|ψ〉‖

,

that is, the operator norm of M is the maximum eigenvalue of
√
M†M . Verify that this norm has

the properties

‖MN‖ ≤ ‖M‖‖N‖ ,
‖M +N‖ ≤ ‖M‖+ ‖N‖ .

3. Using the rules derived above, find an upper bound on the operator norm ‖C2‖.

4. Show that for Hermitian operators ‖C2‖ = ‖C‖2. Use this to obtain an upper bound on ‖C‖.

5. Explain how this gives a bound on the expected value 〈C〉. This is known as Tsirelson’s bound.

Problem 4: LOCC protocols.

Suppose |ψ〉 can be transformed to |φ〉 by LOCC. A general LOCC protocol can involve an arbitrary
number of rounds of measurement and classical communication. In this problem, we will show that
any LOCC protocol can be realized in a single round with only one-way communication, i.e., a proto-
col involving just the following steps: Alice performs a single measurement described by measurement
operators Kj , sends the result j to Bob, and Bob performs a unitary operation Uj on his system.

The idea is to show that the effect of any measurement which Bob can do can be simulated by Alice
(with one small caveat) so all Bob’s actions can actually be replaced by actions by Alice.

1. First, suppose that Bob performs a measurement with operators Mj =
∑
klMj,kl|k〉B〈l|B on a

pure state |ψ〉AB =
∑
l λl|l〉A|l〉B , with the resulting state denoted as |ψj〉. Now suppose that

Alice performs a measurement with operators Nj =
∑
klMj,kl|k〉A〈l|A on a pure state |ψ〉, with

resulting state denoted as |φj〉. Show that there exist unitaries Uj on system A and Vj on system
B such that |ψj〉 = (Uj ⊗ Vj)|φj〉. Hint: Don’t try to find the unitary matrices, just try to prove
that they exist.

2. Use this to explain how any multi-round protocol can be implemented with one measurement done
by Alice followed by a unitary operation done by Bob which depends on Alice’s outcome.


