
Technische Universität München

Max-Planck-Institut für Quantenoptik

Entanglement States in Ion
Traps: Properties and

Applications

Xiaolong Deng
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Abstract

This thesis is devoted to the theoretical study of strongly correlated quan-
tum many-body states with trapped ions interacting with lasers. A system
of trapped ions under the action of off–resonant standing–waves can be used
to simulate a variety of quantum interacting models. Based on this idea we
study in detail effective quantum spin models and Bose-Hubbard model in
ion traps.

In the first part of the thesis we review the physics of ion traps, which is
considered as the basics of building quantum simulators with trapped ions.
We derive the vibrational modes in a string of ions, discuss the ion-laser
interaction in the Lamb-Dicke limit, and explain how to prepare and detect
quantum states in ion-trap experiments.

In the second part of the thesis we build up our own DMRG method
for an inhomogeneous system with long-range interactions or hoppings. We
discuss how to actualize the operators and correlations in the DMRG steps,
and how to speed up the calculations.

In the third part we describe theoretically effective quantum spin models
in ion traps. The coupling between internal states and vibrational modes
under the off-resonant standing-wave can be written as an effective spin in-
teracting Hamiltonian plus a residual spin-phonon coupling. Our numerical
calculations with the DMRG method show that experiments with ion traps
should allow one to access general properties of quantum critical systems. On
the other hand, ion trap quantum spin models show a few novel features due
to the peculiarities of induced effective spin–spin interactions which lead to
interesting effects like long–range quantum correlations and the coexistence
of different spin phases.

In the fourth part we focus on the phonon-Hubbard model in ion traps.
The vibrations of a chain of trapped ions can be considered, under suitable
experimental conditions, as an ensemble of interacting phonons, whose quan-
tum dynamics is governed by a Bose–Hubbard Hamiltonian. Our studies of
this system show that thermodynamical properties, such as critical param-
eters and critical exponents, can be measured in experiments with a lim-
ited number of ions. Besides that, interacting phonons in trapped ions offer
us the possibility to access regimes which are difficult to study with ultra-
cold bosons in optical lattices, like models with attractive or site–dependent
phonon-phonon interactions.
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Zusammenfassung

Diese Arbeit behandelt die theoretische Untersuchung von stark korre-
lierten Quanten-Vielteilchen-Zuständen, die bei gefangenen Ionen, die mit
Lasern wechselwirken, auftreten. Ein Systen aus gefangenen Ionen unter
Einwirkung von off-resonanten stehenden Wellen kann dazu verwendet wer-
den, eine Vielzahl von Modellen mit Quantenwechselwirkungen zu simulieren.
Basierend auf dieser Idee studieren wir im Detail effektive Quanten-Spin-
Modelle und das Bose-Hubbard Modell.

Im ersten Teil der Arbeit wiederholen wir die Physik von Ionenfallen,
welche die Basis für einen Quantensimulator mit gefangenen Ionen bilden.
Wir berechnen die Vibrationsmoden in einer Ionenkette, diskutieren die Ionen-
Laser Wechselwirkung im Lamb-Dicke Limit und erklären, wie Quanten-
zustände in Ionenfallen-Experimenten präpariert und gemessen werden.

Der zweite Teil der Arbeit behandelt unsere eigene DMRG-Methode für
inhomogene Systeme mit langreichweitigen Wechselwirkungen oder Tunnel-
effekten. Wir diskutieren, wie Operatoren und Korrelationen in den einzel-
nen DMRG-Schritten aktualisiert werden und wie eine Geschwindigkeitsop-
timierung erreicht wird.

Im dritten Teil beschreiben wir theoretisch die effektiven Quanten-Spin-
Modelle, die in Ionenfallen simuliert werden können. Die Kopplung zwis-
chen den internen Zuständen und den Vibrationsmoden unter der Einwirkung
von off-resonanten stehenden Wellen kann als effektive Spin-Wechselwirkung
plus einer Spin-Phonon Kopplung geschrieben werden. Unsere numerischen
Berechnung mittels DMRG zeigen, dass mittels Experimenten mit Ionen-
fallen Erkenntnis über allgemeine Eigenschaften von kritischen Quantensys-
temen erlangt werden kann. Desweiteren zeigen Quanten-Spin-Modelle in
Ionenfallen zahlreiche neue Eigenschaften aufgrund der Besonderheiten der
induzierten Spin-Spin Wechselwirkungen. Diese führen zu interessanten Ef-
fekten - wie langreichweitigen Quantenkorrelationen oder der Koexistenz von
unterschiedlichen Spin-Phasen.

Im vierten Teil behandeln wir das Phonon-Hubbard Modell in Ionen-
fallen. Die Vibrationen in einer Kette von gefangenden Ionen, können, unter
geeigneten experimentellen Zuständen, als Ensemble von wechselwirkenden
Phononen betrachtet werden, dessen Dynamik vom Bose-Hubbard Hamil-
tonian bestimmt wird. Unsere Untersuchungen dieses Systems zeigen, dass
die thermodynamischen Eigenschaften, wie kritische Parameter oder kritische
Exponenten, in Experimenten mit einer geringen Anzahl von Ionen gemessen
werden können. Desweiteren bieten uns wechselwirkende Phononen in gefan-
genen Ionen die Möglichkeit, Bereiche zu analysieren, die mittels ultrakalter
Bosonen in optischen Gittern schwierig zu erreichen sind - wie Modelle mit
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attraktiver oder ortsabhängiger Phonon-Phonon Wechselwirkung.
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Chapter 1

Introduction

The goal of quantum many–body physics is to understand the properties of
real materials ranging from quantum magnets to high–Tc superconductors.
For this task, theorists have developed a variety of simplified models, such
as spin models and Hubbard models [1], which allow us to describe the rich
phenomenology, especially strongly correlated quantum mechanics, which is
observed in those materials. However, those real systems corresponding to
these simplified models are very difficult to be controlled in experiments,
due to disorder and complicated structures. Moreover, many of these simpli-
fied models are not accessible to exact theoretical treatments in the strongly
correlated regime. In the last years, progress in laser cooling and manipula-
tions of cold atoms at the microscopic scale [2] has changed dramatically this
situation. Experiments in atomic physics and quantum optics offer us the
possibility to find experimental realizations of the above theoretical models
which were first proposed in the context of condensed matter physics [3,4,5].
The basic idea is to perform quantum simulations with an analogue sys-
tem [6] or a quantum computer [7]. In this way quantum interacting models
can be studied in a controlled and clean way and some of the limitations of
solid-state set-ups are overcome. Thus, the interplay between atomic and
many–body physics is becoming an exciting research field.

On the one hand, cold atoms in optical lattices are an excellent experi-
mental set-up to simulate other quantum many-body systems [5]. The optical
lattice is formed by three orthogonal pairs of counterpropagating (standing-
wave) laser beams that are off-resonant with the atomic transition [2]. The
induced ac-Stark shift (we will explain this effect for trapped ions in Chapter
2) makes the atoms trapped in the minima of the three-dimensional lattice
potential. By tuning the lattice potential depth, one can control the kinetic
energy of the atoms and the interaction between them. The optical lattice
not only provides us with high controllability and manipulation of trapped
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12 Introduction

atoms at quantum levels, but its geometry and dimensionality are also con-
trollable easily. In addition, as a clean experimental set-up the optical lattice
avoids the unwanted interactions and disorder in real materials, or it allows
one to add them on purpose. In 1998 D. Jaksch et al. [8] proposed the real-
ization of the superfluid-Mott insulator transition with cold atoms in optical
lattices. The first experimental step in this direction was made in 2002 by
M. Greiner et al. [9] with the successful observation of the quantum phase
transition at the zero temperature from a superfluid to a Mott insulator in
a gas of ultracold atoms in an optical lattice. In the experiment, starting
from a Bose-Einstein condensate loaded in a three-dimensional optical po-
tential, the system undergoes a superfluid-Mott insulator transition with the
lattice potential depth increasing until the on-site interaction between atoms
prevails over their kinetic energy. Thus, the work by D. Jaksch et al. [8]
and by M. Greiner et al. [9] opened the door of theoretically and experi-
mentally studying strongly correlated many-body quantum mechanics with
ultracold atoms. Stimulated by their work, a large number of theoretical
proposals using optical lattices come out to mimic various condensed mat-
ter models of interest [10,11,12,13,14,15,16,17,18,19,20], see the reviews in
Refs. [5,21,22]. And a large number of experiments are devoted to investigat-
ing behaviors of ultracold atoms in optical lattices in the strongly correlated
regime [23,24,25,26,27]. The bosonic superfluid–Mott insulator transition in
disordered Bose systems [28] and in Bose-Fermi mixtures [29, 30], the Mott
state of molecules [31] and bound repulsive pairs of atoms [32] have been
created and observed in experiments. The Tonks-Girardeau gas of ultracold
atoms in an optical lattice has also been observed directly in the experi-
ments [33,34,35,36]. The fermionic atoms have also been loaded into an op-
tical lattice, and the BEC-BCS crossover has been observed [37,38,39,40,41].

On the other hand, trapped ions [42] are another clean experimental
system in which quantum optics offers us accurate techniques for the manip-
ulation and measurement of quantum states [43, 44, 45, 46, 47]. In the last
years this experimental field has been mainly motivated by applications to
quantum information processing [48, 49, 50]. The original scheme of quan-
tum computing with trapped ions was proposed by J. I. Cirac and P. Zoller
in 1995 [51]. Then soon, the first experiment demonstrating an ion-trap
quantum logic gate was performed in the D. Wineland’s group at NIST in
Boulder, USA [52]. Since their seminal work [51, 52] ion traps have been
widely regarded as a leading candidate for quantum computing, and lots of
theoretical work based on ion traps has been proposed [53, 54, 55, 56, 57, 58].
The Cirac-Zoller 1995 proposal [51] considers a linear Paul trap, where two
hyperfine levels of the internal ground states of the ions are used as qubits,
and collective vibrational modes allow us to perform quantum gates between
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them. These ion-qubits can be addressed individually with laser beams.
The original scheme depends on the possibility of achieving the ground state
of vibrational modes by laser cooling and on the ability of manipulating a
quantum state in a precisely controlled manner. However, due to the limited
confinement in a linear Paul trap, it is difficult to scale this architecture to
more than a few ions. In 2000, J. I. Cirac and P. Zoller suggested another
quantum computing scheme called pushing gate [56], using trapped ions in an
array of microtraps, which could be scalable in experiments. In this scheme
off-resonant standing waves are introduced to create internal-state-dependent
dipole forces on trapped ions. Thus, two–qubit gates between two neighbor-
ing ions would depend on the particular internal state. The details of this
scheme has been explained in Ref. [59]. On the experimental side there has
been remarkable progress in recent years [60, 61, 62, 63, 64, 65, 66, 67, 68]. For
example, quantum algorithms for a few particles has been implemented in ion
traps [64,65,66], and entangled states of up to eight ions have been prepared
in experiments [67, 68].

In fact, trapped ions are also an experimental system with potential
applications to the quantum simulation of many–body problems as cold
atoms in an optical lattice. The coherent manipulation of their internal
and vibrational states could be used to simulate the dynamics of other sys-
tems [3,69,70,71,72,73,74,75]. In particular, D. Porras and J. I. Cirac have
shown recently that trapped ions can be used for the study of a rich variety of
quantum interacting models [70, 71, 74]. The internal states coupling to the
vibrational modes by the lasers can result in an effective spin-spin interaction
under certain conditions. By using similar experimental techniques to quan-
tum computing, one can use trapped ions to simulate interacting quantum
spin models [70]. With this proposal, the Heisenberg Hamiltonian could be
implemented in ion traps, which is very interesting from the perspective of
magnetism. In this way, the physics of quantum magnetism could be accessed
in experiments with ion traps. On the other hand, the vibrational modes of
a chain of trapped ions under suitable experimental conditions follow the
quantum dynamics of a Bose–Hubbard model [71]. The interaction between
phonons is induced by the anharmonicities of an optical potential, which can
also be created by an off–resonant standing wave. The hopping term is from
the Coulomb potential. Thus trapped ions provide us with another way to
observe the superfluid-Mott insulator quantum phase transition. The ex-
perimental requirements for the study of quantum interacting systems with
trapped ions are indeed much less stringent than those for quantum infor-
mation tasks. It also has the advantage that internal electronic or quantum
vibrational states can be measured at the single particle level [44, 47, 60],
since the distance between ions is large enough to address them individually
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by optical means.
This thesis contributes to the theoretical study of quantum simulations

of many-body systems with trapped ions. In the following chapters we will
mainly focus on the two schemes–effective spin models and Bose-Hubbard
model with trapped ions, proposed in Refs. [70] and [71]. Below we give an
overview of the content of this thesis.

In Chapter 2 we review the physics of ion traps, which is the carrier of
building our quantum simulators. In our study we mainly use two types of
ion traps: the linear Paul trap and the array of microtraps. We give their
draft structures and talk about how to confine the ions by these traps. Then
we give a description of the internal electronic states of trapped ions, and
derive the vibrational modes in the thermodynamic limit and in finite size
systems, respectively. The ion-laser interaction is the most important part
in this chapter. We consider two cases of lasers: the traveling wave and the
standing wave. To simplify our analysis we limit the interaction Hamiltonian
in the Lamb-Dicke regime, and get some further simplified Hamiltonians
which are used to engineer quantum states of trapped ions. We also explain
the internal-state-dependent force on the ions due to the off-resonant standing
waves, which is the starting point of our schemes. At the end we discuss how
to prepare and detect internal and vibrational states, which would make our
proposals possible in experiments.

In Chapter 3 we develop the numerical tool–the density matrix renor-
malization group (DMRG) [76, 77], so that it allows us to deal with inho-
mogeneous systems with long-range interactions or hoppings. The DMRG
suffices for studying one-dimensional strongly correlated system. We first
review the basic ideas of the DMRG method, based on the singular value
decomposition of the wavefunction. Then we illustrate our own algorithms
which is for long-range interacting or hopping models. Thirdly, we talk about
how to project the operators and correlations onto new basis at each steps
in the DMRG, in order to construct the new Hamiltonian for the next step.
The efficiency of the algorithms is discussed at the end of this chapter. We
mainly perform three large improvements to speed up our calculations: block
storage, state prediction and good quantum numbers. Our source codes are
written in Matlab, which has highly efficient functions to solve (sparse) large
matrices.

In Chapter 4 we pursue the ideas proposed in Ref. [70] for the realization
of a quantum simulator of quantum magnetism with trapped ions. We first
describe theoretically how to create the effective spin models with trapped
ions in the simplest realizations: quantum Ising model and XY model. The
decoherence in our spin models is analyzed carefully. With the DMRG
method we then investigate numerically the different quantum phases of
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these two models in a linear Paul trap and in an array of microtraps, re-
spectively. The ion-trap quantum spin models have some novel features due
to their peculiar spin-spin interactions. We explain quantitatively the long-
range quantum Ising correlations under the spin wave formalism through the
Holstein-Primakoff transformation. We also show the coexistence of different
phases in the linear Paul trap.

In Chapter 5 we focus on the ideas proposed in Ref. [71] for the real-
ization of a phonon-Hubbard model with trapped ions. First we derive the
Bose–Hubbard model for phonons in a chain of trapped ions, in the pres-
ence of the anharmonicities induced by an optical dipole potential. The
conditions of keeping phonons conserved and getting phonon-phonon inter-
actions and hoppings are discussed, respectively. By means of the DMRG we
study different quantum phases of interacting phonons, such as the super-
fluid, Mott-insulator and Tonks-gas phases, under the relevant experimental
parameters. Besides that, we also investigate in detail the phonon-Hubbard
models with attractive and site-dependent on-site interactions, respectively.

The result presented in Chapter 4 is published in [72]. The result in
Chapter 5 is submitted to Phys. Rev. A [75].





Chapter 2

Ion Traps

Atomic ions can be confined by particular arrangements of electromagnetic
fields [42, 78]. By means of laser cooling [2, 79, 80, 81], trapped ions can
approach a sufficiently low temperature, and form a crystal structure at
equilibrium where the Coulomb repulsion among them balances the trapping
potential. Small displacements of trapped ions around their equilibrium po-
sitions are strongly coupled due to the Coulomb interaction between them.
However, in the harmonic approximation (i.e. the small displacements of ions
around equilibrium positions are much smaller than the distances between
ions), small displacements can be expressed in terms of normal modes, which
are uncoupled.

Trapped ions can be controlled easily and precisely with lasers. The
laser interacting with trapped ions can couple their internal states with their
motion (i.e. normal modes), which indeed offers possibilities of preparing and
manipulating quantum states of motion of trapped ions. Some important
states in quantum mechanics, such as Fock states, coherent states, squeezed
states and Schödinger cat states have already been generated and detected
in ion-trap experiments [44, 47, 60].

In this chapter we review the theoretical description of ion traps which is
closely related to building our quantum simulators in this thesis. First we talk
about the different types of ion traps used in the thesis: the linear Paul trap
and the array of ion microtraps. Second, the physics of trapped ions is given:
the internal states of ions in the two-level approximation and vibrational
modes of a string of ions. Third, we derive the basic ion-laser interaction
Hamiltonians for the traveling wave and the standing wave, respectively,
discuss the Hamiltonians in the Lamb-Dicke limit, and explain the state-
dependent force in a far-detuned standing wave, which plays a very important
role in building our models. The last section is about how to prepare and
detect quantum states (internal and motional states) in ion traps.
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endcap
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 ring                          x

endcap

 ring                          

rfV
 ring                           ring                           ring                          

Figure 2.1: Draft scheme of a Paul trap with trapped ions. A rf voltage Vrf

is applied between the endcap and ring electrodes. The coordinates x and y
direct along the principal axes of the trap.

2.1 The different types of ion traps

From the Earnshaw’s theorem, it is impossible to confine an ion using a purely
electrostatic field [81]. Therefore to create a stable trap one has to apply a
time-varying electric field or a combination of a static electric and magnetic
field. There are two traditional traps: the Paul trap and the Penning trap.
The Paul trap uses radio-frequency (rf) fields to confine ions, while the Pen-
ning trap uses static electric fields and a static magnetic field to do so. The
Paul trap can be extended to a linear Paul trap under some designs. There
is also an array of ion microtraps, which is composed of electric or magnetic
fields and of high scalability. In the following subsections, we will give some
brief explanations about the Paul trap, the linear Paul trap and an array of
ion microtraps. The work in this thesis is not related to the Penning trap.

2.1.1 The Paul trap

In the Paul trap a radio-frequency voltage Vrf = V0 cos(ωrf t) is applied
between the endcap and ring electrodes to confine ions, see Fig. 2.1 for the
configuration.

The quadrupole potential of the Paul trap in 2D is of the form

Φ = V0 cos(ωrft)(x
2 − y2). (2.1)
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Figure 2.2: Saddle potential Φ of a Paul trap. Stable dynamic equilibrium
at x = y = 0 is achieved with a rf voltage Vrf .

If there is no radio-frequency voltage, but a direct-current voltage applied
between the electrodes, the above Eq. (2.1) represents a saddle potential, see
Fig. 2.2. There is no stable equilibrium for the ion, since any slight displace-
ments from the center of the saddle potential (where the ion experiences no
force) will cause the ion to be off down the sides. However, if one applies a
radio-frequency voltage between the electrodes, a trapping is obtained, since
reversing the sign of rf voltage with time means rotating the saddle potential
around the vertical axis, and it leads to a stable dynamic equilibrium on
average. With an appropriate frequency ωrf , ions can be trapped stably.

The Paul trap is mostly used for studying quantum dynamics of single
trapped ions interacting with lasers.

2.1.2 The linear Paul trap

The linear Paul trap is very important in quantum information processing.
Not only the Cirac-Zoller quantum computing proposal [51] but also our
quantum simulators [72, 75] are mainly based on the linear Paul trap. It is
indeed made by extending a Paul trap. In Fig. 2.3 we show the schematic
drawing of a linear Paul trap with a string of ions.

A radio-frequency potential Vrf = V0 cos(ωrf t) is applied between two
pairs of diagonally opposite rod electrodes for confining the ions in the radial
direction, as explained for the Paul trap in the above subsection. From Eq.
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rod electrode 

y
endcap z

 x 
dcV + +Vdc

rfV

Figure 2.3: Draft scheme of a linear Paul trap with a string of trapped ions.
It consists of four rod electrodes and two endcap electrodes. A rf voltage
Vrf is applied between two pairs of diagonally opposite rod electrodes, i.e.
electrodes labeled 1,3 and electrodes labeled 2,4. The endcap electrodes have
a positive direct-current voltage Vdc. The z–direction is along the trap axis.

(2.1), one can get the equations of motion in the radial direction. Its stable
solutions show that a confined ion oscillates as if it is trapped in a harmonic
pseudopotential Ψ in the radial direction, given by

qΨ =
1

2
mω2

xx
2 +

1

2
mω2

yy
2, (2.2)

where q, m, ωx and ωy denote the ion charge, mass and radial trapping
frequencies, and (x, y) is the position of the ion.

An additional static electric potential Vdc is created along the z axis on
the end caps for preventing the ions from escaping along the axis z–direction.
This create a static harmonic potential in the z–direction with the longitu-
dinal trapping frequency ωz.

Therefore, the resulting effective pseudopotential Ψ for an ion confined
in a linear Paul trap in three directions is given by

qΨ =
1

2
mω2

xx
2 +

1

2
mω2

yy
2 +

1

2
mω2

zz
2. (2.3)

The trapping frequencies ωx, ωy and ωz depend on the rf frequency, direct-
current voltage, ion mass, ion charge and geometry configuration of the trap,
see the Ref. [42] for the detailed derivation.
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Figure 2.4: (a) A draft scheme of an array of microtraps. A string of ions
lie along the z–axis as shown in the figure. The radio-frequency voltages Vrf

and static voltages Vdc are applied to white electrodes and gray electrodes, re-
spectively. Twelve electrodes (4 white rf-electrodes and 8 gray dc-electrodes
on both sides) form a sub-microtrap. Each sub-microtrap confines only one
ion individually. (b) The side views of the separate parts, i.e. dc and rf elec-
trodes of an ion sub-microtrap. The dc voltage Vdc creates the confinement
along the z–axis direction. The rf voltage Vrf creates a 2D quadrupole field
to confine the ion. The effect of a microtrap is the same as a linear Paul
trap.

In the linear Paul trap, typically ωx, ωy � ωz, the ions are strongly
confined in the radial direction and arrange a linear chain along the trap
axis.

2.1.3 The array of microtraps

The array of ion microtraps was first proposed by R. DeVoe [82]. This
type of ion traps can be fabricated using semiconductor micromachining and
lithographic techniques such as micro-electro-mechanical-systems (MEMS)
and molecular beam epitaxy. Such a device can be integrated up to a long
1D chain or a large 2D pattern. Therefore it has a potential application
to scalable quantum computing. Based on the experimental work by the
C. Monroe’s group [83, 84], here we give some explanations about the basic
structure of an array of microtraps.

A scheme diagram of an array of ion microtraps is shown in Fig. 2.4.
The design, illustrated in Fig. 2.4, is a two-layer planar geometry where
both layers are divided into separate electrodes. The division of each layer
into six electrodes (2 white and 4 gray in the figure) accommodates both the



22 Ion Traps

rf potentials Vrf and the static potentials Vdc needed to create a linear Paul
trap. The radio-frequency voltages Vrf are applied between each set of diag-
onally opposing white electrodes, as shown in Fig. 2.4. In the cross-section
plane at z = 0,the radio-frequency generates a two-dimension trapping pseu-
dopotential, as is discussed in Subsection 2.1.2 about the linear Paul trap.
Applying the direct-current voltages Vdc to the endcap electrodes (gray elec-
trods on both sizes of the white) generates a potential, which provides axial
confinement for ions in the center of traps. One could distribute the individ-
ual microtraps in space to form a 1D chain or a 2D pattern. The separations
between adjacent microtraps are same, and typically about d ' 1− 500µm,
which allows for individual addressing of the ions.

In this thesis we always study the behaviors both in an array of microtraps
and in a linear Paul trap, and compare them. The array of microtraps could
give a more clear picture of quantum phase transitions.

2.2 The physics of trapped ions

2.2.1 Internal states

In general, we assume the internal structure of the ion has two levels. It
is straightforward to obtain fundamental properties, neglecting unnecessary
details [85]. We consider a two-level ion with internal states |g〉 (ground
state) and |e〉 (excited state), and the corresponding energies Eg and Ee. Its
Hamiltonian is

Hatom = Ee|e〉〈e|+ Eg|g〉〈g|

=
~ωeg

2
σz +

Ee + Eg

2
I, (2.4)

where ωeg = Ee−Eg

~
is the atomic resonance frequency between |e〉 and |g〉, σz

is a Pauli operator, and I is a unity matrix.
For convenience, we give here the Pauli operators and the unity matrix:

σx = |g〉〈e|+ |e〉〈g|, σy = i(|g〉〈e| − |e〉〈g|),
σz = |e〉〈e| − |g〉〈g|, I = |e〉〈e|+ |g〉〈g|. (2.5)

We may define raising and lowering operators

σ+ = |e〉〈g|, σ− = |g〉〈e|, (2.6)

then

σx = σ+ + σ−. (2.7)
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If we set the zero of energy equal to the energy of the level |g〉, the
Hamiltonian (2.4) will be

Hatom = ~ωeg|e〉〈e|. (2.8)

Or if we shift the zero of energy to Ee+Eg

2
, we get the rescaled energy

Hatom = ~
ωeg

2
σz. (2.9)

Typically, the internal resonant frequency ωeg will be much larger than any
motional mode frequency ωvib, i.e. ωeg � ωvib.

2.2.2 Vibrational modes

It is well known in solid state physics that the motion of some interact-
ing particles can be described by some motional eigenmodes (vibrational
modes) corresponding to eigenfrequencies [86]. The same holds for a system
of trapped ions [45, 87].

Small displacements

We consider a string of N ions with mass m and charge +e confined in a har-
monic potential with cylindrical symmetry. From Eq. (2.3), the Hamiltonian
including the trapping potential and the Coulomb repulsion reads:

V =
1

2
m

N∑

i=1

(
ω2

xx
2
i + ω2

yy
2
i + ω2

zz
2
i

)
+

1

2

N∑

i,j=1,j 6=i

e2
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2
, (2.10)

where xi, yi and zi are the absolute position of the ith ion in three orthogonal
directions, ωx, ωy and ωz are the radial(x and y direction) and longitudinal (z
direction) trap frequencies, and ωx, ωy � ωz. However, here � only means
greater enough, so that the ions may form a chain, but the small oscillations
in the radial directions will not be neglected. The amplitude of these oscilla-
tions is much smaller than the separation between ions, so we may describe
the vibrations around the equilibrium points in harmonic approximation1.

1Here we give a general description of small bounded motions around equilibrium points

(x
(0)
1 , x

(0)
2 , ..., x

(0)
n ) for the energy potential V (x1, x2, ..., xn). Let qi denote a small displace-

ment around equilibrium point x
(0)
i . Expanding the potential energy in a Tayler series,
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Since in the Coulomb chain, the vibrational modes are uncoupled in each
orthogonal direction, so that we can address the displacements in x, y, and
z directions separately.

The equilibrium points (x
(0)
i , y

(0)
i , z

(0)
i ) are determined by the first deriva-

tive of the potential via
(

∂V
∂rα

i

)

0
= 0, where

∂V

∂rα
i

= mω2
αr

α
i +

∑

j,j 6=i

e2(rα
j − rα

i )

(
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2))3
, (2.14)

α = x, y, z represents x, y or z direction, and rα
i = xi, yi, zi represents the

absolute position xi, yi or zi of the ith ion. For a linear Paul trap it is
obvious that x

(0)
0 = y

(0)
0 = 0. Then only z

(0)
0 needs to obtain from Eq. 2.14

by numerical calculations. The distance between ions is smaller at the center
of the chain than on both sides. Typically the distance between ions (eg.
2µm) is of the order of 10 optical wavelengths (eg. 313nm), which allows one
to individually address the ions.

The second derivatives are

1

ω2
α

∂2V

∂rα
i ∂r

α
j

=







1− cα
∑

j′(6=i)
e2/mω2

α

|z0
i −z0

j′
|3

i = j

+cα
e2/mω2

α

|z0
i −z0

j |
3 i 6= j

. (2.15)

where cx,y = 1, cz = −2.

In the end, V is expressed as a function of the displacements around the

we have

V (x1, ..., xn) = V0 +
∑

i

(
∂V

∂xi

)

0

qi +
∑

i,j

1

2

(
∂2V

∂xi∂xj

)

0

qiqj + · · · , (2.11)

where V0 ≡ V (x
(0)
1 , ..., x

(0)
n ), and the higher order terms O(q3

i ) may be neglected in har-
monic approximation.

At equilibrium

(
∂V

∂xi

)

0

= 0. (2.12)

Redefine V0 = 0, then the potential energy has the form

V (x1, ..., xn) =
1

2

∑

i,j

(
∂2V

∂xi∂xj

)

0

qiqj =
1

2

∑

i,j

Vijqiqj , (2.13)

where Vij ≡
(

∂2V
∂xi∂xj

)

0
.
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equilibrium positions:

V =
1

2
mω2

α

∑

α,i,j

Kα
i,jq

α
i q

α
j , (2.16)

where Kα
i,j ≡ 1

ω2
α

(
∂2V

∂rα
i ∂rα

j

)

0
and qα

i = rα
i − rα

i
(0).

Normal modes

The complete vibrational Hamiltonian contains the trapping potential, the
Coulomb interaction, and the kinetic energy, written as

Hvib =
∑

α

(

1

2
mω2

α

∑

i,j

Kα
i,jq

α
i q

α
j +

1

2m

∑

i

pα
i

2

)

. (2.17)

where pα
i is the momentum of the ith ion in the α direction. In Eq. (2.17),

small displacements of different ions qα
i and qα

j are coupled each other due to
the Coulomb interaction. The motion of the ion string cannot be described
in terms of the motion of individual ions. Instead, it can be described in
terms of eigen-modes (normal modes) of the entire ions with distinct eigen-
frequencies. In the following lines, we consider normal modes in two cases:
idealized case (infinite ion chain with constant distance between ions) and
real case (finite ion chain with non-constant distance between ions). In the
idealized case we approximate that the ions are arranged in a chain with
constant space d0. This approximation could be justified if the laser inter-
acts with the central part of the linear chain only, where the variations of
the distance between ions are very small. Under this approximation we can
get analytically the dispersion relations for radial and longitudinal trapping
frequencies. In experiments with a linear Paul trap, however, one deal with
a finite ion string with different distances between ions. Therefore, it is also
necessary to consider the real experimental case. The normal modes in this
case could be calculated numerically.

First, we consider an infinite chain with constant distance d0 between
ions. Using the Fourier transform, one can decouple the small displacements
in Eq. (2.17), and obtain the normal modes of the entire chain.

For concreteness, we consider the case of the radial modes in the direction
of x, perpendicular to the axis of the Coulomb chain. In the infinite chain
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limit we define a continuum of collective modes

Qq =
1√
2π

∞∑

r=−∞

eiqrXr,

P x
q =

1√
2π

∞∑

r=−∞

e−iqrP x
r . (2.18)

Note that here and in the following we use Xr, Pr, r and s to replace qx
i , px

i ,
i and j, in order to avoid confusion with other terms.

The collective coordinates have to satisfy Q†
q = Q−q and P x

q
† = P x

−q,
so that the position operators are hermitian. The collective operators also
satisfy the continuum commutation relations

[Qq, P
x
k ] = i~δ(q − k). (2.19)

The local coordinates can be expressed in terms of the collective operators:

Xr =
1√
2π

∫ π

−π

dqQqe
−iqr,

P x
r =

1√
2π

∫ π

−π

dqP x
q eiqr. (2.20)

Substituting the Eq. (2.20) into the Hamiltonian Eq. (2.17), we can get

Hx
vib =

1

2
mω2

x

∑

r,s

Kr,sXrXs +
1

2m

∑

r

P x
r

2

=
1

2
mω2

x

∫ π

−π

∫ π

−π

dqdq′QqQq′
1

2π

∑

r,s

Kr,se
−iqr−iq′s +

1

2m

∫ π

−π

dqP x
q P

x
−q,

(2.21)

where we have used the δ-function

δ(q + q′) =
1

2π

∞∑

r=−∞

ei(q+q′)r. (2.22)
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The term 1
2π

∑

r,sKr,se
−iqr−iq′s in Eq. (2.21) can be expressed

1

2π

∑

r,s

Kr,se
−iqr−iq′s =

1

2π

∞∑

r,s=−∞,r 6=s

βx
1

|r − s|3
[

eiq′(r−s) − 1
]

e−i(q+q′)r

+
1

2π

∞∑

r=−∞

e−i(q+q′)r

= δ(q + q′) + βx

∞∑

s=−∞,s6=0

1

|s|3
(
e−iqs − 1

)
δ(q + q′)

= δ(q + q′) + 2βx

∞∑

s=1

cos(sq)− 1

|s|3 δ(q + q′), (2.23)

where we had ever defined new variables s′ = r − s and r′ = r to satisfy a
δ-function, and βx ≡ e2

d3
0

/mω2
x. The quantity βx will be in detail discussed

later.
Then, substituting Eq. (2.23) into Eq. (2.21), the Hamiltonian takes the

following form

Hx
vib =

∫ π

−π

dq

(
1

2
mωx(q)

2Q−qQq +
1

2m
P x
−qP

x
q

)

, (2.24)

where ωx(q) is the transverse vibrational mode frequency in the x–direction,
and the phonon dispersion relation is given by

ωx(q)
2 = ω2

x

(

1 + 2βx

∞∑

s=1

cos(sq)− 1

|s|3

)

. (2.25)

We define the creation and annihilation operators for the continuum of col-
lective modes

a†q =

(
~

2mωx(q)

)1/2 (
mωx(q)

~
Q−q −

i

~
P x

q

)

,

aq =

(
~

2mωx(q)

)1/2(
mωx(q)

~
Qq +

i

~
P x
−q

)

.

(2.26)

It can be easily checked that [aq, a
†
k] = δ(q − k) is satisfied. The collective

coordinate can be expressed in terms of these operators as

Q−q =

(
~

2mωx(q)

)1/2

(a†q + a−q),

P x
q = i

(
m~ωx(q)

2

)1/2

(a†q − a−q). (2.27)
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The Hamiltonian (2.24) is then written as

Hx
vib =

∫ π

−π

dq~ωx(q)
(
a†qaq + 1

)
. (2.28)

We get the final form for the local coordinate in terms of the creation and
annihilation operators

Xr =
1√
2π

∫ π

−π

dq

(
~

2mωx(q)

)1/2

(a†qe
iqr + aqe

−iqr). (2.29)

For the case of the longitudinal modes, that describe the motion in the axial
direction, one only has to replace βx → −βz.

On the other hand, the normal modes in finite chain with different dis-
tances can be calculated numerically. Assume the length of chain is N .

The matrix ω2
αKα in Eq. (2.17) is symmetric, positive definite, and can

be decomposed as

Mω2
αKαMT = ω2

α,qδq,q′, (2.30)

where

MMT =MTM = I. (2.31)

Define in the x–direction

Xr =
N∑

q=1

MrqQq, (2.32)

Pr =

N∑

q=1

MrqPq, (2.33)

and we get the Hamiltonian

Hx
vib =

N∑

q=1

1

2
ω2

x,qQ
x
q +

P x
q

2m
. (2.34)

Introducing annihilation and creation operators a and a†, we have

Hx
vib =

N∑

q=1

~ωx,q(a
†
qaq + 1/2), (2.35)

where q refers to the qth normal mode. For a 1D chain of N ions, there
are exactly N normal modes and N normal frequencies in each orthogonal
direction.
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Figure 2.5: The dispersion relation for the transverse vibrational modes of a
Coulomb chain. q is from 0 to 2π, and the value of βx is 0.001, 0.01 and 0.1
from top to bottom. Note that in the figure we use pi to represent π.

Soft limit and stiff limit

We introduce the parameter βα, which is defined as the ratio between the
Coulomb interaction (i.e. spring constant) and the trapping potential in
different directions:

βα = |cα|
e2

d3
0

/mω2
α. (2.36)

The parameter βα, indeed, characterizes the normal modes in transverse
and longitudinal directions. When βz � 1, the Coulomb repulsion prevails
over the trapping potential and thus they have a strong collective character
involving many sites in the axis direction. We call this soft limit. When
βx,y � 1, on the contrary, the Coulomb interaction is limited between nearest
ions only. It represents the local modes (in radial directions) at each ion. We
call this stiff limit.

We discuss now the dispersion relation ωα(q) under some limits, see
Eq. (2.25). In Fig. 2.5, we plot ωx(q)

2 as a function of q when βx =
0.001, 0.01, 0.1, respectively. In the limit of βx � 1 (stiff limit), there is a
large energy gap and a small energy dispersion, which is related to optical
phonons. With the increase of βx, the energy gap is decreasing. Obviously,
in the limit of βz � 1 (soft limit), there is a small energy gap and a large
energy dispersion, which is related to acoustic phonons.

When βx � 1 in Eq. (2.25), the Coulomb interaction between ions can
be considered as a small perturbation, then we can easily get the effective
dipole-dipole spin interaction, see Chapter 4 for details.
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In the following chapters, we will use βα to describe the softness of the
Coulomb crystal.

2.3 Ion-laser interaction

In this section we describe the ion-laser interaction [88, 89]. The interaction
Hamiltonian decides how to manipulate the ions by the means of lasers and
how to create initial states and some special states of the ions. Building a
suitable interaction Hamiltonian lies in the heart of quantum simulations.
In this thesis our quantum simulators are constructed just by designing the
particular interaction Hamiltonians between ions and lasers.

In the electric dipole approximation, the interaction Hamiltonian of a
two-level atom with the light field can be written as

Hint = −~µ · ~E(~r, t), (2.37)

where ~µ = −e~r is the electric dipole moment,

~µ = µ~n(|e〉〈g|+ |g〉〈e|), (2.38)

and ~n = ~µ
µ

is a unit vector along the quantization axis. The electric field ~E is
classical, and evaluated at the location ~r of the atomic center of mass within
the long-wavelength approximation.

For simplicity we only consider here a single trapped ion interacting with
the laser beam, which can be easily extended to a chain of ions. The Hamil-
tonian of a single ion confined in a harmonic trap reads

Hvib =
p2

2m
+

1

2
mω2

vibr
2, (2.39)

where p and r are the momentum and position operators, and ν is the trap-
ping potential. Introduce the creation and annihilation operators a† and
a,

r =

√
~

2mωvib
(a† + a), p = i

√
~mωvib

2
(a† − a), (2.40)

then the Hamiltonian can be reexpressed as

Hvib = ~ωviba
†a+ 1/2. (2.41)
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2.3.1 The interaction Hamiltonian

We consider two cases of laser configurations along the z-direction perpen-
dicular to the trap axis. One is the traveling wave with the electric field
operator

~Etw(z, t) =
1

2
E0~ε

(
ei(kz−ωLt) + e−i(kz−ωLt)

)
, (2.42)

and the other is the standing wave with the electric field operator

~Esw(z, t) = E0~ε sin(kz + φ)
(
e−iωLt + eiωLt

)
. (2.43)

Here E0 is the amplitude of the laser light field, ~ε is the unit vector of polariza-
tion, k = 2π/λ is the wave vector, z is the center-of-mass position operator,
ωL is the laser frequency, and tw (sw) represents the traveling (standing)
wave for short. φ gives the position of the ion (center of the trap) in the laser
standing wave, e.g. φ = 0 at the node, φ = π

2
at the antinode.

The Hamiltonian of a two-level atom in a classical traveling (standing)
wave field reads

Htw = ~
ωeg

2
σz − ~

Ω

2

(
ei(kz−ωLt) + e−i(kz−ωLt)

)
(σ+ + σ−), (2.44)

Hsw = ~
ωeg

2
σz − ~

Ω

2
sin(kz + φ)

(
e−iωLt + eiωLt

)
(σ+ + σ−), (2.45)

where Ω is the Rabi frequency defined by

Ω ≡ eE0

~
〈e|~ε · ~µ|g〉 (traveling wave), (2.46)

Ω ≡ 2eE0

~
〈e|~ε · ~µ|g〉 (standing wave). (2.47)

The laser detuning from the atomic resonance is δω ≡ ωL − ωeg, then the
Hamiltonian can be written in the form:

Htw = ~
ωL

2
σz − ~

δω

2
σz − ~

Ω

2

(
ei(kz−ωLt) + e−i(kz−ωLt)

)
(σ+ + σ−),(2.48)

Hsw = ~
ωL

2
σz − ~

δω

2
σz − ~

Ω

2
sin(kz + φ)

(
e−iωLt + eiωLt

)
(σ+ + σ−).

(2.49)

In a frame, which is rotating with the laser frequency ωL, we have the Hamil-
tonian in the interaction picture after making the rotating-wave approxima-
tion (RWA)

HI
tw = −~

δω

2
σz − ~

Ω

2
(eikzσ+ + e−ikzσ−), (2.50)

HI
sw = −~

δω

2
σz − ~

Ω

2
sin(kz + φ)(σ+ + σ−). (2.51)
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The interaction Hamiltonian describes the excitation of the electron by the
laser field evaluated at the center-of-mass position z of the ion.

2.3.2 Lamb-Dicke limit

In general, the theoretical analysis of the ion-laser interaction is very com-
plicated. However, it can be simplified greatly under some conditions, such
as in the Lamb-Dicke limit [90], which is also the typical situation in linear
Paul traps. In this subsection we will describe a single ion interacting with
lasers in this Lamb-Dicke limit2.

First we introduce the Lamb-Dicke parameter, which is defined by

η =
2πa0

λ
, (2.52)

where a0 is the size of the ground state of the harmonic potential, i.e.

a0 =

√

~

2mωvib
, (2.53)

and λ is the wavelength of the laser light exciting a given transition.
When η � 1, the motion of the ion is restricted in a tight trap, whose

region is much smaller than the wavelength of the laser light. We call this the
Lamb-Dicke limit, which allows us to expand the interaction Hamiltonian in
terms of the Lamb-Dicke parameter.

Here we give the Lamb-Dicke expansions of eikz and sin(kz + φ) in Eqs.
(2.50) and (2.51), respectively:

eikz = eiη(a+a†) = 1 + iη(a+ a†) +O(η2), (2.54)

sin(kz + φ) = sin[η(a+ a†)] cosφ+ cos[η(a+ a†)] sinφ

= sin(φ) + η cos(φ)(a+ a†) +O(η2). (2.55)

Substituting Eq. (2.54) and (2.55) directly into the Hamiltonians (2.50) and
(2.51), respectively, we get

HI
tw = −~

δω

2
σz − ~

Ω

2

{
[1 + iη(a + a†)]σ+ + [1− iη(a + a†)]σ−

}
,

(2.56)

HI
sw = −~

δω

2
σz − ~

Ω

2
[sin(φ) + η cos(φ)(a+ a†)](σ+ + σ−). (2.57)

2Some parts in this subsection are based on the reference by J. I. Cirac et al [90] and
the lecture by P. Zoller [91].
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The above Eqs. (2.56) and (2.57) can be further simplified under certain
conditions. In the following we discuss three most important cases of Eq.
(2.56) for the traveling wave. Before discussing, we denote |g〉|n〉 (|e〉|n〉) the
state of the single ion where |n〉 is the Fock state of the harmonic oscillator.

1. When the laser is close to the resonance with the atom transition δω ≈
0, δω � ωvib, the varies of the harmonic oscillator quantum number
n can be neglected due to their off-resonance. Thus, it will excite
|g〉|n〉 → |e〉|n〉. In this case, the Hamiltonian is approximately reduced
to

H = −~
δω

2
σz − ~

Ω

2

(
σ+ + σ−

)
. (2.58)

2. When the laser is tuned to close to the lower motional sideband (red
sideband) resonance δω ≈ −ωvib, only transitions decreasing one phonon
are important. Thus, it will excite |g〉|n〉 → |e〉|n−1〉, where the Hamil-
tonian in the RWA is of the Jaynes-Cummings type:

H = −~
δω

2
σz − η~Ω

2

(
iσ+a+ (−i)σ−a†

)
. (2.59)

3. When the laser is tuned close to the upper motional sideband (blue side-
band) resonance δω ≈ +ωvib, only transitions increasing one phonon
are important. Thus, it will excite |g〉|n〉 → |e〉|n+ 1〉. In this case the
Hamiltonian in RWA is of the anti-Jaynes-Cummings type:

H = −~
δω

2
σz − η~Ω

2

(
iσ+a† + (−i)σ−a

)
. (2.60)

To make the above approximations valid, the effective Rabi frequency have
to be much smaller than the trapping frequency. To fully describe single
trapped ions in a harmonic trap potential, one will add the free motion
Hamiltonian to the Eqs. (2.58), (2.59) and (2.60). According to these three
limiting Hamiltonians, one can create and manipulate quantum motion states
of ions using lasers. In the following section we will discuss in detail how to
engineer some of quantum states. Actually this control of states largely
depends on how to perform approximations for the real Hamiltonian under
certain conditions. Then, new Hamiltonians could be designed under certain
different conditions, in order to produce interesting quantum states.
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2.3.3 State-dependent force

Relating to the work of effective quantum spin systems with trapped ions
in Chapter 4, we will consider an ion in a far-detuned standing wave in this
subsection. We assume that the ion have two internal ground hyperfine levels,
denoted the qubit (spin) states |g〉 and |e〉, and an auxiliary higher energy
level |p〉, see Fig. 2.6 for the energy level structure and the optical transition.
A standing-wave light is far-detuned from the third, excited energy level |p〉
of the ion, with the detuning δω. This off-resonant light will produce an
optical dipole force on the ion [2, 56]. The force depends on the position
variable z along the trap axis, and on the qubit (spin) state of the ion |e〉. If
the ion is in the state |e〉, the laser will push the ion along the propagating
direction. We call it a state-dependent force.

Starting from Eq. (2.51), we write the Hamiltonian as

HI
sw = −~

δω

2
σz − ~

Ω

2
sin(kz + φ)σx. (2.61)

In the limit of large detuning (δω � Ω sin(kz+φ)), diagonalizing this Hamil-
tonian, we can get [89]

H ≈ −~

2

√

δω2 + Ω2 sin2(kz + φ)σz. (2.62)

Further it leads to the effective Hamiltonian

Heff = ±~
δω

2
σz − ~

(
Ω2 sin2(kz + φ)

4δω

)

σz, (δω ≶ 0). (2.63)

The solution shows that the atomic levels are shifted, i.e. a.c. Stark shift.
The shifted energies due to the large frequency detuning are

∆Ee,p(z) = ±~[Ω sin(kz + φ)]2

4δω
(2.64)

for the ground and excited state3.

3In another way, the effect of far-detuned laser on the atomic levels can also be treated
as a perturbation in second order of the electric field.In the second order time-independent
perturbation theory for non-degenerate states, an interaction H1 leads to an energy shift
of the i-th state, which is given by

∆Ei =
∑

j 6=i

|〈j|H1|i〉|2
εi − εj

. (2.65)

For a two-level atom, the interaction is H1 = −µE, and the general result (2.65) right
simplifies to Eq. (2.64).
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Figure 2.6: The three-level ion in a far-detuned standing-wave light. |g〉 and
|e〉 are the internal ground hyperfine states, and |p〉 is an auxiliary excited
state. The laser is detuned from the excited state |p〉 with the detuning δω.
Ω is the Rabi frequency of the laser. Choosing the relative phase of the laser,
one can make that |g〉 is dark and |e〉 is bright with respect to the laser.
Then the ion will experience a force if it is in the state |e〉. Note that σz in
this subsection refers to the two levels |e〉 and |p〉.

The light shifts are spatially dependent due to the inhomogeneity of the
standing wave. This gradient of energy would result in the dipole force on
the ion. The force F on an atom is defined as the expectation value of the
quantum mechanical operator F , i.e.

F = 〈F〉 = 〈ṗ〉 = −
〈
∂H

∂z

〉

. (2.66)

We define Ω′ = Ω sin(kz + φ). Substituting Eq. (2.63) into Eq. (2.66) gets

F =
~Ω′

2δω

∂Ω′

∂z
σz ≡ f · σz, (2.67)

where f ≡ ~Ω′

2δω
∂Ω′

∂z
, and it depends on δω, Ω′ and the first derivative of

Ω′. Since the light field is far-detuned from the resonance between |e〉 and
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|p〉, the upper electronic state |p〉 remains largely unoccupied, and can be
adiabatically eliminated. Then the force (2.67) becomes

F = −f · |e〉〈e|. (2.68)

The interaction Hamiltonian in a Tayler series can be written as

Heff = (Heff)z=0 +

(
∂Heff

∂z

)

z=0

z + · · · , (2.69)

where
(

∂Heff

∂z

)

z=0
= ~Ω2k

4δω
sin(2φ)σz is just the force. This force allows to

couple the qubit (spin) states of the ions to the vibrational modes (Note that
z is the position operator in Eq. 2.69). It not only plays a most important
role in the pushing gate of quantum computation [56], but is also a staring
point of our proposals [72, 75]. We will meet it again in the next chapters.

2.4 Engineering of quantum states

In experiments of ion traps, one can control optimally the evolution of inter-
nal states and quantum motion states, such as Fock states, coherent states,
squeezed states and Schödinger cat states. These states are of interest from
the point view of quantum measurement and quantum computation. Con-
trolling successfully these states is the first step of performing quantum com-
puting and quantum simulation.

In this section we will review how to prepare and detect internal states and
Fock states in ion-trap experiments, based on the work by D. M. Meekhof
et al [60]. These states are just the basic ingredients in our proposals of
realizing quantum spin models and the Bose-Hubbard model in ion traps4.
The details of generating, manipulating and detecting quantum motion states
in ion traps can be found in the reviews by D. J. Wineland et al [44], and by
D. Leibfried et al [47].

2.4.1 Preparation and detection of internal states

The preparation of the ion’s internal states could be achieved via optical
pumping techniques, whose fidelity could approach 1. Whenever the ion is
in a state different to the desired state, e.g. |g〉, it can, via appropriately op-
tical pumping, absorb a photon and decay into another state until it finally

4Note that quantum analogue should be reached under the current or very near future
experiments.
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reaches the desired state. The detection of internal states is accomplished
by light scattering, and is also of high efficiency. One apply an appropriately
polarized laser beam to the ion, and tune it to a transition, which will scatter
many photons if the atom is in one internal state, e.g. |g〉, but will scatter
essentially no photons if the atom is in the other internal state, e.g. |e〉. If
a modest number of these photons are detected, the efficiency of detection
could be 100%, to distinguish these different states.

In the experiment of D. M. Meekhof et al [60], they focused on the ion
9Be+. The relevant level structure of 9Be+ is shown in Fig. 2.7 [92]. The
two-level systems one is interested in is formed by the two hyperfine levels
of the ground state |2s 2S1/2;F = 2,MF = 2〉 and |2s 2S1/2;F = 1,MF = 1〉,
which are denoted the qubit (spin) states |g〉 and |e〉, respectively. These
two levels are separated by the hyperfine splitting of ω0/2π = 1.25GHz in
the experiments, where ω0 is defined as the total splitting between |g〉 and |e〉.
The splitting between the 2p levels is approximately 197GHz. The single-
photon optical transitions driven by D1, D2 and D3 are cycling transition
(internal-state detecting), Doppler cooling and optical pumping, respectively.
The laser beams R1 and R2 drive two-photon Raman transitions, which
couple |g〉 and |e〉 through the level 2p 2P1/2 (∆/2π = 40GHz). All optical
transitions between the 2p excited states and the 2s ground states are near
λ = 313nm, where λ is the laser wavelength. In addition, the motional states
for |g〉 and |e〉 are omitted in Fig. 2.7 for clarity and simplicity.

First, we consider how to prepare the ion into the state |g〉. We apply
the laser beam D2 to drive the transition |e〉 → |2p 2P3/2;F = 3,MF = 2〉,
which is a non-circling transition. From the excite state 2p 2P3/2 the ion can
decay back into |e〉, |g〉, or |2s 2S1/2;F = 2,MF = 1〉. If the ion is in the
state |2s 2S1/2;F = 2,MF = 1〉, we have to re-pump the ion back into the
qubit states |g〉 or |e〉. We apply the laser D3 resonant with the transition
|2s 2S1/2;F = 2,MF = 1〉 → |2p 2P1/2;F = 2,MF = 2〉, which could empty
population out of the level |2s 2S1/2;F = 2,MF = 1〉. If D1 and D3 are
turned on together (D1 is a cycling transition beam, which will be discussed
in the following), the ion is finally optically pumped into |g〉. Usually, the
state of the ion is prepared at the beginning of experiments. |e〉 is prepared
from |g〉 using a π–pulse Raman transition.

Then, we talk about how to detect the state |g〉. D1 is a cycling tran-
sition beam. If the ion is in |g〉 and a circularly σ+–polarized laser (i.e.
D1) is applied, the ion repeatly cycles between |g〉 and the excited state
|2p 2P3/2;F = 3,MF = 3〉, spontaneously emitting a photon each time. Then
there will be continuous photon-scattering if the ion is in the state |g〉, but
no photon-scattering in the state |e〉. Detect the fluorescence photons, and



38 Ion Traps

2/3
2  2 Pp

2/1
2  2 Pp

D1 D2 D3

R1 R2

1  ,1 FMF e

2/1
2  2 Ss

1  ,2 FMF

2  ,2 FMF g

Figure 2.7: Relevant energy levels of 9Be and the corresponding optical tran-
sitions. The hyperfine levels |2s 2S1/2;F = 2,MF = 2〉 and |2s 2S1/2;F =
1,MF = 1〉 of the 2s 2S1/2 ground state are denoted the qubit (spin) states
|g〉 and |e〉, respectively. The laser beams D1, D2 and D3 are for internal-
state detecting, Doppler cooling and optical pumping, respectively. R1 and
R2 are Raman beams, which couple |g〉 and |e〉 through the level 2p 2P1/2

(∆/2π = 40GHz). The motional state levels are spaced by 10MHz, but
omitted here for clarity.

get the average signal, which is proportional to Pg(t), where Pg(t) is defined
as the probability of finding the ion in the state |g〉. This detection efficiency
is near 100%.

2.4.2 Preparation and detection of Fock states

There have been several proposals about how to create Fock (number) states
of trapped ion’s motion, such as using quantum jumps and adiabatic passage.
In experiments, however, one only used a simple technique involving multiple
π pulses to create a series of Fock states [60]. Here we outline briefly the
procedure of how to create Fock states.

The starting point is a pure state, e.g. the ground state of motion |0〉,
which can be achieved by laser cooling. We also assume that the ion occupy
the internal ground state |g〉, which can be prepared by using standard optical
pumping techniques, see the subsection 2.4.1. The initial state of the ion is
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thus |g〉|0〉.

1. |g〉|0〉 → |e〉|1〉 by a blue sideband π–pulse
First, one applies a π pulse laser on the first blue sideband of the ion.
According to Eq. (2.60), we see that the ion flips from |g〉|0〉 into |e〉|1〉.
The Fock state |1〉 is created.

2. |e〉|1〉 → |g〉|2〉 by a red sideband π–pulse
Second, one applies a π pulse on the first red sideband of the ion.
According to Eq. (2.59), the ion flips from |e〉|1〉 into |g〉|2〉. The Fock
state |2〉 is created.

3. |g〉(|e〉)|n− 1〉 → |e〉(|g〉)|n〉 by a series of blue (red) sideband π–pulses
In the end, higher Fock states |n〉 can be created in a similar manner by
applying a sequence of π pulses on the blue, or red sideband. Note that
if the light is not a π pulse, i.e. for some other times t, the entangled
states will be created.

After producing these quantum motional states, one needs to measure
them. According to Eqs. (2.59) and (2.60), we know that the internal state
transition depends on the changing of vibrational modes. In general, the
internal states and vibrational modes are entangled. One can map the mo-
tional state of the ion onto its internal state, to get the information of motion
by measuring the internal state. This mapping is straightforward in the re-
solved sideband regime. Same as the internal-state detection, this method
also gives high efficiency.

In the Lamb-Dicke limit, we consider the first blue sidebands, which is
useful to get the number-state distribution of various states of motion. As-
sume the initial state of an ion is

|Ψ(0)〉 = |g〉|n〉. (2.70)

Applying a laser on the blue sideband of the ion for a time t, the state of the
ion is

|Ψ(t)〉 = cos(
Ω

2

√
n+ 1ηt)|g〉|n〉+ sin(

Ω

2

√
n + 1ηt)|e〉|n+ 1〉. (2.71)

The probability of finding the ion in the ground state after the interaction is

Pg(t) = 〈Ψ(t)|(|g〉〈g| × Ivib)|Ψ(t)〉 (2.72)

= cos2(
Ω

2

√
n+ 1ηt) =

1

2

[

1 + cos(Ω
√
n+ 1ηt)

]

, (2.73)
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where Ivib is the identity matrix of vibrational modes. From the frequency
of Pg(t), one can get the initial value of n. The experiment is repeated many
times to get the average of the value.

Extend the initial state of the ion to

|Ψ(0)〉 = |g〉
∞∑

n=0

cn|n〉. (2.74)

Similarly, we can get

Pg(t) =
1

2

[

1 +
∞∑

n=0

Pn cos
(

Ω
√

(n+ 1)ηt
)
]

, (2.75)

where Pn = |cn|2 is the probability of finding the ion in the number state |n〉.
After the Fourier transform of Eq. (2.75), we can obtain the occupation Pn

of number states |n〉.

For the complete determination of the quantum state of motion, one needs
to reconstruct the density matrix or the Wigner function of the quantum state
of motion. This topic can be found in Refs. [47] and [93]. In this thesis, we
do not further discuss this topic.

2.5 Conclusions

In this chapter we review the internal states and vibrational modes of trapped
ions, the ion-laser interactions and how to engineer quantum states of ions.
All of these are closely related to our further study in this thesis. Based
on these knowledge, we will talk about, in the following chapters, how to
make use of the internal states (considered as spins) and vibrational modes
(considered as phonons) of trapped ions interacting with lasers, to simulate
quantum spin models and Bose-Hubbard models under certain conditions.



Chapter 3

Density Matrix
Renormalization Group

The density matrix renormalization group (DMRG) [76, 77] is a quasi-exact
numerical technique for finding an efficient approximation of the ground state
in strongly correlated systems. Since its original formulation by S. White in
1992 [76], the DMRG algorithm has become the most important method
in studying low dimensional quantum systems. It has been applied to spin
chains and ladders, fermionic and bosonic systems, disordered models, im-
purities and molecules, 2D electrons in high magnetic fields, and so on. The
extensive reviews on DMRG can be found in the references [94], [95] and [96].
In addition, with the development of quantum information theory in recent
years, there come up the extensions [97,98,99,100,101,102] of the DMRG un-
der the formalism of Matrix Product state (MPS) [103, 104]. More recently,
the efficient time-dependent DMRG is also being developed [105, 106, 107],
which could be used to study dynamic properties of the ultracold atoms.

This chapter gives a description of the main method–the DMRG, that
was used extensively in my studies. First we review the DMRG in a general
scheme. Then the outline of our algorithms is described and illustrated.
Our algorithms are built for long-range interacting (hopping) models. Third,
we talk about how to actualize the operators and correlations at each step
in the DMRG. In the end, we discuss how to improve the efficiency of the
DMRG algorithms. Our DMRG method is restricted to the ground state of
the system, that is, we only consider static properties at zero temperature.

41
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3.1 The density-matrix projection

When one numerically studies strongly correlated lattice systems (there are
very few systems which could be exactly solved), e.g. the Heisenberg model
or the Hubbard model [86], the amount of states grows exponentially with
the system size. Then, one has to reduce the size of the Hilbert space to
be able to deal with larger systems. In such a way, there have been several
numerical methods, such as Monte Carlo [108], renormalization group [109]
and DMRG [76]. Each of these methods considers a particular criterion of
keeping the relevant information when reducing the Hilbert space.

The basic idea behind the DMRG is to optimize iteratively the basis
states of the system through a truncation procedure called the density ma-
trix projection. With enlarging the system, the corresponding Hilbert space
is truncated systematically by keeping the most important basis states de-
scribing the ground state. Such relevant basis states are right obtained from
the reduced density matrix of the system. In the following we give more
details of this procedure.

To begin with, we consider a 1D quantum lattice chain of length N , e.g.
a 1D quantum Ising chain. This chain is called the superblock in DMRG
language, and divided into three parts: the left block, the single site and
the right block (see Fig. 3.1 for the configuration). Here we use [BL], [•]
and [BR] to represent the left block, the single site and the right block,
respectively. Note that in the original scheme of the DMRG formulated by
Stephen White, he used the configuration consisting of two blocks and two
sites. But here, considering long-range interactions in our inhomogeneous
system, the configuration in Fig. 3.1 will be more simple and useful.

Assume that the left block contains M lattice sites in the basis {|αL〉}
spanning a D-dimensional Hilbert space, and without loss of generality, the
right block has also M lattice sites in the basis {|αR〉} spanning a D–
dimensional Hilbert space. d is the dimension of the Hilbert space at the
single site with the local basis {|S〉}. The left block tensoring the single site
constructs the so called system in the product basis {|αLS〉} with D ·d states,
and the right block the environment.

The ground state |Ψ〉 of the superblock is represented in terms of the
basis states |αL〉, |S〉 and |αR〉:

|Ψ〉 =
∑

αL,S,αR

ΨαLSαR
|αL〉|S〉|αR〉. (3.1)

The reduced density matrix ρ for the system is obtained by tracing over the
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L S R

left block        single site        right block

   superblock

Figure 3.1: The superblock configuration in our DMRG method, which con-
sists of a left block, a single site and a right block. The basis states of the left
block, the single site and the right block are |αL〉, |S〉 and |αR〉, respectively.
The left block and the single site constitute the so called system, and the
right block is called the environment.

environment :

ρ = trE|Ψ〉〈Ψ|. (3.2)

In the basis {|αLS〉}, it can be written as

ρ =
∑

αLS,α̃LS̃,αR

Ψ∗
αLSαR

Ψα̃LS̃αR
|αLS〉〈α̃LS̃|. (3.3)

The reduced density matrix contains all the information needed to calculate
the properties of the system. For instance, the expectation of an operator O
acting on the system is given by 〈O〉 = tr{ρO}. The norm of the wavefunc-
tion is 〈Ψ|Ψ〉 = trρ = 1.

The system is in a product basis {|αLS〉} with D · d states, and no trun-
cation takes place up to now. Our aim in the DMRG is to find a small set
of new basis {|β〉L} with m states (m < D · d), which should represent ef-
fectively the system in the product basis {|αLS〉}. Indeed, we will see below
that {|β〉L} with D states are the only eigenvectors of the reduced density
matrix ρ. The basis {|β〉L} with D states is right the optimal representation
of the system.

The elements ΨαLSαR
can be thought of as a matrix Ψ of dimension

((D · d)×D). Then the matrix Ψ can be written in a singular value decom-
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position(SVD)1 as:

Ψ = UΞV †, (3.4)

where U is a (D · d) × D matrix with orthonormal columns, Ξ is a D × D
diagonal matrix with positive entries Ξβ, and (V †) is a D×D unitary matrix.
That is

ΨαLS,αR
=
∑

β

UαLS,βΞβ(V †)βαR
. (3.5)

Substituting Eq. (3.5) into Eq. (3.1), we get

|Ψ〉 =
∑

β

Ξβ

(
∑

αLS

UαLS,β|αL〉|S〉
)

︸ ︷︷ ︸

|β〉L

(
∑

αR

V ∗
αRβ|αR〉

)

︸ ︷︷ ︸

|β〉R

=
∑

β

Ξβ|β〉L|β〉R, (3.6)

where we have defined new bases

|β〉L =
∑

αLS

UαLS,β|αL〉|S〉, (3.7)

|β〉R =
∑

αR

V ∗
αRβ|αR〉. (3.8)

Here {|β〉L} and {|β〉R} have the same number of states D, and form the
orthonormal bases for the system and environment, respectively. Indeed, the
Eq. (3.6) is just the Schmidt decomposition2 of the wave function.

1Suppose M is an m×n real or complex matrix, then M can be factorized in the form
M = UΞV †, where U is an m×m unitary matrix, Ξ is an m×n diagonal matrix, and V is
an n×n unitary matrix. Such a factorization is called a singular value decomposition [110].
Generally, MM † = U(ΞΞ†)U † and M †M = V (Ξ†Ξ)V †.

2The Schmidt decomposition [48,111] shows that any state of two subsystem A and B

can be written as

|ΨAB〉 =
∑

i=1

ci|ui〉|vi〉, (3.9)

where {|ui〉} is a orthonormal basis for subsystem A, {|vi〉} is a orthonormal basis for
subsystem B, and ci are non-negative real numbers satisfying

∑

i ci = 1. The reduced
density matrices of both subsystems, written in the Schmidt basis, are diagonal and have
the same positive spectrum, e.g. see Eq. 3.10.
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The reduced density matrix of the system in the new basis {|β〉L} is then
given by

ρ = trE(|Ψ〉〈Ψ|) =
∑

β

Ξ2
β|β〉L〈β|L, (3.10)

which shows that {|β〉L} are the eigenvectors, and Ξβ are the square roots of
the eigenvalues of ρ.

After being performed the Schmidt Decomposition, the system is changed
onto the basis {|β〉L} from {|αLS〉}. Its Hilbert space is truncated from D ·d
dimensions to D dimensions, where D < D · d. The matrix UαLS,β (we think
of it as a matrix) is the projector which realize the projection from the basis
{|αLS〉} with D · d states to the basis {|β〉L} with D states. Note that here
the dimension of Hilbert space of the environment keep unchanged.

Therefore, we can get the optimal basis {|β〉L} and the projection opera-
tor UαLS,β using the SVD of the wavefunction in the configuration [BL •BR].
Then the dimension of the Hilbert space can be truncated from D · d to D
without loss of non-zero eigenvalues of the density matrix3.

3.2 The DMRG algorithms

According to the truncation techniques mentioned in the Section 3.1, we
will now enlarge linearly the system to a large size. At each iteration, the
left block is increased by a single site, and projected onto a truncated basis.
There are two algorithms: the infinite system algorithm and the finite system
algorithm [77]. The finite system algorithm is based on the infinite system
algorithm, and improves the accuracy of results largely. In general, one uses
the infinite system algorithm at the first steps to build the system up to a
finite length, then turns to the finite size method to increase the accuracy of
the results.

3.2.1 The infinite system algorithm

We describe the infinite system algorithm in this subsection. We start from
a small chain, for instance, the left block and the right block both contain
2 lattice sites, and the length of the chain is N = 5 including the single
site. Then the left block (its size) is increased iteratively by adding a site to
it at each step and form a new left block. Correspondingly, the single site

3Indeed, performing a singular value decomposition is equivalent to diagonalizing a
density matrix. We can also diagonalize the density matrix (not using the SVD), and keep
the eigenvectors with non-zero eigenvalues as the truncated basis.



46 Density Matrix Renormalization Group

n
L

nS n
R

1n
L

1nS 1n
R

2n
L

2nS 2n
R

Figure 3.2: The pictorial description of the infinite system algorithm of the
DMRG. The left block is growing linearly from the nth step to the (n+ 1)th
and further the (n + 2)th step. |αn

L〉, |Sn〉 and |αn
R〉 are the basis states at

the nth step.

and the right block is shifted towards the right direction by a site. At each
step, the new left block is projected onto a new truncated basis. The general
procedure is schematically shown in Fig. 3.2. The left block is increased
linearly from the nth step to the (n + 2)th step, where |αn

L〉, |Sn〉 and |αn
R〉

are the basis states of the left block [Bn

L
], single site [•] and right block Bn

R
]

at the nth step, respectively. The algorithm proceeds as follows:

1. Construct a small superblock with 2M + 1 lattice sites, i.e. [Bn

L
•Bn

R
]

(n=1). The number of states is D, d and D for the left block, single
site and right block, respectively. The superblock is small enough to
be exactly diagonalized.

2. Diagonalize the superblock Hamiltonian H, obtaining the ground state
wavefunction |Ψ〉.

3. Perform the SVD on the matrix Ψ, i.e. Ψ = UΞV †, obtaining the
projector U , and the new basis {|β〉L} with D states. Define |αn+1

L 〉 ≡
|βL〉 as the new basis for convenience and consistence.

4. Project the operators Oi (including the Hamiltonians) in the system
[Bn

L
•], from the basis |αn

LS
n〉 onto the new basis |αn+1

L 〉 (We explain
in the following subsection how to do the projection). Then consider
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the system [Bn

L
•] as a new left block [Bn+1

L
] in the basis {|αn+1

L 〉} with
M + n lattice sites.

5. Shift the right block (keeping its size) towards the right direction by
one site, getting a new right block [Bn+1

R
]. Then form a new superblock

[Bn+1

L
•Bn+1

R
] and replace the old one. Here the single site [•] is in the

basis {|Sn+1〉}.

6. n = n+ 1, go back to step 2, and repeat the steps 2–6, until a desired
size is reached.

If the infinite system algorithm runs until the size of the superblock is large
enough, it could describe effectively the thermodynamic behavior of the sys-
tem.

3.2.2 The finite system algorithm

In general the infinite-system algorithm cannot give accurate results, so that
we have to further use the finite-system algorithm after the infinite algorithm
to get more accurate results. The method is aiming to find an optimal
description of the system of a fixed length. We repeat the algorithm at each
site and several sweeps4 until the energy is approaching convergence. The
procedure of this method is as follows (also see Fig. 3.3):

1. Use the infinite system algorithm for the first steps to build the left
block up to N − M − 1 sites, where N is the length of the whole
chain, and n = N − M . Note that at each iteration of the infinite
system algorithm, one should store the left block Hamiltonian and the
operators for use at the next sweep.

2. Diagonalize the superblock Hamiltonian with N sites, and obtain the
ground state wavefunction |Ψ〉.

3. Permute the left block and the right block, then one considers the single
site and the right block [•Bn

R
] as the system, and the left block as the

environment. Now the new wavefunction is |Ψ′〉 in the basis |αn
RS

nαn
L〉.

4. Perform the SVD on the matrix Ψ′, obtaining the projector U , which
project the basis |αn

RS
n〉 onto |αn−1

R 〉. Project the operators and the
Hamiltonian (in [•Bn

R
]) onto the new basis, and store them. Consider

then [•Bn

R
] as a new right block [Bn−1

R
].

4A complete back-and-forth sequence for both blocks in a chain is called a sweep.
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right lock growth

left block growth 

Figure 3.3: The pictorial description of the finite system algorithm. In the
right-to-left sweep the right block grows at the expense of shrinking the left
block. In the left-to-right sweep, on the contrary the left block grows at the
expense of shrinking the right block.

5. Shrink the left block towards the left direction by one site, obtaining the
left block [Bn−1

L ], which has already been stored in the previous infinite-
algorithm steps or previous sweeps. Construct the new superblock
[Bn−1

L
•Bn−1

R
]. Here the single site [•] is in the basis |Sn−1〉.

6. n = n− 1, go back to the step 2, and repeat the steps 2–6 until n = 1.

(The above is the right-to-left phase of the algorithm, and called a
right-to-left sweep.)

7. Build up the superblock [Bn

L
•Bn

R
] (n = 1).

8. Diagonalize the Hamiltonian of the superblock, obtaining the ground
state |Ψ〉 in the basis {|αn

LS
n〉|αn

R〉}.

9. Perform the SVD on the matrix Ψ, obtaining the projector U . Project
the operators and the Hamiltonian onto the new basis {αn+1

L }. Form
the new left block Bn+1

L . Remember to update the stored operators
and the Hamiltonian in the previous sweep.

10. Shrink the right block towards the right direction by one site, obtaining
a new right block [Bn+1

R ]. Construct the new superblock [Bn+1

L
•Bn+1

R
].

Here the single site is in the basis |Sn+1〉.

11. n = n+ 1, go back to step 8, and repeat step 8-11, until n = N − 2M .

(This is the left to right phase of the algorithm.)
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12. Go back to step 2. Carry out all of the following steps, until the energy
approaches the convergence. In the end we can get a good precision.

The left block grows at the expense of shrinking the right block, and the
right block grows at the expense of shrinking the right block. The single
site is thus moved back and forth with the left block and right block. After
several sweeps, one can get more accurate values than in the infinite system
algorithm.

3.3 Operators and correlations

At the DMRG iterative steps one cannot use directly the operators and cor-
relations in their original basis to build the Hamiltonian. One has to project
the operators and correlations onto the new basis keeping the dimension
of the Hilbert space constant. Then operator and correlations have to be
initialized, updated and evaluated in the procedure of the DMRG.

In this section we talk about how to project the operators and correlations
from the old basis onto the new basis, and how to evaluate them. The
correlations we are interested in are such as the spin-spin 〈σz

i σ
z
j 〉, creation-

annihilation 〈a†iaj〉, and density-density correlations 〈ninj〉, where i and j
are the indices of lattice sites. Our discussion is in the left-to-right sweep,
but it can easily be extended to the right-to-left sweep.

3.3.1 Projection onto the new basis

Consider a superblock [Bn

L
•Bn

R
] at the nth step, where the basis states are

|αn
L〉, |Sn〉 and |αn

R〉, respectively. In the DMRG, the basis {|αn
L〉} are not

known explicitly, but the operators in this basis are known. Assume the
operator Oi is acting the site i in the left block [Bn

L
], i.e. 〈αn

L|Oi|α̃n
L〉, which

can be written as

Oi =
∑

αn
L

,α̃n
L

Oi
αn

L
α̃n

L
|αn

L〉〈α̃n
L|. (3.11)

At the further step we can get the new basis |αn+1
L 〉 through the SVD

|αn+1
L 〉 ≡

∑

αn
L

Sn

U
αn+1

L

αn
L

Sn|αn
L〉|Sn〉. (3.12)

Update the operator Oi from the basis |αn
L〉 to |αn+1

L 〉, substituting Eq. (3.12)
into Eq. (3.11), and we have the operator in the new basis

〈αn+1
L |Oi|α̃n+1

L 〉 =
∑

αn
L

,α̃n
L

,Sn

(

U
αn+1

L

αn
L

Sn

)∗

Oi
αn

L
α̃n

L
U

α̃n+1
L

α̃n
L

Sn . (3.13)



50 Density Matrix Renormalization Group

If the operator is acting on the single site s outside of the left block, say Os,
its representation in the new basis is

〈αn+1
L |Os|α̃n+1

L 〉 =
∑

αn
L

,Sn,S̃n

(

U
αn+1

L

αn
L

Sn

)∗

Os
SnS̃nU

α̃n+1
L

αn
L

S̃n
. (3.14)

In the case of correlations, we consider one operator inside the left block Oi

and the other acting the single site outside the left block Os. In the new
basis the correlation OiOs reads

〈αn+1
L |OiOs|α̃n+1

L 〉 =
∑

αn
L

,α̃n
L

,Sn,S̃n

(

U
αn+1

L

αn
L

Sn

)∗

Oi
αn

L
α̃n

L
Os

SnS̃nU
α̃n+1

L

α̃n
L

S̃n
. (3.15)

3.3.2 Evaluation of physical quantities

At the last step of the DMRG, the ground state of the system |Ψ〉 is obtained.
Then various physical quantities can be evaluated under the form 〈Ψ|Oi|Ψ〉.

If i is in the left block, the local quantities 〈Ψ|Oi|Ψ〉 are given by

〈Ψ|Oi|Ψ〉 =
∑

αn
L

,Sn,αn
R

,α̃n
L

Ψ∗
αn

L
,Sn,αn

R
Oαn

L
,α̃n

L
Ψα̃n

L
,Sn,αn

R
. (3.16)

If i is in the right block [Bn

R
], one has

〈Ψ|Oi|Ψ〉 =
∑

αn
L

,Sn,αn
R

,α̃n
R

Ψ∗
αn

L
,Sn,αn

R
Oαn

R
,α̃n

R
Ψαn

L
,Sn,α̃n

R
. (3.17)

For a correlation function such as 〈Ψ|OiOj|Ψ〉, the evaluation depends
on the site location of i and j. If they are on different blocks, e.g. i in the
left block and j in the right block, one follows the procedure for separate
operators:

〈Ψ|OiOj|Ψ〉 =
∑

αn
L

,Sn,αn
R

,α̃n
L

,α̃n
R

Ψ∗
αn

L
Snαn

R
Oi

αn
L

α̃n
L
Oj

αn
R

α̃n
R
Ψα̃n

L
Snα̃n

R
. (3.18)

The correlations 〈Ψ|OiOj|Ψ〉 cannot be calculated when i and j are on
the same block at the last step. They have to be calculated at previous steps
of the last sweep, where the left block and the single site form a product
Hilbert space, and i is in the left block [BL] and j is acting on the single site
[•] attaching to the left block. The correlations can thus be written as

〈Ψ|OiOj|Ψ〉 =
∑

αn
L

,Sn,αn
R

,α̃n
L

,S̃n

Ψ∗
αn

L
Snαn

R
Oi

αn
L

α̃n
L
Oj

SnS̃n
Ψα̃n

L
S̃nαn

R
. (3.19)
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3.4 The efficiency of algorithms

The diagonalization of the superblock Hamiltonian is the major part of time
consuming in the DMRG. Since we are only interested in the ground state of
the system, we can resort to an iterative method–the Lanczos algorithm, to
get the lowest energy eigenstate with high efficiency. However, in the thesis
we do not consider the detail of how to realize the Lanczos algorithm. In Mat-
lab, the function eigs is based on this algorithm to perform diagonalization
of a large sparse matrix.

Within the iterative method, there are several schemes to accelerate the
diagonalization, such as the block storage and the state prediction. In ad-
dition, good quantum numbers of the Hamiltonian can reduce storage and
thin out the Hilbert space.

In this section we talk about the above optimizations. We have imple-
mented them in our routines.

3.4.1 Block storage

The superblock Hamiltonian is constructed explicitly as a large, sparse matrix
in a tensor product basis

H = HL ⊗ IR + IL ⊗HR + L⊗ R, (3.20)

where the operator HL (HR) is the Hamiltonian acting on the left (right)
block, and L⊗R is the interaction term between the left and right blocks. For
simplicity of the discussion, here we assume that the single site is tensored
into the left block. i.e. [Bn

L
] ≡ [Bn

L
•]. The dimension of the Hamiltonian H

is D ∗ d ∗D, and thus the storage requirement is very large.

However, within the Lanczos algorithm there is no need to construct
explicitly a large sparse Hamiltonian matrix through the tensor products
between the left and right blocks. The Lanczos algorithm only needs a
matrix-vector product, i.e. H|Ψ〉, where |Ψ〉 is the wavefunction vector of
the Hamiltonian matrix H. This efficient representation of the Hamiltonian
matrix reduces storage and time consuming of diagonalization [96].

The wavefunction |Ψ〉 of the Hamiltonian H can be decomposed as

|Ψ〉 =
∑

αL,αR

ΨαLαR
|αL〉|αR〉, (3.21)

where we omit the DMRG step number n in |αn
L〉, since this technique is not

relevant to the truncation process.
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Then H|Ψ〉 which is called the matrix-vector product can then be written
as

H|Ψ〉 = H
∑

αL,αR

ΨαLαR
|αL〉|αR〉

=
∑

αL,αR

ΨαLαR
[
(
HL|αL〉

)
⊗ |αR〉+ |αL〉 ⊗

(
HR|αR〉

)

+ (L|αL〉)⊗ (R|αR〉)]
=

∑

α′
L

,αL,αR

HL
α′

L
αL

ΨαLαR
|α′

L〉|αR〉+
∑

α′
R

,αL,αR

ΨαLαR
HR

α′
R

αR
|αL〉|α′

R〉

+
∑

α′
L

,α′
R

,αL,αR

Lα′
L

αL
ΨαLαR

Rα′
R

αR
|α′

L〉|α′
R〉, (3.22)

where

HL =
∑

α′
L

α′′
L

HL
α′

L
α′′

L
|α′

L〉〈α′′
L|, (3.23)

HR =
∑

α′
R

α′′
R

HR
α′

R
α′′

R
|α′

R〉〈α′′
R|, (3.24)

(3.25)

and L (R) is similar with HL (HR). Think of Ψ as a matrix, and the matrix-
vector product is represented as

HΨ = HLΨ + Ψ(HR)† + LΨR†. (3.26)

H|Ψ〉 is the product that the Lanczos algorithm needs. Thus, the matrix-
vector product in this form only require O(D3d2) operations, instead of the
original multiplications O(D4d2). This block storage optimization improves
approximately an order of magnitude than the original formulation. In my
calculations, this optimization is always performed.

3.4.2 State prediction

The Lanczos algorithm convergence depends largely on the initial (random)
guess vector for the desired eigenvector. If a suitable starting vector (guess
vector) is specified, the number of Lanczos iterative steps are reduced sub-
stantially, and the convergence of eigenvalue will be accelerated largely.

Thus, a good initial guess vector can dramatically speed up the diago-
nalization of the DMRG [112]. In the DMRG one might construct a starting
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vector from the previous eigenvector calculation typically. Although the pre-
vious wavefunction is in a different basis, corresponding to a different block
configuration, it can be transformed into the current basis corresponding to
the current configuration.

We describe here the procedure of finding such an initial vector as a good
guess in the finite system algorithm.

Consider a step in the left-to-right sweep, e.g. the nth step, where the
system block is [Bn

L
•] in the basis |αn

LS
n〉, the environment block is [Bn

R
] in

the basis |αn
R〉, and the wavefunction in the nth superblock basis is denoted

as:

|Ψ[n]〉 =
∑

αn
L

Snαn
R

Ψ
[n]
αn

L
Snαn

R
|αn

LS
nαn

R〉. (3.27)

The next step in the algorithm is to calculate the wavefunction |Ψ[n+1]〉 in
the (n + 1)th superblock basis |αn+1

L Sn+1αn+1
R 〉. The wavefunction |Ψ[n]〉 is

chosen as an initial guess vector for |Ψ[n+1]〉, so |Ψ[n]〉 has to be transformed
onto the basis of |Ψ[n+1]〉.

The basis |αn+1
L 〉 can be approximated by means of the SVD at the nth

step, i.e.

|αn+1
L 〉 =

∑

αn
L

,Sn

U
αn+1

L

αn
L

,Sn|αn
L〉|Sn〉, (3.28)

where the truncation operator U
αn+1

L

αn
L

,Sn represents the transformation from the
tensor product basis to the truncated basis.

The basis |Sn+1αn+1
R 〉 can be got from the earlier right-to-left sweep. At

the firstly previous, right-to-left sweep, the basis |αn
R〉 of the right block Bn

R

is written in a similar fashion as in Eq. (3.28):

|αn
R〉 =

∑

αn+1
R

,Sn+1

U
αn

R

αn+1
R

,Sn+1
|Sn+1〉|αn+1

R 〉. (3.29)

Note that the truncation matrices U in the left-to-right sweep and in the
right-to-left sweep are independent.

We know that the transformation from |αn
LS

n〉 to |αn+1
L 〉 is not exact.

However we can make an approximation here:

∑

αn+1
R

|αn+1
R 〉〈αn+1

R | ≈ 1. (3.30)
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Based on this approximation we can get the guessed wavefunction |Ψ̃[n+1]〉
from the |Ψ[n]〉:

|Ψ̃[n+1]〉 ≈
∑

αn
L

Snαn
R

U
αn+1

L

αn
L

SnΨ
[n]
αn

L
Snαn

R
U

αn
R

αn+1
R

Sn+1
|αn+1

L Sn+1αn+1
R 〉. (3.31)

In this form the wavefunction as a guess vector can accelerate the finding
of the true wavefunction. This will lead to a dramatic reduction of itera-
tion steps. The speed of algorithm will be increased by about an order of
magnitude. However, all the truncation matrices U have to be stored on the
disk.

In the infinite-system algorithm, there is also some optimal methods [113,
114] related to the wavefunction prediction, but we did not perform in our
calculations. The interested reader could refer to the papers [113,114], or see
the review by U. Schollwöck [96].

3.4.3 Conserved quantum numbers

In the DMRG method, making use of the symmetries and good quantum
numbers of the Hamiltonian can greatly reduce the block storage and com-
putation time [96, 115].

If a quantity is conserved with the Hamiltonian, then the Hilbert space
H of the system is divided into a direct sum of subspaces with respect to
the quantity. Thus, if one is interested in some specific properties related
to this quantity, one needs only to diagonalize the Hamiltonian within the
corresponding subspace. We call this quantity a good quantum number of
the Hamiltonian. In the thesis, we consider the phonon-Hubbard model in
1D with conserved number of particles, so we can make use of the number
operator of phonons as a good quantum number.

The Hamiltonian of the system is denoted as H in the Hilbert space H,
and the total number of phonons is N , which is conserved with the Hamil-
tonian, i.e. [Ĥ, N̂ ] = 0.

We are interested in the eigenstate |ΨN〉 with N̂ |ΨN〉 = N |ΨN 〉. Define
PN as the projector on the subspace HN of fixed number of phonons N ,

PN |Ψ〉 = |ΨN〉. (3.32)

Then we can project the Hamiltonian onto the subspace HN .
PN is evidently an observable possessing a total of two eigenvalues 0 and

1, and satisfies

P 2
N = PN , PN = P †

N . (3.33)
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The subspace HN on which PN projects is just the subspace of its eigenvalue
1.

Consider now a set of number operator states |0〉, |1〉, |2〉, . . . , |N〉 of phonons
in a single site. These states span a certain subspace H with N dimensions.
The projector on this subspace H is

P ≡
N∑

n=0

|n〉〈n|. (3.34)

Extending from a single site to L sites, the projector is changed to a tensor
product,

P =
L∏

i=1

(
N∑

ni=0

|ni〉〈ni|
)

, (3.35)

which is just the identity in the truncated phonon Hilbert space. As the
total number of particles is conserved, i.e.

∑L
i=1 ni = N , this means that if

∑L
i=1 ni 6= N , the corresponding eigenvalues of PN must be 0. Under this

restriction, the projector onto the subspace HN of N number of phonons is
thus

PN =

L∏

i=1

(
N∑

n=0

|n〉〈n|i
)

δPL
i ni,N

. (3.36)

We turn to the implementation in the DMRG. To simplify the discussion,
the single site is tensored into the left block as in the above subsection, i.e.
[BL] ≡ [BL•]. The projector on the subspace HN is written as

PN =

N∑

NL=0

PL
NL
⊗ PR

NR
, (3.37)

where

PL
NL

=
∑

αL

δn(αL),NL
|αL〉〈αL|, (3.38)

PR
NR

=
∑

αR

δn(αR),N−NL
|αR〉〈αR|. (3.39)

Here, NL(NR) is the number of particles in the left(right) block, n(αL(R))
is the number of particles in the state |αL(R)〉, and PL

NL
(PR

NR
) denotes the

projectors on the subspace of NL(NR) phonons in the left(right) block.
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Considering the matrix-vector product of the Hamiltonian, we have

HN |ΨN〉 = PNHPN |Ψ〉 = HPN |Ψ〉 = H|ΨN〉.

Think of ΨN as the matrix form of |ΨN〉, and we have

HNΨN = HLΨN + ΨN(HR)† + LΨNR
†. (3.40)

Consequently, as discussed in Subsection 3.4.1, the Hamiltonian in the Hilbert
subspace HN can also be calculated efficiently within the Lanczos algorithm.

3.5 Some remarks and conclusions

In our DMRG method, the truncated weight is zero, that is, all of density-
matrix eigenstates corresponding to positive eigenvalues are kept as the trun-
cated basis. Assume we increase the system up to the length N . If there is
no truncation, the dimension of Hilbert space of the system is dN , where d is
the dimension of the Hilbert space at single site. However, if there is trun-
cation, the dimension of Hilbert space of the system is only D, where D is
the number of truncated states. Since D � dN , the truncation is the major
error in our method. Furthermore, from the SVD, we know that the number
of truncated states depends on the size of the environment. Therefore, in
order to get more accurate results, we have to keep more truncated states,
i.e. to increase the sizes of the system and the environment. The number
of truncated states we kept in the calculations is usually m = 128, which is
large enough to get a good precision.

Our DMRG algorithm is implemented in Matlab. For the sparse matrix
diagonalization, it is convenient to call the function eigs, which uses the
Lanczos algorithm, and the matrix-vector product and the state prediction
are available as well. To perform the singular value decomposition of the
wavefunction we call the function svd in Matlab.

To conclude, we build up our numerical method-the DMRG in this chap-
ter, and discuss how to implement and improve our algorithms. In the follow-
ing chapters our DMRG will be applied to study strongly correlated behaviors
in ion traps.



Chapter 4

Effective Spin Models with
Trapped Ions

Trapped ions as a clean experimental system offers us accurate techniques
for the manipulation and measurement of quantum states [47]. In the last
years this experimental field has been mainly motivated by applications to
quantum information processing [48], in which internal electronic states are
used as qubits, and vibrational modes permit us to perform quantum gates
between them [51, 56].

In fact, by using similar ideas of quantum computation Ref. [70] and [71]
have shown recently that trapped ions can be used for the study of a rich
variety of quantum interacting models. The experimental requirements for
the study of quantum interacting systems with trapped ions are indeed much
less stringent than those for quantum information tasks.

In this chapter we pursue the ideas proposed in Ref. [70] for the realization
of a quantum simulator [3, 6, 7] of quantum magnetism with trapped ions.
We focus on the possibility of studying antiferromagnetic Ising and XY spin
chains [116, 117, 118] in linear ion traps, where quantum phase transitions
[119] can be induced and explored. We show that experiments with trapped
ions can access the physics of magnetic quantum phases with an accuracy
that is not possible in other experimental set-ups, and allow us to test general
properties of quantum systems at, or near, criticality. On the other hand,
the effective spin Hamiltonians that can be engineered with trapped ions
show a few remarkable features, the most important one being the fact that
spin–spin interactions follow power–law decays, something that induces long–
range quantum correlations between distant ions, which are absent in the
usual nearest–neighbor models.

The chapter is organized as follows. In the first section we give a de-
scription of quantum Ising model and XY model with nearest-neighbor in-

57
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teractions as an introduction. In the second section we describe in detail our
proposal, taking as a starting point the system formed by a set of trapped
ions coupled to an off–resonant standing wave, and show that it realizes a
system of effective interacting spins. We focus on the cases of Ising and XY
interactions. In the third section we study the many–body problem posed by
the quantum Ising model in ion traps. For this purpose, we make use of the
quasi–exact numerical method-the DMRG, and introduce also an analytical,
approximate solution in terms of Holstein–Primakoff bosons. The fourth sec-
tion deals with the study of the XY model in ion traps. Finally, we present
our conclusions.

4.1 Quantum spin models

Quantum spin–1/2 models are the simplest quantum magnetic systems show-
ing a large variety of properties. One of the most important properties is the
existence of quantum phase transition at zero temperature driven by quan-
tum fluctuations. For instance, there is a quantum phase transition from the
ferromagnetic phase to the paramagnetic phase in the quantum Ising model.
Singularities occurs strictly at the transition point. On the experimental
side, people are able to produce artificial samples with behaviors that fits
well with the theoretical descriptions, such as one observed a quantum phase
transition in the insulator LiHoF4 [118, 119].

To solve these low-dimensional systems there are some efficient analyt-
ical and numerical tools, such as the Bethe Ansatz [1], bosonization [1],
fermionization [1, 116, 117], exact diagonalization and the DMRG approach.
In our discussion here we focus on free-fermionic quantum spin chains, which
are nearest-neighbor spin models that can be mapped on systems of non-
interacting fermions, and can be solved exactly, such as quantum Ising model
and XY model [116, 117, 118, 119].

4.1.1 Quantum Ising model

The quantum Ising model in a transverse with lattice Hamiltonian is

H Ising = J
∑

i

σz
i σ

z
i+1 +B

∑

i

σx
i , (4.1)

where σx
i and σz

i are Pauli matrices defined on the site i of 1D lattice, and we
consider the nearest-neighbor interactions. The first term describes the ferro-
magnetic (antiferromagnetic) exchange interaction between spins depending
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on J < 0 (J > 0), while the second term is the transverse magnetic field.
Here the chain is assumed to be infinite.

The three components of the spins σx
i , σy

i , σ
z
i obey the commutation

relations

[σα
i , σ

β
i ] =

√
−1εαβγσ

γ
i , (4.2)

where εαβγ is the totally antisymmetric tensor, i.e. equal to zero if two indices
are equal and εαβγ = 1. The basis states of spin-1/2 are denoted |↑〉 = ( 1

0
)

and |↓〉 = (0
1
). Note that σx

i = σ+
i + σ−

i , where σ+
i and σ−

i are called raising
and lowering operators, σ+|↓〉 = |↑〉 and σ−|↑〉 = |↓〉. σ+

i and σ−
i allow to

flip spins at site i.

In the absence of the transverse field, B = 0, it is most convenient to work
in a basis diagonal in σz = ±1. The model then reduces to the well-known
classical Ising model. For J < 0 the ground state is the ferromagnectically
ordered state with σz = 1 or σz = −1 on every site, i.e. |↑↑↑↑ · · · 〉 or
|↓↓↓↓ · · · 〉. For J > 0, the antiferromagnetically ordered state with σz = 1
(σz = −1) on odd sites and σz = −1 (σz = 1) on even sites, i.e. |↑↓↑↓ · · · 〉
or |↓↑↓↑ · · · 〉.

A small transverse field will cause the spins to flip and the ground state
will be more complicated. If |B| � |J |, the ferromagnetic (antiferromagnetic)
order will survive, i.e. 〈σz

i 〉 6= 0. However, if |B| � |J |, all the spins will point
in the x–direction, σx = ±1, which corresponds to a quantum paramagnetic
ground state |→→→→· · · 〉 for B > 0 or |←←←←· · · 〉 for B < 0. Here
|→〉 = (|↑〉 + | ↓〉)/

√
2 and |←〉 = (|↑〉 − | ↓〉)/

√
2 are the two eigenstates

of σx
i with eigenvalues ±1. The magnetization in the paramagnetic phase is

zero 〈σz
i 〉 = 0.

Based on the above reason, there must be a quantum phase transition
between ferromagnetic (antiferromagnetic) and paramagnetic ground state
when |J | is of the order of |B|. In fact, the critical point is at J = B. The
equal-time correlation function in the ground state at each of the two limiting
phases behaves like an exponential decay:

〈σz
i σ

z
j 〉 ∼ e−|xi−xj |/ξ (4.3)

for large xi − xj, where xi is the spatial coordinate of site i, and ξ is the
correlation length. ξ could be the length scale determining the exponential
decay of equal-time correlations in the ground state. However, at the critical
point | J

B
|c, the correlation function is a power-law decay:

〈σz
i σ

z
j 〉 ∼ Λ|xi − xj|−ν, (4.4)
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where ν is the universal critical exponent, and Λ is nonuniversal constant of
proportionality.

To quantitatively study quantum Ising model, one can use the Jordan-
Wigner transformation [116, 117, 118, 119]. This is a powerful mapping be-
tween models with spin–1/2 degree of freedom and spinless fermions. Under
this transformation the nearest-neighbor quantum Ising model with a trans-
verse magnetic field can be transformed into a system of non-interacting
fermions, then its exact solution can be obtained.

Assume c†i and ci are the annihilation and creation operators of spinless
fermions, which satisfy fermionic anticommutation relations:

[ci, c
†
j]+ = δij, [ci, cj]+ = 0, [c†i , c

†
j]+ = 0, (4.5)

and

ci
2 = (c†i )

2 = 0. (4.6)

While the raising and lowering operators σ+
i and σ−

i satisfy partly the rela-
tions of fermions:

[σ−
i , σ

+
i ]+ = 1, σ−

i
2

= (σ+
i )2 = 0, (4.7)

and partly the relations of bosons:

[σ+
i , σ

−
j ] = [σ+

i , σ
+
j ] = [σ−

i , σ
−
j ] = 0, i 6= j. (4.8)

The Jordan-Wigner transformation is

ci = exp

[

πi

i−1∑

j

σ+
j σ

−
j

]

σ−
i , (4.9)

c†i = σ+
i exp

[

−πi
i−1∑

j

σ+
j σ

−
j

]

. (4.10)

Then

c†ici = σ+
i σ

−
i , (4.11)

and the inverse transformation is

σ−
i = exp

[

πi
i−1∑

j

σ+
j σ

−
j

]

ci, (4.12)

σ+
i = c†i exp

[

−πi
i−1∑

j

σ+
j σ

−
j

]

. (4.13)
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The coupling terms like σ+
i σ

−
i+1 can also be written in terms of fermions. One

can immediately get

σ+
i σ

−
i+1 = c†ici+1, σ+

i σ
+
i+1 = c†ic

†
i+1, (4.14)

σ−
i σ

+
i+1 = −cic†i+1, σ−

i σ
−
i+1 = −cici+1. (4.15)

To analyze the Ising model it is convenient to rotate spin axes by 90
degrees about y–axis, i.e. σz → σx and σx → −σz. Then the Ising model is
written as

H Ising = J
∑

〈ij〉

σx
i σ

x
j − B

∑

i

σz
i . (4.16)

In the fermion operators Eq. (4.16) is transformed to

H Ising = J
∑

i

(c†ici+1 + c†i+1ci + c†ic
†
i+1 + ci+1ci −

2B

J
c†ici +

B

J
). (4.17)

The above Hamiltonian is quadratic, so that it is obviously diagonalisable.
Introducing the Fourier transform

cq =
1√
N

N∑

j=1

cje
iqrj , (4.18)

c†q =
1√
N

N∑

j=1

c†je
−iqrj , (4.19)

where N is the number of sites under periodic boundary conditions, and
q = 2πm

N
is the complete set of wave vector with

m = −N − 1

2
, · · · , 0, · · · , N − 1

2
(odd N), (4.20)

m = −N
2
, · · · , 0, · · · , N

2
− 1 (even N). (4.21)

The Hamiltonian then becomes

H Ising = J
∑

q

{

2[
B

J
− cos(q)]c†qcq − i sin(q)[c†qc

†
−q + cqc−q]−

B

J

}

. (4.22)

We wish to write the Hamiltonian in the form of

H Ising =
∑

q

εqη
†
qηq + const, (4.23)
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so we employ a Bogoliubov transformation from the operators cq, c
†
q to the

operators ηq, η
†
q:

ηq = uqcq + ivqc
†
−q, η†q = uqc

†
q − ivqcq, (4.24)

where ηq, η
†
q are fermions, and u2

q + v2
q = 1, u−q = uq, and v−q = −vq. The

inverse transformation is written as

cq = uqηq + ivqη
†
−q. (4.25)

To make the Hamiltonian in the diagonal form, we demand that the off-
diagonal terms must vanish when we substitute Eq. (4.25) into Eq. (4.22).
Define uq = cos θq, vq = sin θq, then

tan 2θq =
sin q

cos(q)− B
J

. (4.26)

The final Hamiltonian is

H Ising =
∑

q

εqη
†
qηq + const, (4.27)

where

εq = 2J
[
1 + 2B/J cos(q) + (B/J)2

]1/2
(4.28)

is the single particle energy. As εq≥0, the ground state |0〉 has no η fermions
and therefore satisfies ηq|0〉 = 0 for all q. The excited states are created by
occupying the single-particle states. For instance, the n–particle state has the
form η†q1

η†q2
· · ·η†qn

|0〉. Other quantities, such as total energy, magnetizations
and correlations can be obtained from the ground state. The details could
be found in Refs. [117, 118, 119].

4.1.2 Quantum XY model

The generic quantum XY model in a transverse magnetic field is written as

HXY = J
∑

i

[
1 + γ

2
σx

i σ
x
i+1 +

1− γ
2

σy
i σ

y
i+1

]

+B
∑

i

σz
i , (4.29)

where γ is the anisotropy parameter with limiting values: γ = 1 correspond-
ing to the transverse quantum Ising model, and γ = 0 describing the trans-
verse XX model. For simplicity we will here consider only the transverse XX
model, i.e.

HXX =
J

2

∑

i

(σx
i σ

x
i+1 + σy

i σ
y
i+1) +B

∑

i

σz
i . (4.30)
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The XY Hamiltonian can also be mapped exactly into a free fermion model
through the Jordan-Wigner transformation, consisting of an assembly of non-
interacting fermions:

HXX = J
∑

i

(c†ici+1 + c†i+1ci) + 2B
∑

i

c†ici −NB. (4.31)

If we consider a finite chain with open boundary conditions, we can introduce
the fermion operators in the momentum space as [120]

c†q =

(
2

N + 1

)1/2 N∑

j=1

sin(
πj

N + 1
q)c†j, (4.32)

where

c†N+1|0〉 = 0, c†0|0〉 = 0, (4.33)

and 1 ≤ q ≤ N . Substituting Eq. (4.32) into Eq. (4.31), we can get the
simple diagonal form

HXX =
∑

q

εqc
†
qcq + const, (4.34)

with

εq = 2J cos(
π

N + 1
q) + 2B. (4.35)

Assume J > 0. For B > J , the energy of all the fermions are positive
and the ground state has no fermions present. For |B| < J , the occupation
of fermions in the ground state is partial. For B < −J , all the fermions
have negative energy and every fermion state is occupied. At B = −J or
B = J , there is a transition from a simple vacuum state with no fermions to
a low density superfluid, or from a low density superfluid to the state with
all occupied fermions. At the critical points, the correlations behave in a
power-law decay, with the critical exponent 1/2.

Starting from the ground state, the total energy, magnetizations and cor-
relations can be obtained exactly [116, 121, 122, 123, 124, 125].

However, note that our spin models with long-range interaction to be
discussed in the following is not exactly solvable. But they can be handled
by making use of the DMRG method, and their behaviors are similar to the
nearest-neighbor Ising or XY model.
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4.2 Effective spin systems in ion traps

In this section we review the theoretical description of a set of trapped ions
under the action of off–resonant standing waves presented in [70], and show
that their quantum dynamics follows approximately that of quantum inter-
acting spins. We also discuss carefully the effects of residual spin–phonon
couplings.

Our proposal works with a set of N ions in a linear Paul trap, or in
microtraps in one or two dimensions. In order to simplify the discussion, we
focus here on the 1D case: a string of trapped ions. We assume that the
ions have two internal hyperfine ground states, which are denoted the qubit
(spin–1/2) states |g〉 and |e〉. All the ions are driven by the off-resonant
lasers propagating along the axial (z) and radial (x and y) directions of the
trap. The possible laser configuration is plotted in Fig. 4.1, which figure is
taken from Ref. [70]. In Fig. 4.1, the authors use |↑〉 and |↓〉 instead of |e〉
and |g〉 in my thesis to represent the spin states, and use |e〉 to represent
the auxiliary state |p〉 in my thesis. Only here use we their notations to
explain this figure. We assume that the counterpropagating lasers along the
α–direction (α = x, y, z) push the ions in case that they are in the state
|↑〉α, where |↑〉α means the up state in the σα basis. This can be achieved
by choosing the relative phases of the copropagating lasers so that the state
|↓〉α is dark with respective to the lasers along the α–direction.

We explain in more detail here. Assume that in the far-detuning standing
waves Ωα↑ = |Ωα| and Ωα↓ = |Ωα|eiφ, where φ is the relative phase. The
interaction Hamiltonian could be written as

HI = Ωα↑|e〉〈↑|z + Ωα↓|e〉〈↓|z + h.c.

= |Ωα|(|e〉〈↑|z + eiφ|e〉〈↓|z) + h.c., (4.36)

where 〈↑|z and 〈↓|z are the eigenstates of the Paul matrix σz.
If φ = 0, π, we have

HI = |Ωα||e〉(〈↑|z ± 〈↓|z) + h.c.

=

{ √
2|Ωα||e〉〈↑|x + h.c. (φ = 0)√
2|Ωα||e〉〈↓|x + h.c. (φ = π)

, (4.37)

where 〈↑|x and 〈↓|x are the eigenstates of the Pauli matrix σx. This means
that 〈↓|x (〈↑|x) is the dark state when φ = 0 (φ = π). Similarly, the eigen-
states 〈↑|y and 〈↓|y of σy can also be introduced under the specific relative
phases, such as φ = π/2, 3π/2. Obviously, if Ωα↑ = |Ωα| and Ωα↓ = 0, we
just have the dark state 〈↓|z for σz.
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Figure 4.1: (a) The laser scheme in which the ions experience a force along α–
direction (α = x, y, z), if the ions are in the state |↑〉α. Note that in Ref. [70]
the authors use |↓〉 and |↑〉 to represent the spin–1/2 states. (b) Each pair of
copropagating lasers in the α–direction drives a Raman transition between
|↑〉α and |↓〉α. By tuning the relative phases of the pair of copropagating
lasers, the state |↓〉α could be coupled or uncoupled (i.e. dark state) to |↑〉α.
Counterpropagating lasers form a standing wave, which produce a position
dependent ac-Stark shift on the ions if they are in the state |↑〉α. Along
the z–direction only one pair of counterpropagating lasers is needed. Ωα↓

and Ωα↑ are the Rabi frequencies of the lasers. Taken from [70] with kind
permission by D. Porras and J. I. Cirac.

Our proposal relies on an always-on coupling between internal states (ef-
fective spins) and vibrational modes, in such a way that phonons transmit
an interaction between different ions. Thus, the corresponding Hamiltonian
has three contributions:

H = Hm +Hv +Hf . (4.38)

Hm describes the local dynamics of internal states, which are a set of inde-
pendent effective spins under the action of effective global magnetic fields in
each direction:

Hm =
∑

j=1,...,N
α=x,y,z

Bασα
j . (4.39)

Note that Bz is the energy of the internal state, and Bx, By can be im-
plemented by the action of lasers resonant with the internal transition. In
Eq. (4.38), Hv is the vibrational Hamiltonian, and Hf is the internal state–
phonon coupling. Both terms are described in the following two subsections.
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4.2.1 Vibrational modes of ion chains

We consider 1D systems of trapped ions, whose physical implementation
corresponds to Coulomb chains in linear Paul traps or linear arrays of ion
microtraps. Here some main results are again listed for convenience. The
details can be found in Chapter 2.

Let us assign z to the axis of the ion chain, and x, y to the radial direc-
tions. The potential experienced by the ions is determined by the trapping
frequencies, ωα (in the following the index α always runs over the spatial
directions, α = x, y, z), and the Coulomb repulsion:

V =
1

2
m
∑

j

(
ω2

xx
2
j + ω2

yy
2
j + ω2

zz
2
j

)
+

∑

j>i

e2
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2
. (4.40)

In the harmonic approximation we express V as a function of the displace-
ments around the equilibrium positions (qα

j = xα
j − xα,0

j ), up to quadratic
terms:

V =
1

2
m
∑

α,i,j

Kα
i,jq

α
i q

α
j ,

(4.41)

where

Kα
i,j =







ω2
α − cα

∑

j′(6=i)
e2/m

|z0
i −z0

j′
|3

i = j

+cα
e2/m

|z0
i −z0

j |
3 i 6= j

. (4.42)

The corresponding Hamiltonian can be diagonalized in terms of collective
modes (phonons):

Hv =
1

2
m
∑

i,j,α

Kα
i,jq

α
i q

α
j +
∑

i,α

pα
i

2m
=
∑

n

~ωα,na
†
α,naα,n, (4.43)

where pα
i are the momenta corresponding to qα

i , and ωα,n are the eigen fre-
quencies. Local coordinates can be expressed in terms of creation and anni-
hilation of collective vibrational modes:

qα
i =

∑

n

Mα
i,n

√
2mωα,n/~

(
a†α,n + aα,n

)
, (4.44)
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where cx,y = 1, cz = −2. Matrices Mα in (4.48) diagonalize the vibrational
hamiltonian:

∑

i,jMα
i,nKα

i,jMα
j,m = ω2

α,nδn,m.
The characteristics of the vibrational modes are governed by the parame-

ters βα, which quantify the relative value of Coulomb interaction and trapping
potentials:

βα = |cα|e2/mω2
αd

3
0, (4.45)

where d0 is the mean distance between ions. If βα � 1, then phonons are
close to be localized at each ion (stiff limit); on the contrary βα � 1 (soft
limit) implies that Coulomb repulsion prevails over the trapping potential
and, thus, phonons have a strong collective character that results in the
ability to mediate interactions with a range of the order of the ion trap [70].

We summarize below the description of vibrational modes in different
trapping conditions:

(i) Coulomb chains (Paul traps). In this experimental set–up the equilib-
rium positions in the axial (z) direction are determined by the Coulomb
interaction and the axial trapping, and βz depends only on the number
of ions N . This dependence can be estimated in the limit of many ions
(see [126]):

βz ≈
1

12

N2

log(6N)
, N � 1. (4.46)

βz � 1 and thus axial modes in Coulomb crystals are always in the soft
limit. On the other hand, βx,y, can be reduced at will because one can
increase the axial trapping frequencies ωx,y while leaving constant the
mean distance between ions, d0. Indeed, condition βx,y < 1 has to be
fulfilled to make the Coulomb chain stable against zig-zag instabilities
[126].

(ii) Linear arrays of ion traps. It is worth considering this case here due
to the experimental effort currently being devoted to the fabrication of
linear arrays of ion traps where equilibrium positions of the ions are
chosen by individual confinement potentials for each ion [57]. In this
case, all trapping frequencies ωα can be chosen at will, and in particular
condition βz � 1 can be also fulfilled opposite to the case of standard
Paul traps.

4.2.2 Internal state conditional forces

Internal states are coupled to the motion by placing the ions in an off–
resonant standing–wave, such that they experience a state–dependent a.c.–
Stark shift, see Chapter 2. Several configurations are possible, in which



68 Effective Spin Models with Trapped Ions

internal states are coupled to vibrational modes that are transverse or lon-
gitudinal with respect to the trap axis. The characteristics of the resulting
effective spin–spin interaction depends on the choice of the directions of the
laser beams: in particular, axial vibrational modes mediate long–range inter-
actions, with a range of the order of the ion chain, and radial modes mediate
shorter range spin–spin interactions, with a power–law decay Ji,j ∝ 1/|i−j|3.
Due to the fact that short–range spin Hamiltonians contain a rich quantum
critical phenomenology, we focus in this work on this last situation.

Let us consider the following coupling between effective spins and radial
motion:

Hf = −Fx

∑

j

xj|1〉〈1|z,j − Fy

∑

j

yj|1〉〈1|y,j. (4.47)

|1〉α is the eigenstate of σα with eigenvalue 1. The reason for this choice of
couplings is that conditional forces are most easily implemented with the z
component of the internal states (one only needs a single standing–wave).
Thus, it is advantageous to couple σz to one of the radial directions. The
first term in Hf is the one which corresponds to the pushing gate presented
in [56], while the second one can be implemented by using two additional
standing–waves [70].

The coupling of the internal states to the motion can be written as an
effective spin–phonon coupling by expressing the ions’ coordinates in terms
of collective modes:

Hf = −
∑

α,i,n

Fα

Mα
i,n

√

2mωα,n/~

(
a†α,n + aα,n

)
(1 + σ̃α

i ) . (4.48)

In Eq. (4.48) we have introduced the notation σ̃x = σz, σ̃y = σy, that is, σ̃α

is the component coupled to the motion in the direction α.

4.2.3 Effective spin–spin interactions

Under certain conditions, a set of spins coupled to a common bath of vibra-
tional modes is well described by an effective spin interacting Hamiltonian,
something that is apparent if one makes use of the following canonical trans-
formation [70, 127, 128]:

U = e−S, S =
∑

α,i,n

ηα
i,n (1 + σ̃α

i )
(
a†α,n − aα,n

)
,

ηα
i,n = Fα

Mα
i,n

~ωα,n

√

~

2mωα,n
, (4.49)
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where ηα
i,n are the displacements of the modes in units of the ground state

size.
In the new basis the Hamiltonian (4.38) includes an effective spin-spin

interaction:

e−SHeS = Hv +
1

2

∑

α,i,j

J
[α]
i,j σ̃

α
i σ̃

α
j +

∑

α,i

B′ασα
i +HE, (4.50)

where

−J [α]
i,j =

∑

n

F 2
α

mω2
α,n

Mα
i,nMα

j,n = 2
∑

n

ηα
i,nη

α
j,n~ωα,n. (4.51)

HE is a residual spin–phonon coupling, whose explicit form is given below.
From (4.51) and the definition ofMα one can easily deduce that in the limit
βα � 1:

J
[α]
i,j ≈

J [α]

|z′0i − z′0j |3
, J [α] = 2βαη

2
α~ωα, (4.52)

where z′0i are the ions’ positions in units of the average distance, d0. We
have introduced η, which characterizes the displacement of the phonons due
to the presence of the state–dependent force:

ηα = Fα

√

~/2mωα/~ωα. (4.53)

Note that in (4.52) the effective magnetic fields receive, after the canon-
ical transformation, a contribution from the pushing forces B ′α = Bα +
F 2

α/(mω
2
α). The extra term in B ′α does not depend on the ion’s site, and

thus can be considered as an overall correction to the global effective mag-
netic fields.

Radial modes in a chain of trapped ions allow us to implement two types
of spin models. If Hf acts only on one of the directions of motion, say x, we
get an Ising spin–spin interaction:

H Ising
S =

1

2

∑

i,j

J
[x]
i,j σ

z
i σ

z
j +

∑

i

Bxσx
i . (4.54)

The residual spin–phonon couplings are given, to lowest order in η by:

H Ising
E = Bx

∑

i,n

−iσy
i η

x
i,n(a†x,n−ax,n). (4.55)

On the other hand, if we apply two conditional forces in both radial direc-
tions, we get a Hamiltonian which couples two components of the effective
spins.

HXY
S =

1

2

∑

i,j

(J
[x]
i,j σ

z
i σ

z
j + J

[y]
i,j σ

y
i σ

y
j ) +

∑

i

Bxσx
i . (4.56)
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A magnetic field Bx is included such that, in a rotated basis σz → σx,
σx → −σz, and (4.56) corresponds to the XY model in its usual basis. The
residual spin–phonon couplings are given, to lowest order in ηα by:

HXY
E = −1

2

∑

α,α′=z,y

i,n,m

ηα
i,nη

α′

i,m~ωα,n

(a†α,n + aα,n)(a†α′,m − aα′,m)
[

σ̃α
i , σ̃

α′

i

]

. (4.57)

HXY
E accounts for the interference between the two different conditional

forces, which can be avoided by choosing different values for the two radial
trapping frequencies, as we explain in the following subsection.

4.2.4 Decoherence induced by vibrational modes

The residual spin–phonon couplings (4.55, 4.57) are a source of decoherence
which entangle internal states with phonons. Besides that, internal states
are prepared and measured in a different basis than the one corresponding
to effective interacting spins. Both effects have to be evaluated to study how
the quantum dynamics of internal states departs from the ideal quantum spin
Hamiltonian. The problem of solving the quantum dynamics of a system of
interacting spins coupled to phonons is indeed quite complicated. We are
interested here in estimating the error induced by these couplings, so that
we will make use of perturbation theory and several approximations.

Let us consider that the system is initially in a product state of a thermal
phonon density matrix, ρph, and a given internal pure state, ρi = |ψi〉〈ψi|.
|ψi〉 evolves to |ψf〉 under the spin Hamiltonian HS, thus, |ψf 〉 represents the
ideal simulated spin state. We define the fidelity in the quantum simulation
by the overlap between the state of the system after the evolution with the
whole Hamiltonian, and |ψf〉:

F(ψi) = 〈ψf |Trph{e−iHt/~ ρi ⊗ ρph e
iHt/~}|ψf 〉. (4.58)

Having in mind perturbative calculations, let us express the fidelity in the
following way:

F(ψi) = (4.59)

〈ψi|Trph{eS(t)U(t)e−S(0)ρi⊗ρphe
S(0)U(t)†e−S(t)}|ψi〉,

where U(t) ≡ eiH0t/~e−i(H0+HE)t/~, is the evolution operator in the interaction
representation with respect to HE. H0 = Hv+HS is the Hamiltonian without
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residual spin–phonon coupling. In Eq. (4.59), as well as in the right–hand
side of the equations below, all the operators evolve with H0.

We are particularly interested in the very practical question of how do
measurements of internal state observables departure from the averages in
the simulated quantum spin models. Let us consider a few–site spin operator,
O, and define the error in its average, EO = 〈O(t)〉 − 〈O(t)〉0, with:

〈O(t)〉 =
Tr{O(t)eS(t)U(t)e−S(0)ρi⊗ρphe

S(0)U(t)†e−S(t)},
〈O(t)〉0 = 〈Ψf |O|Ψf〉. (4.60)

Equations (4.59) and (4.60) provide us with a well suited starting point
for calculating the effects of the residual spin–phonon coupling in a series in
ηα. We show below that these terms can result in negligible contributions
with the right choice of parameters. Due to the fact that lowest order spin–
phonon couplings are different in each quantum spin model, we consider the
two cases separately.

Ising Model

The spin–phonon couplings in (4.55) are proportional to the transverse mag-
netic field, Bx. In the following we ignore the index α in the vibrational
modes, and assume that it corresponds to one of the radial directions. In
the most interesting regimes Bx ≈ J , thus we estimate Bx ≈ η2ω. All terms
in HIsing

E are non–resonant, such that, if we ignore the contributions from
S in (4.59, 4.60), the only allowed transitions are virtual with probability
E ≈ J2η2/ω2 = O(η6).

The most important contribution to the error is thus the one that comes
from the canonical transformation only, which can be estimated by setting
U(t) = 1, expanding eS(t) in (4.59), and keeping terms up to order η2. In
the stiff limit, that is β � 1, we make the additional approximation of
considering vibrational modes in (4.59) as localized phonons, and get the
following expression for the error to lowest order in η:

E = 1− F = E [0,0] + E [t,t] − E [0,t] − E [t,0],

E [t1,t2] = η2
∑

j

(n̄eiω(t1−t2) + (n̄+ 1)e−iω(t1−t2))×
(
〈σz

j (t1)σ
z
j (t2)〉 − 〈σz

j (t1)〉〈σz
j (t2)〉

)
, (4.61)

where n̄ is the mean radial phonon number. The error is of order Nη2, and
is proportional to the fluctuations in σz

j . Note that equal–time averages give
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the dominant contribution in (4.61) because the two–time spin averages in
E [0,t] can be neglected at long enough times.

The scaling of E with N results from the fact that F in (4.59) represents
the overlap between the internal state of the ion chain and the effective spin
state. However, in practice, local observables like single spin averages or
two–site correlation functions are measured. We can show that in this case
the error does not increase with N . Let us consider again the effect of the
canonical transformation in Eq. (4.60). We get the following error in the
measurement of the observable:

EO = E
[0,0]
O + E

[t,t]
O − 2E

[0,t]
O ,

E
[t1,t2]
O =

1

2
〈[[O(t), S(t1)], S(t2)]〉. (4.62)

An explicit expression can be derived from (4.62) which is not very enlight-
ening. However we note again that equal time correlations in (4.62) are the
dominant contribution, such that:

EO ≈
1

2
η2
∑

j

(2n̄+ 1)〈[[O(t), σz
j (t)], σ

z
j (t)]〉, (4.63)

where we have also approximated vibrational modes by localized phonons.
It is clear from Eq. (4.63) that if O is an M–site observable, there are only
a maximum of M non-vanishing commutators and thus E ≈ Mη2ω. The
most meaningful physical quantities in the study of quantum criticality are
indeed one–site (mean values) or two–site (correlation functions) averages,
and (4.63) implies that these ones can be studied with an error that is inde-
pendent on the number of ions.

XY Model

In this case special care has to be paid to the effect of the residual spin–
phonon couplings. HXY

E in (4.57) is of order η2
αωα, that is, of the same order

as J
[α]
i,j itself. On the other hand, if ωx = ωy, then HE contains resonant terms

that couple vibrational modes in different transverse directions. Under these
conditions the effect of HE is comparable to that of the spin–spin interaction
and the quantum simulation is ruined.

A way out of this problem is to tune ωx 6= ωy, with ωx−ωy of the order of
ωx, ωy. In this case, there are no resonant terms in (4.57), and the interference
between standing–waves in different radial directions is suppressed. The
error is then of the order of (η2ωx,y)

2/(ωx − ωy) ≈ (η4
x, η

4
y). Indeed, Paul

traps are usually designed such that the radial frequencies are different, with
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parameters that fulfill the conditions for the rotating terms in HXY
E to be

neglected [47]. Under these conditions, the lowest order contribution to the
error is, again, the one that comes from the change of basis (E ∝ η2

αωα).

4.2.5 Preparation and detection of effective spin states

In the above we discussed the simplest laser configuration for realizing quan-
tum spin models. Adding a transverse field Bxσx to the simulated Ising
interaction Jσz

i σ
z
j , one could induce a quantum phase transition between the

ferromagnetic (antiferromagnetic) ordered ground state and the paramag-
netic state. We give here a possible experimental procedure of reaching the
effective spin ground states by adiabatic evolution:

1. Initially prepare the ions at the state |↓↓, · · · , ↓〉 through optical pump-
ing.

2. Apply adiabatically the magnetic field Bx to the ions. The ground
state is paramagnetic if J = 0: |→→, · · · ,→〉.

3. Switch on adiabatically the effective spin interaction up to a value of
J . Look for quantum phase transitions as J or Bx varies.

4. Measure the ground state through the global fluoresence. The new
ground state would be antiferromagnetic if J � Bx: |↑↓, · · · , ↑↓〉.

One could repeat the above procedure many times with increasing adiabati-
cally the value of J , and observe the quantum phase transition by the means
of global fluorescence, which would show the population of the internal states.
The condition for adiabaticity here is

dJ

dt
/J � ∆, (4.64)

where ∆ is the energy gap between the first excited state and the ground
state at the quantum phase transition J ≈ Bx, and its value is approximately
∆ ≈ J/N .

Furthermore, by switching on nonadiabatically the spin-spin interaction
J , one could investigate quantum dynamics out of equilibrium. For exam-
ple, the Kibble-Zurek mechanism in the antiferromagnetic ground state [129]
could be tested or verified in such a clean experimental system.
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4.3 Effective Ising model

We have shown that antiferromagnetic long–range Ising models can be re-
alized in experiments with ion traps. Hamiltonian (4.54) is exactly solvable
in the case of interaction between nearest–neighbors (NN) [119,118]. In this
case, the sign of the interaction is not relevant at all, because the transfor-
mation:

U =
∏

j odd

(
σx

j

)
, σz

j → Uσz
jU

−1 = (−1)jσz
j , (4.65)

maps the ferromagnetic into the antiferromagnetic model.
The exact solution of the NN–Ising model shows that there exists a

quantum phase transition at Bx
c = J [119] between a paramagnetic state

(Bx > J), and an antiferromagnetic phase (Bx < J) characterized by the
Néel order parameter:

ON ≡
1

N

∑

j

(−1)jσz
j . (4.66)

We expect that the properties of the effective spin model in ion traps (4.54)
are similar to those of the NN–Ising model, due to the fast decay of interac-
tions Ji,j ∝ 1/|i − j|3; in particular, we expect a quantum phase transition
at a given critical value of the longitudinal magnetic field, Bx

c . In the follow-
ing we present numerical calculations to describe quantitatively the quantum
phases of Hamiltonian (4.54), and show that critical properties are very simi-
lar to those of the NN–Ising model. Indeed, renormalization group arguments
can be used to show that the 1/r3 Ising model belongs to the short–range
Ising universality class [130]. On the other hand, the long range character
of the interactions turns out to induce intriguing effects in the spin quantum
correlations which are explained below by means of a spin–wave model.

This numerical problem is handled with the DMRG method [76,77], which
is a quasi–exact numerical method for the study of ground states of inter-
acting quantum systems in 1D. The fact that we have further than nearest–
neighbor terms increases the complexity of the algorithm by a factor of the
number of sites, N . We keep m = 128 eigenstates of the reduced density
matrix at each step in the DMRG algorithm and test the accuracy of our
calculation by comparing its results with the exact solution in the NN–Ising
model at the critical point, where DMRG works worst. We have found that
the relative error of the ground state energy in this case is limited by the
machine accuracy δE ∼ 10−15. One can expect the same accuracy in calcu-
lations with the ion trap Ising models presented below because correlations
are similar in both cases.

Our numerical calculations describe two types of quantum Ising models:
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(i) 1/r3–Ising interaction.

This case corresponds to a linear array of microtraps, where equilib-
rium positions of the ions are approximately constant and fixed by the
position of the microtrap.

(ii) Linear trap–Ising model.

If the trap is in the stiff limit, then effective spin–spin interactions
decay like 1/|z0

i − z0
j |3, but distances between ions in the Coulomb

crystal depend on the position. Thus, we get an effective inhomogenous
quantum Ising model with interaction strength Ji,j which depends on
the position (see Fig. 4.2). The ground state shows the coexistence of
different phases in different locations of the ion trap.

The results presented in the following subsections where obtained with
chains of N = 100 ions. Ji,j in the linear trap–Ising model was calculated
with βx = 10−2, however, our results do not change much with βx, as long
as one considers values within the stiff limit (βx < 0.1). If we assume typical
values ωx = 10 MHz, and η2 = 10−2, this would correspond to interaction
strength Ji,i+1 ≤ 20 kHz.

4.3.1 Effective magnetization

In the following we study the effective magnetization and its fluctuations. We
will be mainly interested in (i) whether global measurements are enough to
characterize quantum phases, and (ii) what is the effect of inhomogeneity and
finite size in linear trap models. All our results are presented in energy units
J0, where J0 is the interaction strength between nearest–neighbors in the
1/r3–Ising model, or the averaged nearest–neighbor interaction 1/N

∑

i Ji,i+1,
in the case of the linear trap–Ising model, i.e.

J0 =

{
Ji,i+1 (1/r3 model),
(1/N)

∑

j Ji,i+1 (linear trap model).
(4.67)

Transverse (〈σx〉) magnetization.

The mean magnetization, mx = (1/N)〈σx
T 〉 (where σα

T =
∑

j σ
α
j ), can be

obtained from global measurements. In Fig. 4.2 (a) we show the evolution
of mx with the magnetic field. The magnetization curve of the 1/r3–Ising
model is similar to the NN case. The quantum phase transition results in
a discontinuity in d2mx/d(Bx)2 (see Fig. 4.3 (a)), something that allows us
to locate the critical point Bx

c (1/r3) ≈ 0.83, which lies below the critical
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Figure 4.2: (a) Evolution of the averaged effective transverse magnetization
in 1/r3 and linear trap Ising models (N=100 ions). We also plot 〈σx

j 〉 in the
case of the central ion (j = 50) in a linear trap. (b) Local strength of the
Ising interaction in a linear ion trap, and local value of the critical field.

point in the NN- Ising model (Bx
c (NN) = 1). This effect can be explained in

terms of frustration induced by terms Ji,j, with (i − j) even, which reduces
the stability of antiferromagnetic order.

On the other hand, mx in the linear trap–Ising model departs from the
homogeneous 1/r3–Ising case, due to the spatial variations in Ji,j (see Fig.
4.2 (b)). The system shows the coexistence of different phases, depending on
the local value of Ji,j, as shown in the evolution of the local magnetization
〈σx

j 〉 with Bx in Fig. 4.3 (b). The local phase diagram at each ion j shows
a critical point Bx

c (j) ≈ 0.83Jj,j+1, which is determined by the local value
of the interaction, but satisfies the same relation with Ji,i+1 found for the
homogenous 1/r3–Ising model (Fig. 4.2 (b)).

The local phases in a linear ion trap Ising model can be studied with only
limited local addressing of the ions. For example, by measuring the average
magnetization, mx, corresponding to the 20 central ions, we can observe the
signature of the quantum phase transition, as shown in Fig. 4.3 (a). Thus,
individual ion addressing is not necessary for detecting the critical point in
the quantum simulation.
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Figure 4.3: (a) Second derivative of mx as a function of Bx in ion trap Ising
models (N = 100 ions). Dashed line: 1/r3–Ising model. Solid line: average
over the 20 central ions in a linear trap–Ising model. Dotted line: central
(j = 50) ion in a linear trap–Ising model (solid and dotted line are almost on
top of each other). (b) Contour plot of 〈σx

j 〉 on the plane of the coordinate
j and the magnetic field Bx.

Longitudinal (〈σz〉) magnetization.

The antiferromagnetic order parameter is given by the staggered magneti-
zation (4.66). In the thermodynamic limit, spontaneous symmetry breaking
results in a non–zero value of 〈ON〉. On the contrary, in finite systems, sym-
metry remains unbroken. In this case, it is convenient to study the squared
antiferromagnetic order parameter 〈O2

N〉, which takes a value ≈ 1 in the an-
tiferromagnetic phase. In Fig. 4.4, we present the evolution of 〈O2

N〉 in the
1/r3–Ising case, as well as in the central region (20 ions) of a linear trap.

For measuring ON it is necessary to address each ion individually. On
the other hand, the fluctuation of the average longitudinal magnetization,
(1/N2)〈(σz

T )2〉 is an interesting alternative which does not require individual
ion addressing. Antiferromagnetic order can be detected by means of this
global observable, because longitudinal spin fluctuations are suppressed in
the Néel ordered state, as shown in the case of the 1/r3–Ising model (Fig.
4.4).

4.3.2 Correlation functions

Correlation functions Cαα
i,j ≡ 〈σα

i σ
α
j 〉 − 〈σα

i 〉〈σα
j 〉 characterize quantum corre-

lations in the ground state of the effective spin system. Even when they play
an important role in the description of strongly correlated systems, it is not
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Figure 4.4: (a) Fluctuation of the longitudinal effective magnetization, and
(b) Néel order parameter. In both plots we consider the 1/r3–Ising model,
and the central region (20 ions) of the linear trap–Ising model.

possible to measure them directly in solid–state experimental setups [132].
Trapped ions, on the contrary, offer us the possibility to measure directly
equal–time correlation functions by means of a set of measurements on sin-
gle ions. We show here that realizations of Ising models with trapped ions
allow us to test directly properties of quantum critical systems such as the
algebraic decay of correlations at a quantum phase transition, as well as
remarkable new effects induced by long–range interaction terms.

We consider correlations of observables that are transverse to the order
parameter, that is, Cxx

i,j correlations in the antiferromagnetic phase and Czz
i,j

correlations in the paramagnetic one, because they are the most meaningful
in terms of the spin–wave picture to be introduced later. In Figs. 4.5 and
4.6, it is shown that quantum correlations present two regimes, depending
on the distance between ions, |i− j|:

Universality regime.

At intermediate distances, correlation functions both in 1/r3, and in linear
trap–Ising models, show critical properties which are similar to those of the
NN–Ising model: Cαα

i,j ∝ e−|i−j|/ξαα

when Bx 6= Bx
c , whereas Cαα

i,j ∝ |i− j|−p
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at Bx
c , with p = 2. On the other hand, correlation lengths ξαα (see Fig.

4.7) diverge near the critical point and show the dependence, (ξαα)−1 ∝
|Bx − Bx

c |ν, with ν ∼ 1. The critical properties of the 1/r3–Ising model are
thus the same as those of the nearest–neighbor model [130].

We note that by measuring quantum correlations in the central region of
the chain one can measure critical exponents even in the case of the linear–
trap Ising model. Finite size effects are however more important in this case
(see Fig. 4.6 (b)).

Long-range correlation mediated by the interaction.

A remarkable feature in Figs. 4.5 and 4.6, is that correlation functions decay
like a power–law, Cαα

i,j ≈ 1/|i− j|3, at very long distances, so that properties
of quantum correlations depart from the nearest–neighbor case (see Fig. 4.5
(b)).

This effect can be qualitatively understood by considering that entan-
glement between distant ions can be created in two ways: (i) by nearest–
neighbor terms in the Hamiltonian, in such a way that correlations present
the same characteristics as those of the NN–Ising model (exponential decay),
or (ii) directly by long–range terms in (4.54) in such a way that they de-
cay following the power law of the spin–spin interaction. This hand–waving
argument will be justified in the following section by means of a spin–wave
formalism.

4.3.3 Spin–wave picture

Far away from the critical point, excitations over the ground state can be
described as spin–waves satisfying a harmonic Hamiltonian. This picture
allows us to understand the numerical results presented above; in particular
correlations in the presence of power–law interactions. It also brings ion trap
spin models in connection with recent results on quantum correlations and
criticality in bosonic gaussian ground states [131].

Spin–waves are defined by the Holstein–Primakoff (HP) transformation
[132], whose particular form depends on the ground state. Thus we have
two consider separately the two limits corresponding to antiferromagnetic or
paramagnetic phases.
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Figure 4.5: (a) Absolute value of correlations, |Cαα
j0,j0+j|, between the central

ion (j0 = 50) and the rest of a chain with N = 100 ions, in the case of the
1/r3–Ising model. (i) Cxx

j0,j0+j, B
x = 0.72 < Bx

c ; (ii) Czz
j0,j0+j, B

x = 1.32 > Bx
c .

(b) Zoom of the long–range tail of Czz, which follows an algebraic decay with
an exponent α = −3.

Bx � J

In this phase, HP bosons describe spin–waves excited over the paramagnetic
ground state:

(σz
j − iσy

j )/2 = b†j(1− b†jbj)1/2 ≈ b†j,

(σz
j + iσy

j )/2 = (1− b†jbj)1/2bj ≈ bj,

σx
j = 2b†jbj − 1. (4.68)

The harmonic approximation is valid if b†jbj � 1. In this limit the effective
spin Hamiltonian takes the following form:

H =
1

2

∑

j,l

Jj,l(b
†
j + bj)(b

†
l + bl) +Bx

∑

j

(2b†jbj − 1). (4.69)
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Figure 4.6: (a) Absolute value of correlations, |Cαα
j0,j0+j|, between the central

ion (j0 = 50) and the rest of a chain with N = 100 ions, in the case of the
linear trap–Ising model. (i) Cxx, Bx = 0.89 < Bx

c ; (ii) Czz, Bx = 1.72 > Bx
c .

(b) Plot of Cxx
j0,j0+j for both 1/r3 and linear ion trap models, exactly at the

critical point Bx = Bx
c .

Let us write this Hamiltonian in terms of canonical operators:

Ql =
1√
2
(b†l + bl),

Pl =
i√
2
(b†l − bl),

H/|2Bx| =
1

2

∑

j,l

Kj,lQjQl +
1

2

∑

j

P 2
j , (4.70)

with Kj,l = Jj,l/|Bx| + δj,l. In the following we consider the limit N → ∞,
so that we can get analytic results. In this limit, Hamiltonian (4.70) is di-
agonalized by plane–waves, Q̃q = 1/

√
N
∑

j e
iqjQj and correlation functions
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Figure 4.7: Correlation lengths (ξαα)−1 as a function of Bx in both 1/r3 and
linear ion trap models. (i), (i’) curves correspond to (ξxx)−1, whereas (ii),
(ii’) correspond to (ξzz)−1). ξzz is not shown in the antiferromagnetic phase
because Czz

i,j tends to a constant value in the absence of symmetry breaking.

are given by:

Czz
0,j = 2〈Q0Qj〉 =

2

N

∑

q

e−iqj〈Q̃qQ̃−q〉

=
1

N

∑

q

e−iqj 1

Ωq

. (4.71)

Ωq is the spin–wave dispersion relation:

Ω2
q =

1

N

∑

j

Kj,0e
iqj. (4.72)

It is illuminating to write the correlation function in the following way:

Czz
0,j = 〈σz

0σ
z
j 〉 =

1

N

∑

q

e−iqjΩ2
q

1

Ω3
q

=
∑

l

Kj,lA
z
l =

Az
j +

∑

l

Jj,l

Bx
Az

l , (4.73)
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with:

Az
j =

1

N

∑

q

eiqj

Ω3
q

≈ 1

2π

∫ π

−π

dq
eiqj

Ω3
q

. (4.74)

The function Az
j → 0 as j → ∞, such that for long distances, Eq. (4.73)

implies that correlations decay following the spin–spin interaction power law.
Indeed, the decay of correlations with the same power–law than the interac-
tion term, has been recently shown to be a general property of ground states
of harmonic lattices with long–range interactions [131].

Bx � J

In this limit the ground state is close to the antiferromagnetic (Néel state),
so that we use the following HP transformation:

(−1)jσz
j = 2b†jbj − 1,

(σx
j + i(−1)jσy

j )/2 = b†j(1− b†jbj)1/2 ≈ b†j,

(σx
j − i(−1)jσy

j )/2 = (1− b†jbj)1/2bj ≈ bj. (4.75)

Signs, (−1)j, have to be added to choose the Néel state as the ground state
of the HP oscillators. The Hamiltonian is:

H =
1

2

∑

j,l

(−1)j−lJj,l

(

2b†jbj − 1
)(

2b†l bl − 1
)

+

Bx
∑

j

(

b†j + bj

)

. (4.76)

If we neglect interactions between bosons, then we get a set of non–coupled
harmonic oscillators. However, non–quadratic terms in (4.76) induce corre-
lations due to the presence of the transverse field Bx. To see this, we solve
first the quadratic part of the bosonic Hamiltonian:

H0 =
∑

j

2J̃b†jbj +Bx
∑

j

(

b†j + bj

)

, (4.77)

where J̃ = −∑j(−1)j−lJj,l, that is, the mean longitudinal magnetic field.
Hamiltonian (4.77) is solved by displacing the HP bosons, which corresponds
to consider the mean-field ground state as a reference state for the HP trans-
formation:

bj → bj − Bx/(2J̃). (4.78)
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Up to quadratic terms in the displaced HP bosons, we get the following
Hamiltonian:

H = 2J̃
∑

j

b†jbj +

(
Bx

2J̃

)2∑

j,l

(−1)(j−l)Jj,l

(

b†j + bj

)(

b†l + bl

)

. (4.79)

By following the same steps as in the previous case, we show that:

Cxx
0j = Ax

j +
∑

l

(−1)j−lB
xJj,l

J̃2
Ax

l , (4.80)

with Ax
l given by the same function (4.74) of the spin–wave energies that

diagonalize (4.77). Thus, to lowest order in Bx/J̃ , x–x correlations behave
in a similar way as z–z correlations in the antiferromagnetic phase, with the
only difference being the alternation in the sign.

Equations (4.73) and (4.80) allow us to understand the interference os-
cillattions observed in Figs. 4.5 and 4.6 at intermediate distances where the
transition occurs between exponential decay and the long-range correlation
induced directly by the interaction. If we assume that at short distances cor-
relation functions decay in a way similar to the antiferromagnetic NN Ising
model, then the correlation functions are well described by the sum of two
contributions:

Czz
i,j = Czz

exp(−1)i−je−|i−j|/ξzz

+ Czz
intJi,j,

Cxx
i,j = Cxx

expe
−|i−j|/ξxx

+ Cxx
int(−1)i−jJi,j. (4.81)

In this expression, the decay of the correlation functions in the universal
regime has been estimated by making use of the exact results in the ferro-
magnetic case, and the mapping defined by Eq. (4.65). According to Eq.
(4.81), when the magnitude of the two contributions is comparable, they in-
terfere, something that explains the fringes observed in the absolute value of
the correlation functions plotted in Figs. 4.5 and 4.6.

Finally, in Fig. 4.8 we show the comparison between results obtained by
means of the spin-wave picture and DMRG calculations in both antiferro-
magnetic and paramagnetic phases. We have checked that the agreement is
good far away from the critical point, and gets worse when one approaches it
because the assumptions behind the HP approximation are no longer valid.
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4.4 Effective XY model

We consider the isotropic case of Hamiltonian (4.56), J
[x]
i,j = J

[y]
i,j > 0. Let us

work in the rotated basis defined below Eq. (4.56), with Bz → −Bz:

HXY
S =

1

2

∑

i,j

Ji,j(σ
x
i σ

x
j + σy

i σ
y
j ) +

∑

i

Bzσz
i , (4.82)

but will keep in mind that in experiments effective spin observables must be
measured in the original basis. Note also that [H,

∑

j σ
z
j ] = 0 and hence σz

T

is a conserved quantity.
The nearest-neighbor (NN) XY model can be exactly solved by a Jordan–

Wigner mapping to free fermions [116]. Note that here we consider the
antiferromagnetic model, which can be mapped onto the ferromagnetic one
by (4.65). The whole region |Bz|/J < 1 is critical and Cxx

i,j follow a power
law with critical exponent α = 1/2. 〈σx〉 = 〈σy〉 = 0, whereas 〈σz〉 grows as
a function of Bz up to the non–analytical point |Bz

c |/J = 1. One can expect
that properties of XY models in trapped ions are similar to those of the NN
case.
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In this section we study the two cases of 1/r3-XY interactions and linear
trap-Ising interactions (see the beginning of section (4.3) for a motivation of
this distinction) by means of DMRG. m = 128 eigenstates of the reduced
density matrix are kept, and comparison with the exact solution allows us
to estimate a relative error in the calculation of the energy, δE ∼ 10−13. We
consider ion chains with N = 50 ions, and the same parameters for the ion
linear trap, and energy units, considered in the previous section.

4.4.1 Effective magnetization

The most interesting single spin observable is the magnetization in the z
direction. Here we will follow the same lines and definitions explained in
subsection 4.3.1. In Fig. 4.9 we plot the evolution of mz as a function of
Bz. The steps in the curve are due to the finite size of the ion chains. The
magnetization curve of the 1/r3–XY model follows approximately the same
relation as in the nearest–neighbor model:

mz ∝ 1− 2

π
arccos(−Bz/Bz

c ). (4.83)

We find again the same effect that in the Ising model, that is, the critical
point is shifted Bz

c (1/r
3)(≈ 0.9) < Bz

c (NN)(= 1) due to frustration induced
by long-range interaction terms.

On the other hand, in the linear trap-XY model, mz departs from the
homogenous 1/r3 case, due again to the variations of the interaction strength
along the ion trap. As we did in the case of the Ising model, we get a local
phase diagram by plotting the evolution of the single site magnetization as
a function of Bz. An interpretation of our results in terms of local quantum
phases governed by the local value of Ji,j is, however, not justified in this case,
because of the existence of long–range correlations in the critical region of
the XY model. This fact is shown in the dependence of the local critical field
which does not match the spatial profile of the spin–spin interaction (Fig.
4.10 (a)). In both 1/r3 and linear trap–XY models, Bz

c can be calculated
exactly [133, 134], and the result agrees with our numerical calculation.

A better picture of the linear trap-XY model can be obtained in terms of
Jordan–Wigner fermions [118]. If one neglects long-range terms, which lead
to fermion-fermion interactions, then σz

j corresponds to the local density of
Jordan–Wigner fermions, and the evolution of σz

j shows the emptying of
fermionic levels as −Bz (which plays the role of a chemical potential) is
decreased (Fig. 4.10 (b)).
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4.4.2 Correlation functions

Our DMRG calculations show that the phase Bz < Bz
c is also critical in

both 1/r3 and linear trap–XY models, as evidenced in the algebraic decay of
Cxx

i,j ∝ 1/|i− j|α. In this case, contrary to the Ising model, critical exponents
are slightly different than in the NN–XY model, in which α = 1/2 (see Fig.
4.11). Note that experiments with linear ion traps can detect the algebraic
decay of correlation functions in XY models, even in the presence of the finite
size effects induced by variations of Ji,j.

4.5 Conclusions

In this chapter we have discussed in detail a recent proposal [70] for the
realization of quantum spin systems with trapped ions under the action of
off-resonant standing waves. Under certain conditions the coupling between
internal states and vibrational modes can be written as an effective spin-spin
interacting Hamiltonian with a residual spin-phonon coupling. In this way,
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the physics of quantum criticality can be accessed in experiments with ion
traps. Our numerical calculations show that:

(i) In the homogeneous 1/r3-Ising model, which can be realized with ion
microtraps there is a quantum phase transition with critical field Bx

c ≈
0.83J , and same critical properties as the nearest–neighbor Ising model.

(ii) In linear ion traps, due to the non-constant separation of the ions,
the spin–spin interaction is inhomogeneous, which leads to the coexis-
tence of different quantum phases. However, critical properties can be
accessed by measuring each region in the trap separately, which only
requires partial ion local measurements (10-20 ions).

(iii) Ion trap Ising models show long–range quantum correlations that are
not present in nearest–neighbor models and can be explained by means
of a spin–wave theory.

(iv) In the case of the 1/r3-XY model the critical field is shifted to a value
Bx

c ≈ 0.9. The quantum phase diagram can be determined by measur-
ing the effective longitudinal magnetization, mz. Besides that, experi-
ments with trapped ions can access the algebraic decay of correlation
functions in the critical phase of XY models.
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Chapter 5

Interacting Phonons in Ion
Traps

Cold bosonic atoms in optical lattices is a realization of the Bose–Hubbard
Model (BHM) in a clean experimental setup, where one can tune the value
of interactions and observe quantum phase transitions in a controlled way
[9]. However, in experiments with optical lattices, atoms are separated by
optical wavelengths, and thus single particle addressing with optical means
is severely limited by diffraction effects.

Trapped ions are also an experimental system with potential applications
to the quantum simulation of many–body problems [70,71,72,73,74,75], see
also Chapter 4. It has the advantage that internal electronic or vibrational
quantum states can be measured at the single particle level [47,60], since the
distance between ions is large enough to address them individually by optical
means. In particular, Ref. [71] has recently shown that the vibrational modes
of a chain of trapped ions under suitable experimental conditions follow the
quantum dynamics of a BHM. The interaction between phonons is induced
by the anharmonicities of an optical potential, which can be created by an
off–resonant standing–wave.

In this chapter we present a theoretical study of interacting phonons
in trapped ions, and show the following results: (i) The quantum phase
transition between a superfluid and a Mott insulator phase can be induced
and observed in this system. (ii) Even though finite size–effects are important
due to the finite length of the ion chain, properties corresponding to the
thermodynamical limit can be accessed in experiments with a limited number
of ions. These include critical exponents of correlation functions, and critical
values of parameters in the Hamiltonian. (iii) The ability to control phonon–
phonon interactions allows us to realize models of interacting bosons which
are difficult to reproduce in other experimental setups, like for example,

91
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BHM’s with negative interactions, as well as models with site dependent
interactions.

The structure of this chapter is the following. In section 5.1 we give an
introduction of the Bose-Hubbard model. Then in section 5.2 we derive the
Bose–Hubbard model for phonons in a chain of trapped ions, in the presence
of the anharmonicities induced by an optical dipole potential. The DMRG
algorithm that we have used to study numerically this problem is summa-
rized in section 5.3. In sections 5.4 and 5.5, we study the quantum phases
which correspond to repulsive and attractive phonon–phonon interactions,
respectively. Section 5.6 is devoted to the case of a Bose–Hubbard model
with site–dependent interactions. Finally in the last section we summarize
our results and conclusions.

5.1 The Bose-Hubbard model

In this section we review some details of the Bose-Hubbard model that we
aim to simulate with ion traps.

5.1.1 The Hamiltonian

The Bose-Hubbard Hamiltonian was introduced in the paper by M. Fisher
et al [135]. It is defined directly on the 1D lattices, given by

H = −t
∑

i

(a†iai+1 + h.c.) + U
∑

i

ni(ni − 1)− µ
∑

i

ni, (5.1)

where a†i (ai) are boson creation (annihilation) operators on sites i, obeying
the commutation relation

[ai, a
†
j] = δij, (5.2)

and ni are the boson number operators

ni = a†iai. (5.3)

The first term t describes hopping of bosons from site to site. The second
term U represents the simplest repulsive interaction (if U > 0) between
the on-site bosons. It is possible to be extended to long-range interactions.
Finally, the third term µ is the chemical potential of the bosons. The value
of µ decides the total number of bosons. One can choose the system either
with a fixed chemical potential (at the grand canonical ensemble) or with a
fixed total number of bosons (at the canonical ensemble). It is simpler to



5.1 The Bose-Hubbard model 93

consider the system with a fixed chemical potential. However, in our ion-trap
case we will consider the system with a fixed total number of phonons.

This Hamiltonian describes the main physics of strongly correlated bosonic
systems: the competition between the kinetic potential t and the repul-
sive interaction potential U . The quantum phase transition from a super-
fluid to a Mott insulator could occur in this simplest system. There are
several ways to study this model: mean field theory (Gutzwiller Ansatz)
[119,136,137,138], renormalization group methods [135], strong coupling ex-
pansions [139], Quantum Monte Carlo [140], DMRG [141], etc. Below we list
some main properties of this Hamiltonian.

5.1.2 Superfluid and Mott insulator states

Assume that the bosonic system contains the fixed number of particles, which
is commensurate with the number of lattice sites. We consider here the
ground state of the Hamiltonian Eq. (5.1) in two regimes.

When t � U , the ground state is a superfluid state. The particles are
delocalized over all sites: the number of particles per site fluctuates and the
coherences between particles on different sites are very large. The ground
state of the Hamiltonian at U = 0 in an homogeneous system is well described
by a macroscopic wave function

|ψSF〉 =
1√
N !

(
1√
M

M∑

i

a†i)
N |0〉, (5.4)

where N is the total number of particles and M is the number of lattice sites.
|0〉 denotes the vacuum state. In the superfluid state the correlations behave
in a power-law decay.

With the increase of the repulsive on-site interaction U , a quantum phase
transition from superfluid to Mott insulator takes place at about U ≈ 2t at
zero temperature. When the interaction dominates the hopping terms, the
tunnelling is suppressed, the system tends to have one phonon per site and the
particle number fluctuations tend to zero, in order to be in the lowest energy
state. The ground state in the Mott-insulator phase is different completely
than the superfluid state. It is approximately written as a product of local
Fock states:

|ψMI〉 =
M∏

i

1√
n̄!

(a†i)
n̄|0〉, (5.5)

where n̄ = N/M means the particle number per site. The correlations decay
exponentially in the Mott-insulator phase.
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5.1.3 Tonks-gas state

Assume that the bosonic system contains a fixed number of particles, which
is incommensurate with the number of lattice sites, e.g. N = M/2. Taking
U→∞, the Hamiltonian Eq. (5.1) is then describing the hard-core bosons
with an infinite on-site repulsive interactions. The states having a finite
energy are only the ones with ni = 0 or ni = 1 on every site. Other states
with ni > 1 are excluded.

Therefore, this hard-core boson model can be written as a spin–1/2 XX
model with nearest-neighbor interactions. The two states with ni = 0 and
ni = 1 are associated with the spin up and down states. Identifying

σx
j = aj + a†j,

σy
j = −i(aj − a†j),
σz

j = 1− 2a†jaj, (5.6)

then σx,y,z
j here obey the commutation relations of the Pauli matrices and

satisfy (σα
j )2 = 1. Considering them as Pauli matrices, we have then that

the state with all spins up is the state of ni = 0, and the state with all spins
down is the state of ni = 1.

Substituting Eq. (5.6) into Eq. (5.1), we have

HXX = −t
∑

i

(σx
i σ

x
i+1 + σy

i σ
y
i+1) + µ

∑

i

σz
i , (5.7)

which is the quantum XX model we were talking about in Chapter 4. The
behaviors in the Tonks-gas phase are the same as the quantum XX model,
which can be exactly solved.

5.2 Phonon-Hubbard model in ion traps

In this section we show that under certain experimental conditions, the dy-
namics of the vibrational modes of a chain of ions satisfies the Bose-Hubbard
model of interacting phonons in a lattice [71]. Phonon number conserva-
tion is ensured whenever vibrational energies are much higher than other
energy scales in the system. In this limit, physical processes which involve
creation or destruction of a phonon do not conserve particle number and are
suppressed in much the same way as processes which do not conserve the
number of electrons or atoms in low–energy physics.
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5.2.1 Harmonic and phonon conserving approximation

Let us start by writing the Hamiltonian that describes a chain of ions in a
linear trap:

H0 =

N∑

i=1

~P 2
i

2m
+ VT +

N∑

i,j=1
(i>j)

e2

| ~Ri − ~Rj|
. (5.8)

N is the number of ions, and m is their mass. ~Pj and ~Rj are the momenta and
the absolute positions of the ions, respectively. VT is the trapping potential,
which determines the ions’ equilibrium positions. In this work we deal with
two different situations. On one hand we consider the case of ions in a linear
Paul trap, where they are confined by an overall trapping potential:

VT =
1

2
m

N∑

i=1

∑

α=x,y,z

ω2
αR

2
i,α, (5.9)

where ωα are the trapping frequencies in each spatial direction. On the other
hand, we consider ions confined by an array of separate microtraps:

VT =
1

2
m

N∑

i=1

∑

α=x,y,z

ω2
α

(
Ri,α − R̄i,α

)2
, (5.10)

where R̄j,α are the centers of each microtrap. Note that in (5.10) we assume
that the confinement is strong enough, such that each ion feels only a single
microtrap.

The equilibrium positions of the ions are given by the minima of the
trapping potential plus the Coulomb repulsion. From now on, we choose
the condition ωz � ωx, ωy, such that the ion chain is along the z axis, with
equilibrium positions given by z0

i . In the case of a linear Paul trap, described
by Eq. (5.9), the equilibrium positions of the ions have to be calculated
numerically. The distance between ions is smaller at the center of the chain.
In the case of independent microtraps (Eq. (5.10)), one can approximate
the equilibrium positions by assuming that they correspond to the center of
each microtrap: z0

i = R̄i,z. This fact has strong implications for the phonon
quantum dynamics, as we will see below.

In the harmonic approximation, H0 is expanded up to second order in
the displacements of the ions around the equilibrium positions, and we get a
set of independent vibrational modes corresponding to each spatial direction.
The phonon number is a conserved quantity if the vibrational energies are the
largest energy scale in the system. This condition can be met either in the
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case of ions in individual microtraps, or in the case of the radial vibrations of
ions in a linear trap, because the corresponding trapping frequencies can be
increased without destroying the stability of the ion chain. For concreteness
we restrict from now on to the case of vibrations in one of the radial directions,
say x, but keep in mind that our results can be applied also to the axial
vibrational modes if ions are in individual microtraps.

The Hamiltonian that governs the dynamics of the radial coordinates in
the harmonic approximation reads:

Hx0 =
N∑

i=1

P 2
i,x

2m
+

1

2
mω2

x

N∑

i=1

x2
i (5.11)

− 1

2

N∑

i,j=1
(i>j)

e2

|z0
i − z0

j |3
(xi − xj)

2 ,

where xi are the displacements of the ions around the equilibrium positions,
that is, simply xi = Ri,x, and Pi,x the corresponding momenta. The second
quantized form of this Hamiltonian is (we consider units such that ~ = 1):

Hx0 =

N∑

i=1

ωx,ia
†
iai +

N∑

i,j=1
(i>j)

ti,j

(

a†i + ai

)(

a†j + aj

)

. (5.12)

a†i (ai) are creation (annihilation) operators for phonons in the radial direc-
tion. Harmonic corrections induced by the Coulomb interaction determine
the effective trapping frequency, ωx,i which depends on the ions’ positions,
as well as the tunneling amplitudes ti,j:

ωx,i = ωx −
1

2

N∑

j=1
(j 6=i)

e2/(mω2
x)

|z0
i −z0

j |3
~ωx, (5.13)

ti,j =
1

2

e2/(mω2
x)

|z0
i −z0

j |3
~ωx. (5.14)

Eq. (5.13) yields an important result on the properties of phonons in trapped
ions: the corrections to the local trapping energy, ωx,i may depend on the
position of the ions, in case the distance between ions changes along the chain.
In [71] we have shown that in a linear ion trap, ions arrange themselves in
a Coulomb chain, such that ωx,i is an effective harmonic confining potential
for the phonons. On the contrary, in the case of an array of ion microtraps,



5.2 Phonon-Hubbard model in ion traps 97

the distances between ions can be considered to be approximately constant,
and thus this confining effect does not take place.

Before going any further, let us study under which conditions phonon
nonconserving terms can be neglected in Eq. (5.12). We define the parame-
ter:

βx = e2/(mω2
xd

3
0), (5.15)

where d0 is the distance between ions. Since we will be interested in the limit
βx � 1, we choose d0 to be the minimum distance between ions in the case of
a linear Paul trap. Phonon tunneling terms ti,j are of the order of t, defined
by:

t = βxωx/2. (5.16)

Since phonon nonconserving terms rotate fast in (5.12), we can neglect them
in a rotating wave approximation if:

t/ωx = βx/2� 1. (5.17)

In our numerical calculations, we will parameterize the tunneling of phonons
between sites by the parameter t, which corresponds, due to the definition of
βx, to the highest value of the tunneling along a chain in the case of a linear
Paul trap, and to the tunneling between nearest–neighbors in the case of an
array of microtraps.

5.2.2 Phonon–phonon interactions

Anharmonic terms in the vibrational Hamiltonian are interpreted as phonon–
phonon interactions, and can be induced by placing the ions at the minimum
or maximum of the optical dipole potential created by an off–resonant stand-
ing wave along x:

Hsw = F
N∑

i=1

cos2(kxi +
π

2
δ). (5.18)

F is the amplitude of the dipole potential, and δ determines the position of
the ions relative to the standing wave. We define the Lamb–Dicke parameter
η = kx0, where k is the wave–vector of the standing wave lasers, and x0 is the
ground–state size of the radial trapping potential. The only relevant cases
for us are δ = 0 (maximum of the optical potential), and δ = 1 (minimum).
Under the condition η � 1, we can write Hsw as a series around xi = 0.
The term that is quadratic in xi in Eq. (5.18) can be included in the har-
monic vibrational Hamiltonian just by redefining the global radial trapping
frequency:

ω2
x → ωx

(
ωx − (−)δ4η2F

)
. (5.19)
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In the case δ = 0, condition η2F � ωx has to be fulfilled, such that the
radial trapping frequency is not strongly suppressed by the standing wave,
and the system remains in the phonon number conserving regime. Under
this condition the only relevant term is thus the quartic one:

H(4)
sw = (−1)δFη

4

3

N∑

j=1

(

aj + a†j

)4

. (5.20)

We can neglect nonconserving phonon terms again under the condition Fη4 �
ωx. In this way we get, finally, the promised BHM for phonons:

HBHM
x =

N∑

i,j=1
i>j

ti,j(a
†
iaj + h.c.)

+
N∑

i=1

(ωx + ωx,i)a
†
iai + U

N∑

i=1

a†2i a
2
i . (5.21)

The on–site interaction is given by:

U = 2(−1)δFη4. (5.22)

Thus, it is repulsive or attractive depending on whether the ions are placed
at a minimum or maximum of the standing-wave, respectively.

5.2.3 Preparation and detection of SF and MI states

According to the properties of the BHM, one could propose experimental
sequences to create the superfluid-Mott insulator quantum phase transition.
A possible experimental procedure is given below:

1. Initially prepare the vibrational modes of the string of ions in the state
with zero phonons. This could reached by laser cooling.

2. Under the condition U � t, create the ground state of the phonon
system by means of sequences of blue/red sideband transitions. The
generated ground states of the phonon system here are Fock (Mott-
insulator)states localized at each ion.

3. Vary the value of U adiabatically down to a given value Uc. The adia-
batical evolution means that the phonon system remains in the ground
state. At a critical point value Uc ≈ 2t, the system undergoes a tran-
sition to a phonon superfluid.
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4. Measure the ground state of the phonon system by the method ex-
plained in Chapter 2.

We get the information of phonons by measuring the internal states of
the ions, since they are coupled each other. For example, one can apply a
blue sideband pulse for a time t and measure the photoluminescence from
each ion [60]. Repeat many times to get the averaged photoluminescence,
which is straightforward representing the probability of finding the ion in the
ground internal state,

Pg(t) =
∑

n

[

cos(
Ω

2

√
n+ 1ηt)

]2

P (n), (5.23)

where Ω is the Rabi frequency, η is the Lamb-Dicke parameter, and P (n)
is the probability of having n phonons. In this way by measuring Pg(t) one
could get the corresponding P (n). Then, the variations of the phonon density
along the chain will give a signature of superfluid-Mott insulator transition.

Finally, the complete phonon density matrix would be obtained by means
of quantum tomography [47].

5.3 Numerical method

The Bose–Hubbard Model with tunneling between nearest–neighbors has
been thoroughly studied in the past [119, 135]. It has recently received con-
siderable attention because it describes experiments with ultracold atoms in
optical lattices. In general, we expect the same phenomenology to appear
in our problem, such as, for example, a superfluid–Mott insulator quantum
phase transition. However, the situation of phonons in ion traps presents
a few peculiarities that deserve a careful analysis: the effects of long–range
tunneling in (5.21), finite size effects, as well as the possibility of having
attractive interactions.

To handle this many–body problem numerically we use the DMRG method
[76,77], which has proved to be a quasi–exact method in quantum chains. In
particular we use the finite-size algorithm for open boundary conditions. Our
problem is defined in the microcanonical ensemble, that is, we find the min-
imum energy state within the Hilbert subspace with a given number of total
phonons Nph. For this reason, we have implemented a DMRG code which
uses the total phonon number as a good quantum number and projects the
problem into the corresponding subspace at each step in the algorithm [96].

To keep a finite dimensional Hilbert space, we truncate the number of
phonons in each ion, and define a maximum value nmax, which is usually
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taken to be of the order of 6〈n〉, with 〈n〉 the mean phonon number. The
number of eigenstates of the reduced density matrix that we keep at each
step is always in the range 80− 100.

We have checked the accuracy of our method by comparing our numerical
calculations with the exact solution in the case of a system of non–interacting
(U = 0) phonons, where the ground state at zero temperature is a condensate
of phonons in the lowest energy vibrational state. We have also compared
our numerical results with exact diagonalizations of Eq. (5.21) with up to
N = 5 ions. In both cases we found agreement between DMRG and the
exact results up to machine accuracy δE ∼ 10−14.

The relevant experimental parameters of our phonon-Hubbard model are
discussed in the Ref. [71]. Typically we could choose the minimum distance
between ions d0 = 5µm and βx = 2× 10−2 � 1. Then we have ωz ≈ 177kHz
and ωx ≈ 12.5MHz for a string of ions with N = 50. The number of phonons
is Nph = N for the superfluid and Mott-insulator phases and Nph = N/2 for
the Tonks-gas phase. In the end we discuss Nph = 2N for a special case with
site-dependent interactions. All our calculations are for the ground state, i.e.
at zero temperature.

Following the discussion below Eqs. (5.13, 5.14), one expects to find
significant differences between the cases of phonons in ions trapped in a linear
trap (Coulomb chain), and phonons in an array of ion microtraps. Finite
size and inhomogeneity effects are indeed much more important in the linear
trap case, since harmonic Coulomb corrections induce an effective harmonic
trapping for the phonon field. For this reason, we always study these two
cases separately, in the different quantum phases that we will explore in what
follows.

5.4 Repulsive interactions: U > 0

We study first the quantum phases of phonons with U > 0, and both com-
mensurate and incommensurate total phonon number. In this section we
present results for a chain with N = 50 ions, and total phonon number
Nph = N in the commensurate case, or Nph = N/2 in the incommensurate
case.

The local observables that we consider are the number of phonons at each

site, nj = 〈a†jaj〉, as well as its fluctuations, δnj =
√

〈n2
j〉 − 〈nj〉2. Two–point

correlation functions have to be defined carefully, to take into account finite
size effects, for example, the variations of the density of phonons along the
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Figure 5.1: (a) Mean phonon number 〈nj〉, and (b) fluctuations δnj, at each
ion in the phonon ground state in an array of microtraps. Number of ions
N = 50, and total phonon number Nph = 50.

chain. Correlations in the number of phonons are given by:

Cnn
i,j = 〈ninj〉 − 〈ni〉〈nj〉. (5.24)

A suitable definition of correlations that are non–diagonal in the phonon
number basis is the following one [142]:

Caa
i,j =

〈a†iaj〉
√
〈ni〉〈nj〉

, (5.25)

such that correlations are rescaled by local values of the phonon density. The
rescaling is inspired by the decomposition of the phonon field in density and
phase operators, aj =

√
nje

−iφj , which is the starting point for the Luttinger
theory of the weakly interacting bosonic superfluid [143, 144, 145].

In Figs. 5.1 and 5.2, we plot the local density and its fluctuations in the
cases of an array of microtraps, and a linear Paul trap, respectively. These
figures show a signature of the different phases which can be observed in
the model defined by the Hamiltonian (5.21). Figs. 5.1(a) and 5.2(a), in
particular, show the variation of the density of phonons along the chain.
The evolution of the density profile shows the transition from the phonon
superfluid to the Mott–insulating phase. When t � U , the ground state of
the system is a condensate such that all the phonons occupy the lowest energy
vibrational mode. In the case of a linear Paul trap, phonons are confined in
the center of the chain, due to the effective trapping potential induced by the
nonconstant ion–ion distance. At U � t, the ground state is a phonon Mott
insulator with approximately one phonon per site, and no phonon number
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Figure 5.2: (a) Mean phonon number and (b) fluctuations, at each ion in the
phonon ground state in a linear Paul trap. N = 50, Nph = 50.

fluctuations. Note that due to the effective harmonic trapping potential, the
Mott phase in the whole chain is reached for lower values of U in the case
of the array of microtraps (Fig. 5.1) than in the linear Paul trap case (Fig.
5.2).

In the following subsections, we study these two quantum phases sepa-
rately, paying particular attention to their correlation functions.

5.4.1 Superfluid phase

When the tunneling dominates the on–site interactions, the system is in the
superfluid phase1. The non-interacting ground state is given by a condensate
solution in which the Nph phonons are in the lowest vibrational mode:

|ψSF 〉 =
1

√
Nph!

(

1√
N

∑

i

M0
ia

†
i

)Nph

|0〉, (5.26)

whereM0
i is the wave–function of the lowest energy vibrational mode. Inter-

actions suppress long range order in 1D, even in the weak interacting limit,
U � t, in which Luttinger liquid theory allows us to make predictions on the

1Note that long–range order is destroyed by quantum fluctuations even at zero tem-
perature in one spatial dimension. However we use here the usual terminology in lattice
models, and choose the term “superfluid phase” for the quantum phase U < Uc of the
Bose–Hubbard model. This phase does not show long–range order, but algebraic decay of
the phase correlations.
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Figure 5.3: Correlation functions (a) Caa
i0,j and (b) Cnn

i0,j as a function of co-
ordinate j, at the superfluid phase (U/t = 0.1) in an array of ion microtraps.
We choose i0 = 26 (center of the chain), N = Nph = 50. The dotted and
solid lines are numerical results and fittings in the region where the functions
show algebraic decay.

scaling of correlation functions:

Caa
i,j ∝ |i− j|−α,

Cnn
i,j ∝ |i− j|−2, (5.27)

where α depends on the parameters of the model:

α ∝
√

U/t

n0
. (5.28)

In deriving (5.27) one has to neglect phonon tunneling beyond nearest–
neighbor ions, and assume an homogeneous system [143]. In the following
we will check if Luttinger theory describes also our numerical results in the
case of phonons in a chain of trapped ions, by fitting our results to the form
(5.27).

(1) Array of microtraps. We start with the case of the superfluid phase
in an array of ion microtraps, see Fig. 5.3. Correlation functions Caa

i,j and
Cnn

i,j decay algebraically in an intermediate range of ion–ion separations, with
exponents which satisfy the predictions of Luttinger theory. In particular,
the evolution of α in Eq. (5.27) is well described by the Luttinger liquid
scaling law (5.28), as shown in Fig. 5.4.

(2) Linear ion trap. In the case of ions in a linear Paul trap, finite size
effects play a more important role, because of the inhomogeneities of the on–
site phonon energy. Correlation functions still decay algebraically for short
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Figure 5.4: The evolution of the exponent α of Caa
i0,j as a function of U/t

in the regime of superfluid phase, in an array of ion microtraps (i0 = 26,
N = Nph = 50). The dotted line is from numerical data, and the solid line

the fitting result from the Luttinger liquid, that is, α ≈ A
√

U/t
n0

, where the

coefficient A ≈ 1.68.

distances in the superfluid regime, but boundary effects spoil this behavior
at large separations between ions. In the algebraic regime, exponents are
close to those predicted by Luttinger theory in the homogeneous case, see
Figs. 5.5 and 5.6.

Due to the localization of phonons as we increase U/t, a Mott insulator
phase appears first at the sides of the ions chain, which coexists with a
superfluid core at the center. This coexistence of the phases can be observed
in the correlation functions, which show regions of algebraic or exponential
decay, as shown in Fig. 5.7.

5.4.2 Mott-insulator phase

In the commensurate case, by increasing the on-site interaction U , a quantum
phase transition from a superfluid to a Mott-insulator state takes place at
about U ≈ 2t. In the limit in which interaction dominates over hopping, the
ground state for a commensurate filling of n̄ particles per site is simply a
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Figure 5.5: Correlation functions (a) Caa
i0,j and (b) Cnn

i0,j at the superfluid
phase U/t = 0.2 in a linear Paul trap (N = Nph = 50). The dotted lines
are numerical data, and the solid lines are fittings in the region where the
correlations decay algebraically.

product state of local phonon Fock states,

|ψMI〉 =
N∏

i=1

1√
n̄!

(a†i )
n̄|0〉. (5.29)

In the Mott insulator phase correlations decay exponentially with distance,
Caa,nn

i,j ∝ e−|i−j|/ξ, where ξ is the correlation length. The correlation length
diverges when approaching the quantum phase transition.

(1) Array of ion microtraps. In Fig. 5.8 (a) we plot the correlation func-
tions in the phonon Mott phase in the case of an array of ion microtraps.
These curves can be fitted to an exponential decay, and the correspond cor-
relation lengths are plotted in Fig. 5.8 (b) as a function of the interaction
strength. Due to the finite size of the system, ξ does not diverge at the
critical value of U . However, the extrapolation of the curves in the linear
regime allows us to estimate the critical point, which lies at Uc/t ≈ 1.55.
This critical value is smaller than the one in the BHM with tunneling be-
tween nearest–neighbors only, Unn

c /t ≈ 2. The condition Uc < Unn
c is due to

the frustration induced by hopping between next–nearest–neighbors, which
makes the superfluid phase more unstable against the effect of on–site inter-
actions.

(2) Linear ion trap. In the case of a linear trap, the behavior of spatial
correlations is similar, see Fig. 5.9. Cnn

i,j is difficult to fit due to the few
points with exponential decay, therefore we only plot the correlation length
corresponding to Cbb

i,j. Due to the effective phonon trapping potential, the
Mott insulator and superfluid phases coexist in a range of values of U (Fig.
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Figure 5.6: The evolution of the parameters α in Caa
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from α ≈ 0.215
√

U/t
n0

, corresponding to the Luttinger liquid theory.

5.7). For this reason, in the case of a linear Paul trap, one cannot follow the
extrapolation procedure of Fig. 5.8 to find a critical value of the interaction.

Finally, in the Mott-insulator phase the long-range hopping terms which
decay like 1/|z0

i − z0
j |3 play a major role, since they induce a peculiar long-

range correlation in this phase. In Fig. 5.10, we show that Caa
i,j indeed also

behaves like 1/|z0
i −z0

j |3 at long distances. The existence of power–law decay
in correlation functions of non–critical systems due to long–range interactions
was also observed in the case of spin models in trapped ions, see the discussion
in Ref. [72].

5.4.3 Tonks-gas phase

We turn now to the incommensurate filling case, where in the limit U � t
the system forms a Tonks-Girardeau gas, which can be described in terms of
effective free fermions. A Tonks-Girardeau gas has recently been realized in
the experiments with ultracold bosons in an optical lattice [33, 35].

(1) Array of ion microtraps. We have studied numerically the Tonks–
Girardeau regime in the case of phonons in ion traps, starting with the case
of an array of ion microtraps with N = 50 sites and Nph = 25 phonons, that
is, 1/2 filling. The density of phonons evolves from a superfluid to a Tonks-
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Figure 5.7: Correlation functions (a) Caa
i0,j and (b) Cnn

i0,j in a linear Paul trap
when U/t = 2 (N = Nph = 50). Both of them show the coexistence of
superfluid and Mott-insulator phases. In (a) and (b), the insets (i) show
the exponential decay in the region of the Mott phase, and the insets (ii)
show the occupation number and fluctuations at the same parameters. The
exponents α of the algebraic decay are also given in the figures. The dotted
and solid lines are numerical and fitting data, respectively.

gas profile when increasing the interaction, and at the end it approaches
a constant value of 1/2. Correlation functions decay algebraically, with an
exponent that approaches α ≈ 0.58 for large interactions (see Fig. 5.11).
Note that α deviates from 1/2, which is the value that corresponds to a Tonks
gas with nearest–neighbor tunneling only. The deviation can be explained by
the mapping from the BHM model (5.21) with U � t to an XY model with
antiferromagnetic interactions of the form Ji,j = J/|i− j|3. The long–range
terms in the antiferromagnetic interaction induces a change in the exponent
of the correlation functions, as shown with the numerical calculations of our
previous work on spin models in ion traps [72].

(2) Linear ion trap. We study now the case of phonons in a linear Paul
trap under the same conditions, see Fig. 5.12. Correlation functions decay
algebraically, with an exponent that is extrapolated to α = 0.53 in the limit
of strong interactions. This result can also be explained by the mapping to
the XY model, and coincides with the result found in [72].

In order to test if the system is really in the Tonks–gas phase, we introduce
the quantity 〈O〉 = 〈∑i ni(ni − 1)〉/N , which measures the probability of
phonon occupancies larger than one. In the Tonks–gas regime 〈O〉 ∼ 0. The
parameter 〈O〉 as a function of the interaction U is plotted in Fig. 5.13,
showing the continuous evolution into the Tonks–gas regime.

Our results are consistent with the behaviors observed in optical lattices
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i0,j at U/t =
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extrapolation in (b) show that the critical point in the microtraps is Uc/t ≈
1.55.

[33, 35]. The numerical analysis shows that phonons in ion traps are also a
good candidate like atoms in optical lattices for studying Tonks gases.

5.5 Attractive interactions: U < 0

The BHM with attractive interactions in optical lattices has been the focus of
recent theoretical studies [146,147,148]. The sign of phonon–phonon interac-
tions in trapped ions can be made negative simply by changing the relative
position of the standing–wave relative to the ion chain. For a qualitative
understanding of this model, it is useful to consider a Bose–Einstein conden-
sate in a double well potential [147,149,150]. In a symmetric potential in the
absence of tunneling, energy is decreased when bosons accumulate in one of
the wells. When tunneling is switched on, the ground state of the system is
a linear superposition of states with all the bosons placed in one of the wells,
showing large phonon number fluctuations.

The increase of phonon number fluctuations in our model when we switch
on a negative interaction is also shown in our numerical calculations. In Fig.
5.14, the density at the center of the ion chain and its fluctuations increase
with the magnitude of the interaction for N = 10 ions and Nph = 10 phonons
with open boundary conditions. Due to the open boundary condition and
the symmetry of the potential, the phonons tend to collect themselves on one
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i0,j at the Mott
phase U/t = 2.8 for a linear Paul trap (N = Nph = 50, i0 = 26).

of the two sites at the center when increasing |U | with an even number of
sites. The ground state is then a superposition of Nph phonons on site N/2
and Nph phonons on site N/2 + 1.

When |U | is large enough, our numerical calculations yield a ground state
with all the phonons in a single ion, such that the spatial symmetry of the
problem is broken. This effect is an artifact of the DMRG calculation, due to
the small energy difference between the exact ground state of the system and
the one which breaks the spatial symmetry. Thus, in order to study properly
the phonon phases with negative interaction, it is convenient to define the
following order parameter, whose value is independent on the breaking of the
spatial symmetry in the problem:

〈O〉 =
1

N2
〈
∑

j

(a†jaj)
2〉. (5.30)

In Fig. 5.15 we show the evolution of this quantity, which shows a sudden
increase for negative interactions.

5.6 Site-dependent interactions

Phonons in trapped ions have a higher controllability than ultracold neutral
atoms in optical lattices, due to the possibility of individual addressing. In
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Figure 5.10: The correlation Caa
i0,j at the Mott phase U/t = 6 in an array of

microtraps (circle markers) and a linear Paul trap (square markers), respec-
tively. N = Nph = 50, i0 = 26. The inset shows the power-law decay with
exponent α ≈ 3 for the microtraps only.

particular, on–site interactions can be induced in such a way that they depend
on the ion position. In this section we present a model which shows how this
possibility can be exploited for the engineering of quantum phases.

Let us consider repulsive on-site interactions which vary over the ion chain
in the following way:

Ui = Uodd = U, i odd,

Ui = Ueven = 2U, i even, (5.31)

We focus on the case with filling factor 2, Nph = 2N , in the regime where
interactions dominate over tunneling, U/t� 1. In the limit t = 0, the ground
state of this model is highly degenerate. For instance, in a chain with two
sites the ground state manifold in the Fock basis spans the states |2, 2〉 and
|3, 1〉. In a chain with even number N of sites and Nph = 2N , the ground

state degeneracy is

(
N
N/2

)

.

Our DMRG algorithm allows us to calculate the density and fluctuations
in the phonon number, which are shown in Fig. 5.16, for the case where the
interactions defined by Eq. (5.31) are induced on an array of ion microtraps.
In the ground state of the chain, the number of phonons fluctuates between
|2〉 and |3〉, and |2〉 and |1〉, in odd and even sites, respectively.
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Figure 5.11: (a) Densities of phonons in an array of microtraps with N = 50,
Nph = 25. (b) Fluctuations at the same conditions. (c) The correlation
function Caa

i0,j (i0 = 26) at Tonks-gas phase U/t = 10 with exponent α ≈ 0.54,
where the dotted and solid lines are numerical and fitting data, respectively.
(d) Evolution of exponent α of Caa

i0,j with the interaction U/t, which would
approach α ≈ 0.58.

This model can be understood in the hard–core boson limit by introducing
a spin representation, which is valid near filling factor 2. At each site in the
ion chain, we define a two level system by means of the following rule:

|0̄〉i = |2〉i, |1̄〉i = |3〉i, i odd,

|0̄〉i = |1〉i, |1̄〉i = |2〉i, i even. (5.32)

Where |0̄〉 and |1̄〉 are the two levels which define the spin states of the
spin representation of the hard–core bosons. Spin and phonon annihilation
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Figure 5.12: (a) and (b) show densities and fluctuations of phonons, respec-
tively, in a linear Paul trap with N = 50 and Nph = 50; (c) The correlation
Caa

i0,j at the Tonks-gas phase U/t = 6, whose exponent is α ≈ 0.48; (d) Evo-
lution of the exponents α of Caa

i0,j, approaching α ≈ 0.53. In (c) the dotted
and solid lines represent numerical and fitting data, respectively.

operators satisfy:

σ+
i =

1√
3
a†i , i odd,

σ+
i =

1√
2
a†i , i even. (5.33)

where the equality is understood to hold within the ground state manifold.
In terms of this operators, the Hamiltonian of the system is described by an
XY model (for simplicity we consider here the nearest-neighbor case):

H = J̃
∑

i

(σ+
i σ

−
i+1 + h.c.), (5.34)

with J̃ =
√

6t. Under the condition Nph/N = 2, the ground state of our



5.6 Site-dependent interactions 113

0 5 10
0

0.5

1

1.5

U/t

〈O
〉

 

 

micro.
Paul.

Figure 5.13: The evolution of the parameter 〈O〉 with the interaction U/t
in an array of microtraps (solid line) and a linear Paul trap (dashed line).
N = 50, Nph = 25.

hard–core boson Hamiltonian corresponds to the solution of the XY model
(5.34) with the constraint

∑

i σ
z
i = 0.

Spin-spin correlation functions are related to the bosonic correlations
functions of the BHM by the relation Eq. (5.33). In Fig. 5.17 we plot
〈σ+

i σj〉 calculated by means of correlation functions of hard–bosons. This
correlation function shows an algebraic decay for short distances, which is
spoiled for long separations between ions due to boundary effects. The expo-
nent α ∼ 0.56, differs from the one that we expect from the mapping to the
XY model, that is, α = 0.5, due to the effect of further than nearest–neighbor
interactions terms, which we have neglected.

Another interesting possibility is to study the phase diagram of the BHM
with filling factor 2, and alternating interactions, beyond the XY point
Ueven = 2Uodd. If we change the ratio Ueven/Uodd in the vicinity of this
point, the ground state degeneracy with zero tunneling is lifted. The sys-
tem is in a Mott insulator phase, with constant phonon density if Ueven <
2Uodd, |2, 2, 2, . . . 〉, or alternating occupation numbers if Ueven > 2Uodd ,
|3, 1, 3, 1, . . . 〉. The phase diagram as a function of the ratio Ueven/Uodd,
shows two gaped regions, separated by a single critical point, which corre-
sponds to the XY limit studied above. This is shown in Fig. 5.18, where we
calculate the energy gap ∆E for small chains (N = 6).

To generalize, the same also takes place with other distributions of the on–
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Figure 5.14: (a) Density of phonons and (b) phonon number fluctuations
in an array of microtraps with N = 10, Nph = 10, and negative on–site
interactions . (c) Density of phonons and (d) phonon number fluctuations in
a linear Paul trap under the same conditions.

site interactions, whenever the number of sites where phonons interact with
U is the same as the number of sites with 2U interaction. For example, the
chain can be divided in two regions, left and right, such that the interactions
depend on the site in the way U, U, ..., 2U, 2U, ..., that is, Ui = Uleft = U and
Ui = Uright = 2U .

5.7 Conclusions

In conclusion, we have studied the quantum phases of interacting phonons in
ion traps. The superfluid–Mott insulator quantum phase transition can be
detected by the evolution of the phonon density profile, as well as by the di-
vergence of the correlation length near the quantum critical point. Although
boundary effects are important, specially in the case of a Coulomb chain of
ions, correlation functions show a similar behavior as those of systems in the
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Figure 5.15: Evolution of the order parameter 〈O〉 with the ratio U/t for
an array of ion microtraps (solid line) and a linear Paul trap (dashed line).
N = Nph = 10.

thermodynamical limit. For example, Luttinger liquid theory gives an ap-
proximate description of the algebraic decay of correlations in the superfluid
regime.

We have also shown that the ability to control phonon–phonon interac-
tions allows us to study a variety of situations like attractive interactions,
where a phase with large phonon number fluctuations takes place. The ability
to tune locally the value of the on–site interactions also leads to the realiza-
tion of new exciting models, where the degeneracy of the classical ground
state can be tuned by choosing properly the value of the phonon–phonon
interactions.
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in an array of ion microtraps, with the on–site interactions defined by Eq.
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excited state as a function of Ueven/Uodd. Uodd/t = 40. For simplicity, we
consider here a small system of ions N = 6.





Chapter 6

Conclusion and Outlook

In this thesis we have studied quantum simulations with trapped ions. By
using internal states coupling to vibrational modes one can induce effective
spin-spin interactions in such a way that a variety of quantum spin models can
be implemented, such as quantum Ising, XY and Heisenberg models. On the
other hand, radial phonons in a linear Paul trap or in an array of microtraps
are similar to bosons in optical lattices. Inducing effective phonon-phonon
interactions from the anharmonic terms of the expanding of the off-resonant
standing wave, one can get the Bose-Hubbard Hamiltonian. Superfluidity
and Tonks-gas of phonons could be observed for the first time in a linear
Paul trap or an array of microtraps.

In ion traps quantum correlations can be studied with a degree of con-
trollability that still is not possible in solid state or optical lattice set-ups.
In this way a number of phenomena from quantum many body physics could
be accessed for the first time in experiments. These quantum models that
can be realized with trapped ions show also new remarkable features like co-
existence of different phases and quantum correlation induced by long-range
spin-spin interactions or boson-boson hoppings.

Trapped ions are ideally suited to build quantum simulators and explore
a variety of quantum phase transitions. They have the advantages that
quantum states can be prepared and measured at the single particle level,
holes, impurities and defects which always exist in real materials can be
avoided or can be added on purpose, dynamic behaviors can be investigated,
and so on. In this thesis we exposed only a few applications of quantum
simulations with trapped ions. In fact, our proposals with some modifications
could be used to simulate many other systems of great interest in condensed
matter physics. For instance, we can simulate quantum spin ladders, when
we design that two XY chains are coupled by Ising interaction. A spin-boson
Hamiltonian can also be realized under certain conditions when an ion is
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in an off-resonant standing wave, where the bosonic bath is given by the
vibrational modes of the ion. Our proposals have also potential applications
to the 2D system of microtraps or the Penning trap. Furthermore, designing
different laser configurations would lead to other novel Hamiltonians.



Bibliography

[1] T. Giamarchi, Quantum Physics in One dimension (Oxford University
Press, Oxford, 2004).

[2] H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping,
(Springer-Verlag, New York, 2002).
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Rev. Lett. 92, 130403 (2004).

[37] M. Greiner, C. A. Regal, and D. S. Jin, Nature 426, 537 (2003).

[38] M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, C. Chin, J. H. Den-
schlag, and R. Grimm, Phys. Rev. Lett. 92, 120401 (2004).

[39] M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, A. J.
Kerman, and Ketterle, Phys. Rev. Lett. 92, 120403 (2004).

[40] T. Bourdel, L. Khaykovich, J. Cubizolles, J. Zhang, F. Chevy, M. Te-
ichmann, L. Tarruell, S. J. J. M. F. Kokkelmans, and C. Salomon,
Phys. Rev. Lett. 93, 050401 (2004).

[41] J. Kinast, S. L. Hemmer, M. E. Gehm, A. Turlapov, and J. E. Thomas,
Phys. Rev. Lett. 92, 150402 (2004).

[42] P. K. Ghosh, Ion traps, (Oxford University Press, 1995)

[43] A. Steane, Appl. Phys. B. 64, 623 (1997).

[44] D. J. Winland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and
D. M. Meekhof, J. Res. Natl. Inst. Stand. Technol. 103, 259 (1998).

[45] D. F. V. James, Appl. Phys. B 66, 181 (1998).
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