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Abstract: The interpretation of high-power laser experiments at MPQ requires numerical simulation
of radiation hydrodynamics in two and three spatial dimensions. In the experiments, high-Z target
configurations of different geometries are heated by the laser pulse, and the energy deposited in
the laser spot is transported away predominantly by soft x-rays. The difficulty is that radiation
transport proceeds through expanding plasma which is optically thick in some regions and optically
thin in others. A diffusion description is inadequate in this case. A new numerical code has been
developed which describes hydrodynamics in two spatial dimensions (cylindrical r, z geometry) and
radiation transport along rays in three dimensions with the 4w solid angle discretized in 64 directions.
Matter moves on a non-structured, triangular mesh. Radiation.is transported according to a novel
scheme; radiation flux of a given direction enters on two (one) sides of a triangle and leaves on the
opposite side(s) in proportion to the viewing angles depending on the geometry. This scheme allows
to propagate sharply edged beams without ray tracing, though at the price of some lateral diffusion.
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1. Physical and Numerical Model

1.1 Radiation transport equations

In ICF targets and related laser-plasma experiments, the velocity of matter is usually much
smaller than the speed of light. The radiation field can be regarded as quasi-steady at any instant of
time. The spectral radiation intensity (7, 7, v) is determined (neglecting scattering) by the transport
equation (Zel’dovich 2.34)

Ig =1
A
where A is the mean free path of radiation, depending on the frequency and the material density

and temperature, and Ig is the planckian equilibrium intensity given by the matter temperature
(Zel’dovich 2.11) according to

an.Vi=
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The values of the physical constants are ¢ = 2.998 - 10%cm/sec, h = 6.625 - 10~%7erg - sec, and
k = 1.602-10"*2%erg/eV. Once the radiation field is known, the energy gained per unit volume of
matter is given by the integral over the entire solid angle and over all frequencies (Zel’dovich 2.55)

Q=/I“AIE diidv.

In the case that )\ does not depend on frequency, one can intregate the above equations over all
frequencies. The integrated radiation intensity I’(A,7) = [ I dv is determined by

L-r

n-VI'=

and the energy gained by the matter by

7
Q:/I /\IEdﬁ,

where I% is the equilibrium intensity given by (Zel'dovich 2.14)

_ 275k
7= 15R3c2

These expressions can also be used in the more general case of A depending on the frequency, assuming
some appropriate mean value for A. This is the so called ”Gray Approximation”. Average values
commonly used for the mean free path are the Planck mean (Zel’dovich 2.105) and Rosseland mean
(Zel’dovich 2.77), appropriate for optically thin (A > L), and optically thick (A <« L) regimes,
respectivelly (L being a typical length of the problem).

In a multigroup treatment, on the other hand, one integrates over N intervals in frequency,
obtaining N equations, each similar to te one above, but with a different meaning of I;. For simplicity,
we will consider only the gray case (the primes will dropped in the following development). This is
what is implemented currently (July 1992) in the code. Typical values of A are summarized in the
appendix.

=1.03- 10" 2erg/cm? - sec - evt.




1.2 Discretization in direction

We consider only axisymmetrical configurations. In cylindrical coordinates (z, =, and ¥), all
quantities are independent of ¥%. The unit vector in the direction of radiation propagation is written
as

R = cos §u, + sind cos @i, + sindsin iy

The transfer equation for the intensity I = I(r, z,8, ¢) is now

sin9(cos¢? Sl:égi)+ Hg IE/\—I,

whereas the energy deposited into matter becomes

=[]

We assume also mirror symmetry for each plane containing the Z-axis; I(¢) = I(—¢). The planar
case can be considered as a limit of the axisymmetrical case when r — oo, and will be not discussed
separately. The radiation field will be first discretized in direction. The unit sphere is divided into a
finite number of zones (beamlets), and a uniform value of intensity is assumed in each. For clarity,
this procedure will be done in two steps. First we subdivide the range of variation of ¢ into M
intervals, assuming the intensity to be a function of ¢ only, in each of them. I(r,z,6,¢) = Li(r, 2, ¢)
for 6; < 8 < 6;41, being 6, = 0, and fpr41 = 7. Multiplying the transfer equation by sin§df, and
integrating over each interval (lowest order moment, in order to conserve the number of photons), one
arrives at a set of equations in the form

T-Ig ;o4 40 dé.
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with the coefficients

Bip1 — b + sin 26; — sin 26; 41
2 4
cos 260; — cos 26,4,
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v; = cos§; —cos by

a; =

Bi =

The deposition of radiation into matter becomes
T L-Ig
=% | 5

In a second step, we subdivide one half of the range of variation of ¢ (the other half is symmetric as
pointed out above) into N; intervals (this number depending on i in general), and assume the radiation
to have constant intensity in each: IL(r,z,¢) = L](r z) for ¢ij < ¢ < ¢ij+1 being ¢,1 = —m,and
#in,+1 = 0. Integrating the above equations one arrives at

Ok

Ii; — Iis 8I;; Ig ~ I;;
.J-a—r+B.‘j-1]—r’—* =

+ Cf,-—a—;i = Dij =
with
Aij = ai(sin ¢ij 41 — sin @;;)
Bij = —aisin gijq
Cij = Bi(bij+1 — $ij)
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Di; = 7i(#ij+1 — #ij)-
Observe that the term 8I;/0¢ is singular at ¢; because I; is assumed discontinuous there. Although
its integral can be computed there, it is not clear how to distribute its value between two adjacent
intervals. To solve this ambiguity, we use the following physical argument: this term takes into account
that photons traveling in straight lines change from one beamlet to the other due to a geometrical
effect in cylindrical coordinates. It is reasonable to assume that the term in equation for I;; depends
on the intensity I;; - of the beamlet from which the photons are coming, but not on the intensity Ii; 41
of the beamlet to which they are going. This assumption together with the fact that I = Ig = Const.
must be a solution, determines completely this term. The deposition of energy into matter can be

written as
Q _ 2 Zi,j D;jI,‘j - 411'[5
3 :

The coefficients satisfy the following properties:

ZA;jzo
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In order to get an equation in conservative form, suitable to be discretized in space, one can define a
new variable [';; = 2xr[;;. The equations now take the form

OTyj  Byly = Bij-alij-1 | o OLis
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The amount of energy deposited in a toroid, the section of which is 4, is given by

[orrqiras= Y [ <20 ardz = =3 [ V- Syaras
A 7 A - G a

2rrQ =

where the quantities 5;; = 2 (Ai;Tyju- + Cij[iju.) are the energy fluxes (times 27r) carried on by
each beamlet. Finally, we can define a new system of coordinates

[=zcosy+rsiny
s==—zsiny +rcosyp.
Choosing tan ¥ = A;;/C;j, one arrives at equations in the form

8I‘,-,- B.'jF.']‘ - B;,-_II‘.-,-_I _ . 27!’1'[5 - I‘,'j
AT r =P

-

S.'J' = QE;jI‘,'jﬁ(

Ei; = ‘/A;”,--FC;"J-.‘

This defines the way in which the transport will be solved. One considers successively groups of
beamlets with the same value of i. In each group one solves first the equation for [; along lines of

E

where
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constant s. The natural boundary condition is the value of the incident flux on the matter at | = {n;n.
From this point one integrates the above equation up to [ = ln4z. The term B;;T';j/r represents the
transfer of photons to the next beamlet, which is zero in planar geometry (when r — oo). Once Ty is
known, one can solve a similar equation for I';2, in which the term B;;_1Tij -1/ represents the transfer
of photons from the previous beamlet. A reflecting boundary condition can be easily implemented by
first storing the values of the outgoing ['s, and later using them in the boundary conditions for the
incoming I's.

1.3 Discretization in space

To use the algorithm as described above, the separation between ray paths must be smaller than
the minimum size of the mesh, in order to avoid numerical noise. But computational grids in typical
radiation hydrodynamical problems can be very distorted with some of the cells having a very small
thickness. The number of rays would be very large in such cases. We prefer to define the IVs on the
mesh as any other quantity, so that the number of operations scales as the number of elements in the
grid. We use a non-structured (ordered in an arbitrary way ) grid formed by triangular elements. We
define the values of I''s on the interfaces between elements. This is the natural place to define a flux.
For a given beamlet, we compute the outgoing fluxes in each cell as a function of the incoming ones.
This implies two cases: 1) cells with one input and two outputs, ii) cells with two inputs and one
output. Inside each cell, we approximate A,I'j;_1, and r by constant values. The transport equation
can be written as

or BT 2nrlg - T
Eg+m - T=P——H—
where R = (r), T = (Ti;~1Bij—1)/ R, and the subindexes have been dropped. This equation can also

be written as
or Tg-T

BT T ag

with Ag = E/(D/A + B/R), and T'g = (27rIgD/A + T)/(D/X + B/R). To apply this equation to
a triangular cell, we assume first a mean value of I'g over each side, so that the source term I'g is a
continuous function. Its continuity is required in order to recover the diffusion behaviour when A — co.
In our numerical scheme, temperature and velocity are defined at the nodes (vertices of triangles),
because they must be continuous in space, while density and material properties are defined at the
cells centers, so that composite targets can be described properly. The value of A is computed as a
function of cell density, composition, and temperature (when required, a cell value of a node centered
quantity is obtained as a mean value). The values of I'g are obtained with the mean values of r, and
Ig (= oT*/m), at the interfaces. Consider first a triangular cell of type i (Figure 1a). This can be
divided into two triangular zones, each with only one input and one output (Figure 1b). Further, we
can aproximate each of them, by a rectangle of the same area and height (Figure 1c). The problem is
thus reduced to an one-dimensional one of the form:

8l S-—1I [
5= S=385,+ E(Sb —- Sa), 100) = I,

with the solution

IL) = (I, = Sa)e 2 + 5y — (1 ~ e—L/,\)/\Sb z Sk

_JEK=)ds _Sa+s >
(s = 222 - 2 - L),

Applying these formulas to our problem, one arrives at
A A
€4 = (r%€ - 08¢ + SE(T§* - TE)n + 164 - L(r§* - 15°
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A A
[48 = (15¢ — 15 + 22(14° -~ T§%)n + T4 - =7 (rg? - T£°)

_ fTEA+ ATE8 +TEC
- 2

with 7 = e~9/*&, In the case of a cell of type ii, one proceeds in a similar way, obtaining

(F>ABC = fc<F>AA,C +fb(r)ABA’ _ %f‘(chCA w beAB _ FBC)

I\BC = fcl-\CA' +fbrA'B

I8C = (f(T°* - T§*) + fo(T® ~TE®) + Su)n +T2° - 5,

f:.T§* + fiT3% + TE°
T 2

with S, = Ag([2C - f.TE* — £, T'4B)/d. In this case, the two fluxes coming out of the two halfs of
the cell have been mixed together. Although this will introduce some sort of numerical diffusion, its
effect is small in comparison with other discretization effects, e.g. the finite number of directions or
cells. Once the fluxes on the sides of a cell are known, the deposition of energy in the cell is given by
(cell of type i):

(I\)ABC -

A
+ _dE_(chCA +be1AB —FBC)

2EH(TBC — £,TC4 — f,T45).

The mean value (I')A8€ will be used to compute the value of T, i.e. the quantity of photons changing
to the next beamlet inside of this cell. Once the dumped energy in each cell is known, it is necessary
to distribute it to the nodes, where the energy equation has to be solved. For optically thin cells
with positive deposition (the cell absorbs radiation), the energy is divided into three equal parts.
If the deposition is negative (the cell emits radiation), the energy emitted by each node is assumed
proportional to its temperature raised to the fourth power. This avoids to subtract energy from a node
with small or zero temperature. For optically thick cells the algorithm is more sophisticate. Consider
for the moment planar geometry. The basic idea is that inside each cell exists a quasi-equilibrium

value of T' given by
I.,~Tg—-2A s
eq = L1lE E 3l
Only at the places where T is different to this value, there is energy deposition or absorbtion. This can
occur only at the entrance of the cells, because inside the cell I' goes to ['g in a distance of the order
of \. Let us consider, for example, a cell of type i, in which the side BC is receiving some intensity

I'BC. The energy deposited there (by this beamlet) would then be
HE(TBC -T.,)

and would be distributed in equals parts between nodes B and C. Adding the contributions of the
three sides of a cell for all beamlets, gives the same total as adding all the cell depositions in the
form given above. (Terms containing the space derivative cancel when added for three sides, and on
the other hand Y. EH = ¥ E(H:cosy — Hysiny) = H;Y C — Hy 3 A = 0). The value I'BC is
(except at the boundaries) very close to the quasi-equilibrium value in the previous cell. The dumped
energy at the interface is thus proportional to the jump of the first derivative of I'g. This remains
true when one adds the contributions of all beamlets: the deposited energy in each interface is the
difference between the thermal flows of adjacent cells. This is equivalent to apply FEM (the finite
element method) in the optically thick limit. For cylindrical geometry, things are just a bit more

complicated. One has to use
2rrlg

Peo =T T DR/

to be consistent in the energy deposition.
Using this method, we have a correct description for both the optically thin and thick limit, and

a smooth transition between them; the energy is strictely conserved, I is guaranted to be positive, and
the boundary conditions are in general rather trivial (just specify incident Ig at boundary interfaces).
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In practice, we subdivide the unit sphere into 32 or 64 beamlets. By symmetry only one half has to
be solved.

1.4 Lagrangian Hydrodynamics

To solve the motion of the matter, we use a simple scheme that can be thought of as a straight-
forward extension to two dimensions of the lagrangian method described in the classical book of
Richtmyer and Morton. We consider density, temperature, and pressure as cell centered quantities,
and velocity, coordinates, and inertial mass as defined at the nodes (vertices of triangles). In develop-
ing the scheme for radiation transport in the previous section, we have assumed temperatures at the
nodes. We have to deal with two diferent sets of temperatures. We consider the ones at the nodes as
the primary ones, and we take mean values when we need values at the cells centers. Consequently,
we will solve the energy equation at the nodes. Once we have temperatures and densities at time ¢,
we can compute the pressure ( at the moment only ideal gas equation of state is implemented in the
code, so this process is very simple). We advance the configuration of the mesh, computing the new

coordiantes by
7t + At) = 7(t) + v(t)At.

New values of volume and density are then obtained. We take the expression #(rmin +7maz) X Area as
the volume of a cell. It gives better results than taking the volume of the revolution toroid associated
with the cell, in special near the symmetry axis. In order to stabilize the scheme in presence of shock
waves, it is necessary to include some sort of dissipation in the form of an artificial viscous pressure.
We use ¢ = a?p Y min(0, 8l /8t)?, where a is a coefficient of order unity (a = 2 in our computations),
and [, are the characteristic lengths of the cell. We consider as such, the length of the longest side,
and the height of the cell in the direction perpendicular to this side. In addition, we require ¢ = 0
if the volume of the cell is increassing. This is sometimes necessary to avoid instabilities. The new
pressure is determined by an implicit equation stating conservation of the internal energy during the
time step

+q) x AV.

A(—I———P X V)= AF; = _(P(t)+P(t+At)
v-1 2

The accelerations of the nodes are computed considering the sides of the cells as some sort of rigid walls
that transfer differential cell pressures to the nodes. The mass of each node is obtained by adding some
fraction of the mass of the all cells touching the same vertex. We have tested two methods to distribute
the mass of the cell over its vertices: in three equal parts, or in parts proportional to the initial angle.
We choose the second alternative because it provides better behaviour near the symmetry axis in
some cases. Finally, we distribute the increment of the internal energy over the nodes by dividing it
into three parts; equal if the increment is positive, or proportional to the temperature of the vertices
( raised to the fourth ) if the increment is negative. The method described above has been proven to
be stable (we do not allow the time step be larger than some fraction ( 0.5 ) of the Courant limit:
min(l2/c,)), robust, and sufficiently accurate for our needs. (We have run several cases for which
analytical solution exists). The code allows for subcycling. Sometimes the mentioned limit in time
step is smaller than the value appropriate for solving the radiation transport. If one takes simply
the minimum of both, the radiation transport, the most time consuming part of the code, would be
computed more often than necessary. In such situations, we perform several hydrodynamic substeps
( below some predefined maximum) between radiation timesteps. We simply add successive values of
AE;, and then apply the total to the energy equation.

1.5 Eulerian Hydrodynamics

Lagrangian hydrodynamics is appropriate for solving ICF problems, because it allows for large
differences in scale length and density between different regions ( dense thin foils versus rarefied plasma
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corona ). In addition, it automatically takes care of contact discontinuities at interfaces between
different materials. But in some situations, in particular, when several flows collide or converge, the
mesh becomes severely distorted. This has two consequencies: a loss of accuracy, and, what is even
worse, some cells may become so thin, that the maximum timestep goes to zero, stopping in practice
the code. We have adapted our scheme to become an arbitrary Eulerian Lagrangian (AEL) one. After
a Lagrangian time step is performed, we allow for the possibility to project the obtained solution onto
an arbitrary new mesh. The Eulerian method is just a particular case, in which one chooses the new
grid equal to the old one. To easily implement the projection process, we rectrict ourselves to the
case in which the new mesh has the same topology (one to one correspondence between cells), and
is very close to the old one. In addition, both meshes have to have the same external and internal (
interfaces between materials ) boundaries. Magnitudes that are defined at the nodes, as the velocity,
are simply linearly interpolated. The new mass in each cell is computed adding the fluxes through
the three sides to the old one. The fluxes are computed as the swapped volume times the density of
the donor cell. For the temperature, we have tested two methods: linear interpolation, and a method
similar to the one used for the density. Both give very similar results. We use the second one in
the current version of the code, because it conserves internal energy. The methods for generating the
most appropriate mesh are out of the scope of this work. At the moment. we use some simple, rather
intuitive criteria, for example, we inhibit node displacement in some directions, or prescribe a smooth
transition between the Lagrangian and Eulerian mesh in certain regions.

1.6 Time Advance

In the previous section, we have described how to compute the deposition of energy at the nodes.
In addition to radiation transfer and hydrodynamic work, energy deposition by ion or laser beams is
included in the code. One might be tempted to advance the temperatures by a simple formula of the
form

where C; is the thermal capacity of the node (computed in a'similar way as the inertial mass), and Q; is
the total deposition. In the cases of interest, in which Q; is of diffusive origin (at least in some region),
the above explicit scheme is unstable for any practical At. One possible solution would be an implicit
scheme, in which Q; is computed using temperatures at time t+At. However, these are unknown before
the time step is performed. This leads to a system of coupled equations that has to be solved. In our
case, temperatures are coupled indirectly through radiation intensities (I's) at the interfaces. These
would have to be included as unknowns in the system of equations. In a typical simulation with 8000
cells and 32 beamlets, there will be about 250000 simultaneous equations, and 8 Mbytes of memory
are required to store the coefficients. Things become even worse if frequency resolution is desired.
These difficulties can be overcome by using the symmetrical semi-implicit (SSI) scheme (Livne). The
basic idea is the following: the instabilities result from the fact that an overstimated (understimated)
temperature gives place to a large negative (positive) deposition, which then produces even larger
understimated ( overstimated ) values in the next timestep. The error increases exponentially. Taking
into account the temperature dependence of Q;, one can write
CiAT: = (Qi + %AT,')AL
oT;

This stabilizes the scheme, but energy is not conserved. In case that the values of Q; have been
computed consistently: 3 Q;At = Exzternal Sources # AE; = 3" AC;T;. In order to obtain energy
conservation, we simply store the energy error in each cell (= —0Q;/8T: AT;) and add it in the same
cell as a energy source in the next timestep ( In the original paper of Livne, the energy error is slighty
smeared across the cells, but we do not find any reason to do it in our code ). The equations we really
use are 90

CUTP* ~T7) = (@i +a g2 TP+ = TPt + 6]




G = + Qo= G(TTH - T,

where o and 3 are free parameters. We use a-= 1 and # = 0.5 in our computations. Taking
a = =0, the explicit method is recovered. The first equation guarantees stability, while the second
states energy conservation. The scheme is thus stable and consistent, and is converging to the true
solution for At —+ 0. We have made several one-dimensional runs to check this method. We solved
a non-linear heat wave in absence of hydrodynamic motion, and we compared the results with the
ones obtained by using an implicit method and with analytical solutions. The number of time steps
necessary to obtain a given accuracy is two times larger using SSI. But because no system of coupled
equations has to be solved, the performances of both methods are similar. To apply SSI, the values
of 0Q;/T; are needed. Because evaluating themt exactly would be rather cumbersome, we compute
aproximations in the optically thin (volume radiator) and thick (thermal conduction) limits and take
the minimum of both. In addition, we consider the interface between an optically thin and an optically
thick cells as a freely radiating surface. A disadvantage of the SSI method should be mentioned: it is
very difficult to find a criterion to automatically determine the timestep. For example, if one prescribes
a maximum variation of T, it can happen that SSI can not be satisfied for any At, due to the Ge? in
the above equations. Occasionaly, we find that, although the SSI method is stable by itself, the set of
SSI equations combined with the At equations is not. In such a cases, we have to force ad hoc bounds
to values of At. Finally, the existence of ¢; can be used in several places of the code as a common
energy pool. For example, if somehow a cell gets a negative temperature, it can be forced to be zero,
and the corresponding energy stays at ¢;.
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2. Description of the Code

2.1 General Organisation

The scheme described in previous sections has been implemented in a computer code written in
standard C and should run on any UNIX system. So far, it was tested on IBM RISC and CRAY
YMP computers. To run the code under other operating systems would require some modifications,
that we estimate small. The source code is distributed in several files. The ones with suffix .h are
include files with declaration of types, parameters, global variables and structures, the ones with sufix
.c are usual sources, and the ones with sufix .data are user input as described below. The code needs
as input like the mean free path of radiation (A) depending on density, temparature and material. In
order to have a maximum of flexibility, we use C macros that the user must define in files with suffix
.data. For example, the file radia.data can contain:

......

In this case, A = 0.001 independent of material number, density and temperature. A more
complex definition can be used:
#define COEF 3.245
#define freepath(m,r,t) (m==170.1:COEF*t/I)
Now, A = 0.1 in regions filled by material with number 1, and A = 3.245T/p in other places. It
is possible also to use C functions:
real freepath(m,r,t)
real m,r,t;
{
real 1;
if (m==1){
1=0.1;
b

else{
1=3.245%t/r;
}

return(l);

with the same results as before. Source files contain include statements refering to these files.
Obviously, a change in one of these macros requires recompilation and generation of a new executable
code. In practice, this is no problem, because the computer time required is several seconds, very
small in comparison with a typical run time, of at least several minutes. In addition to files mentioned,
there are files with sufix .dat corresponding one to one with the ones with suffix .data, but containing
some test case. They are intended as documentation aid. The program builds up automatically using
the information in file make file. File FILELIST contains a list of other auxiliar and documentation
files. All files are grouped together in an archive file that can be managed by the Unix comand ar.

2.2 Input/Output
The code reads initial conditions and writes results in files organized as follows. The filename
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is just the time ( in C format ”%g” ) that corresponds to the information stored in it (0, le — 09,
or 1.3¢ — 06 are legal filenames in Unix ). The first four bytes are the ASCII values of the string
"MF02” (a sort of magic number), the rest is a list of floating point numbers, each coded in four
bytes in standard format (xdr). To each of these files corresponds another file with the same name
suffixed by .d that describes the contents of the first (0.d, le — 09.d, etc ...). The first line is the
string "MF01” (another magic number). The following lines (separated by ‘newline’ characters) have
the following format: in columns 1 to 16, the name of the variable adjusted to the left ( C format
"%-16s" ), in columns 17 to 24, the position of the first value in the file (begining with 1) ( C format
" %8d"), in columns 25 to 32 the number of values ( C format ”%8d” ). In addition to this file format,
the program writes at the end (appends) of the file outlist, scalars like timestep, total energy, etc...
each preceded by its name and a blank character. It is easy to extract information from this file, for
example the unix pipeline
grep dt outlist | cut -d" " -£2 >abc
creates a file abc with a list of the timesteps used by the program, and can be used to generate
histograms, graphics, etc . ..The code reads, from standard input, as the first line the name of directory
(terminated by ”/”), from which initial conditions have to be read and where results are written, and
in the following lines: filename/time with initial conditions and filename/time where to write results.
For example:
/home/mpqibmr/rfr/m/c/2.3.7/
0 te-12
1e—-12 3e-12
runs the code from time 0 to 3ps, results are stored at 1 and 3ps. With
/home/mpqibmr/rfr/m/c/2.3.7/
le-12 2e-12
a restart is made from 1ps, and results are stored at 2ps. The standard output is used mainly
for diagnostic messages.

2.3 Subroutines

2.3.1 multi.h

This file contains a list of definitions used at other places of the program. We use the CGS system
for all magnitudes, except for the temperature that is given in eV. We define the type real as double (if
single precision is desired, the only change in the code is to redefine it to float).The derived type point
is composed by a pair of reals, and used to store vector quantities. The structure type trngle defines
a cell, it contains the numbers (indexes) of the three vertices, and the three sides. The structure type
wall defines a side between two triangular cells, it contains the indexes of the two common vertices,
and the two cells. In the case that a side belongs only to one cell ( at the boundary ), the other index
takes value —1. Cells, nodes, and sides are numbered starting from 0. The parameters NTMAX,
NPMAX, and NWMAX, are the maximum allowable values, respectively. We define two principal
structures: mesh and hydro.

mesh is intended to store fixed data that do not change during the computations. It contains the
actual total number of cell, nodes, and sides, as well as pointers to arrays of initial coordinates (type
point), triangles (type trngl), sides (type wall), and initial angles.

hydro is intended to store the actual values of variables. It contains densities, surfaces, volume,
material code, and gas constant at the cells, and coordinates, velocities, temperatures, energy errors,
inertial masses, and thermal capacity at the nodes. Also, it contains the timestep for the next interval.

We give an example for how to use of these structures. Let us assume that m and h are pointers
to structures of type mesh and hydro, respectively,

h is a pointer to hydro
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h~>T is a pointer to an array of temperatures

m is a pointer to mesh

m->t is a pointer to trng!

n->t(3] is a trngl

(m->t[3])->p is a pointer to an array of indexes

(m->t(3])->p[0] is a the index of the first corner of the fourth cell

(h->T)[(m->t[3]) ->p[0]] is the temperature at the first corner of the fourth cell.

Finally, it contains definitions for more specific structures, global variables, and some macros

(min and maz).

2.3.2.main.c

Basically, this file contains flow control routines. main() opens files, reads fixed information,
creates structures, and enters the most external loop: in each trip, a set of initial conditions are read,
integration is done, and results are written. The integration process takes place in an internal loop: a
timestep is performed, if successfull, the time interval is increased or decreased, depending on the value
of the variable control, if it fails, the results are rejected, the time interval is decreased, and a new try
is made. This process continues until the final time is reached. Actually, the timestep is performed
by the routine timestep. First, the hydrodynamical variables are advanced by fluid(), the radiation
deposition and its temperature derivative are computed by radia() and derdepo(), respectively, the
deposition of energy is computed by ions(), the energy deposition in the cells are distributed over
the nodes, the equation of energy is solved by ssi(), and the results are changed to an arbitrary
Eulerian Lagrangian (AEL) mesh by kami(). The flags HYDRO, RADIA, IONS and EULER, allow
for switching on or off these processes, individually. In the actual version, the timestep can fail only
due to hydrodynamic reasons (too many subcycles, or excessive density change). The temperature
variation is computed by check(), and compared against a nominal value. The relation of both is
returned by variable control, that will reduce the next timestep in case of excessive variation. Also
the relative number of subcycles is taken into account to compute this variable.

2.3.3 radia.c

The first three routines: activeradia(), getbtotal(), and getbdown(), of this file are used to initiate
the structures defining the boundary: btotal, and bdown. The first includes the whole boundary: all
the sides that belong to one cell. The second is a subset of the first: the sides with end points r equal
to the minimum value of . In this part, reflecting boundary conditions will be applied. The routine
radia() implements the major part of the numeric treatment of radiation as described before; it is in
some sense, the core of the program. It has three nested loops. The two external ones go through
the differents beamlets, the internal one through the cells. The deposition of energy at the nodes is
returned in depoP, and the deposition at the cells in depoT'. The total deposition is the sum of both.
The radiation incident on the boundary is computed by radcond(), and the temperature derivative
of the deposition at the nodes by derdepo(). The routine beamgeo() computes several geometric
quantities of the cells ( height, depth, ...). To determine the radiation intensity for one beamlet is
necessary to sweep the cells in some order, depending on the direction of propagation. beamsort()
generates the sorted list of cells.

2.3.4 fluid.c

The routine fluid() controls the hydrodynamic timestep. It starts calling fluidinitTC() to get
temperatures at the cell centers from temperatures at the nodes. Then it enters into the subcycling
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loop. Routine fluidsub() computes the maximum allowable timestep, and advances density, coordi-
nate, velocity, and cell temperature as previously described. After each cycle fluidcheck() computes
the maximum variation of density. If a specified threshold is exceded, fluid() returns a zero, indicating
failure. This process continues until a maximum allovable number of subcycles is reached (failure) or
the time interval is completed. The hydrodynamical energy deposition at the cells is computed from
the initial and final cell temperature, and is returned in depo. The variable hydrocontrol returns a
value that will be used by timestep() (in main.c) to determine the timestep used in the next interval.

2.3.5 lons.c

Routine ions() determines the power deposited in each cell by an ion-beam. This is modelled as
a discrete number of straight. rays. For each of them, an entry point is first located, and from there,
rays are followed through the mesh, until they either exit the mesh or are attenuated completely.
No momentum deposition is taken into account. This routine can also be used for laser deposition,
provided that refraction effects are not considered to be important.

2.3.6 kami.c

The routine kami() implements the projection of the values of the variables defined in a mesh
h2, into a slightly different one hl. It proceeds as described previously.

2.3.7 mesh.c

This file contains routines related to mesh structures. getmesh() generates such a structure. It
calls first readmesh(), to read the initial values of the coordinates, and an array of size 3xnumber
of triangles, that contains for each triangular cell the number (starting from one) of the nodes corre-
sponding to its vertices. Once this information is ready, ccwmesh() is called to make sure that no cell
has zero volume, and to order the vertices of each cell in counter-clock-wise sense. Then, weighmesh()
computes the initial angles used later to distribute cell mass and thermal capacity. Finally, endmesh()
is called to generate the data structures with information about the interfaces between cells.

2.3.8 inout.c

This file contains subroutines to manage hydro structures, which contain the fluid variables.
hydronew() generates an empty structure of this type. hydrocopy() copies the contents. readvar()
reads data from a binary file into some members. initmass(), initvols(), and initthermo() complete
the contents by computing the inertial mass at the nodes, the area and volume of the cells, and the
thermal capacities of the nodes, respectively. writemesh() writes a binary file from the data in one
structure.

2.3.9 store.c and mif.c

The routines in this files: store(), storein(), storeout(), mfputreal(), mfopen(), mfput(),
mfget(), and mfclose(), implement the input/output to files in the format described previously.
They are called by the routines in mesh.c and inout.c.
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2.3.10 main.data

This file must contain the following definitions used by the main program:

TVARMAXLIM
TVARMAXREL
DTmax(t)
DTmin(t)
PRINTFLOW
PRINTST1
PRINTST?2
RADIO

HYDRO

IONS

EULER

VH’LUE&

Temperatures are truncated if their absolute variation in a timestep is larger than this
Temperatures are truncated if the relation T(t + At)/T(t) is smaller than this value
Maximum allowable timestep as a function of time

Minimum allowable timestep as a function of time

Enables some values to be printed

Enables some values to be printed

Enables some values to be printed

Enables radiation transport

Enables hydrodynamic motion

Enables ion-beam deposition

Enables non-lagrangian hydrodynamics

TEMPERATUREVAR cceptable variation of temperature (must be smaller than TVARMAXLIM)

2.3.11 radia.data

This file must contain the following definitions used by the radiation routines:

NTETAS
NPHIS(ITETA)
I(eta,r,z,time)
freepath(m,r,t)

2.3.12 fluid.data

Number of intervals in §

Number of intervals in ¢ (can depend on.7)

Incident intensity at boundary as a function of 8,p,T and ¢
Mean free path for radiation as a function of material, p, and T

This file must contain the following definitions used by the hydrodynamic routines:

XMIN

XMAX

YMIN

YMAX
PEXTERM

GX

GY
PRINTHYDRO
MAXSUBCYCLI
MAXRELATIVE
RELATIVEVAR
RECTANGLES

SCHMUTZIGET

2.3.13 1ons.data

Defines the allowable limits of space coordinates

External pressure
Gravitational acceleration

Enables some values to be printed

Acceptable number of subcycles

Maximum relative variation of density

Acceptable relative variation of density

If set, the code termalizes even against uneven cells before hydrodynamic timestep
(used to enforce symmetry of the mesh in some cases)

Code to be inserted inside fluidsub()

(used to include additional constrains to the motion)

This file must contain the following definitions used by the ion-beam deposition routines:
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DeDx(e,m,r,t)
NBEAMS
beampower(i)
POX (i)

POY(i)
NOX(i)
NOY(i)

2.3.14 EOS.data

This file must contain the following definitions used to define material properties

A (mid)
Z(mid)

2.3.15 ssi.data

This file defines par
ALPHA)
BETA)
GAMMA)

2.3.16 Euler.data

This file must contain a C routine to be used to compute the new mesh after one timestep has

Stopping power (%) as a function of e, material, p, and T
Number of rays to be used

Power in ray number i

Initial position of ray number i

Vector in the direction of propagation of ray number ¢

Atomic mass number as a function of material
Ion number as a function of material

ameters for the SSI method
1.0
0.5
0.0

been performed. The calling format is

void newmesh(m, hl, h2, h3);

mesh
hydro

where A1 is the former mesh, h2 is the mesh after the lagrangian timestep, and h3 is the mesh to

be generated

* TN,

* hl, *h2, *h3;

2.4 Initial Conditions

To run the code the binary file corresponding to time zero must contain at least the following

variables:

NAME NUMBER DESCRIPTION

np 1
nt 1
X np
y np

number of points

number of triangles
initial £ coordinates
initial y coordinates
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pt

3xnt

topology of the mesh

On the other hand, the binary file corresponding to the time at which integration begins (can be
the same as above) must contain

NAME NUMBER DESCRIPTION

X np z coordinates

y np y coordinates

VX np z components of the velocity
vy np y components of the velocity
T np temperatures

GE np errors in the energy

tho nt densities

mid nt material codes

dt 1p time interval to be tried

2.5 Graphic Pre- and Post-Processors

Even if the computer code, as described in this report, is consistent from the numerical point of
view, it is not trivial to run it, due to the large amount of input and output data. (several Mbytes in
a normal case). We have developed an additional software package, in order to provide easy access to
the capabilities of the code. Three categories of tasks have to be carried out:

1) Generation of (binary) data files containing the initial values of the variables.

ii) Interactive graphic visualization of the results, and production of hard copy plots.

i1i) General management of the system: automatic compilation, creation and destruction of cases,
starting and stopping runs, etc... )

We use an interpreted computer language (r91) that runs under Unix, has access to X-Windows
functions, and generates Postscript color output. We developed it for an IBM RISC/6000 system with
a high resolution color display (1000 x 1250pizels x 8planes). Use of different hardware would require,
in principle, only minor changes.

2.6 File Distribution
The whole system must be installed in some directory. Three subdirectories are needed:

r91 contains the interpreter program (executable module called r91), the interpreted programs
(in files with prefix r91.), the graphic output (in files with prefix km., intended to be of internal use
only, or kp. in the case of Postscript files). The file FILELIST contains a brief description of the
main files.

v contains the different versions of the code, each installed in its own subdirectory. v/2.3
correspond to the one described in this report. It contains basically source files, and eventually
compiled ones. Other versions can be created for specific purposes or for further development of the
code, and coexist with older ones. Old runs can be in any moment reproduced without been affected
by bugs or modifications introduced later.

¢ contains cases, each in a subdirectory with his name. Initially a case contains the definition
of a specific problem in the following way: files with suffix .data contains definitions of macros and
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procedures, except version.data, that contains the name of the version of the code to be used. r91.gm
is a 191 program able to generate the binary files with the initial values of the variables and the mesh
topology. Finally rtimes is a list (one value in each line) of instants of time for wich results are to be
stored. Later, other files are generated: a.out, the executable module, 0 and 0.4, the initial conditions,
and control, a file to be read as standard output. Once the code has been run, it constains results
files ( with names like le — 09, le — 09.d, 2¢ — 09, 2¢ — 09.d, .. .), output with diagnostic information
(including required CPU time), and outlist, mentioned before.

2.7 Computer language r91

This language is an interpreted one, that is, an executable module (whose source code is written
mostly in C) must be loaded prior to execute r91 programs. These are usually stored in text files,
and loaded, translated to intermediate representation, and executed automatically. As any other
interpreter, it is not very efficient in terms of computer resources, but allows fast and easy development
of interactive graphic software, that otherwise would be prohibitive in terms of human resources. It
uses vectorial variables consisting in zero, one or several numbers or characters, typical assignations
would be:

a = " hello you\n”;
b=1:4:8:12;

It understands escape codes in the usual format in C. The statements must be ended by ”;”.
Expressions can contain a mixture of scalars (variables of size one) and vectors. Two vectors are
operated element by element, but if one of them is a scalar, its value is used in all the operations.
Except in this case, the same length of operands is usually required. Operation between vectors and
strings are allowed, if necessary the string is previously converted into a vector. Ifa =5,6=3:5:2,
andec=1:3:1

z = b+ c; (assigns to = the value 4:8:3)
y = a *c; (assigns to y the values 5:15:5)
z ="AB” + 1; (assigns to z the values 66 67)

In addition to arithmetic oparators (+,—,*,and /), comparison operators (==,>,<,<=,>=,and
I=), and logical ones ( !(negation), &(and) and |(or)), the following operators are available:

Concatenation (both variables can have different lenght).
z = a : b; (assigns to z the values 5:3:5:2)

Ellipsis (both variables have to be scalars)
y = 4...2; (assigns to y the values 4:3 : 2)

Cardinal. Returns a scalar with the number of elements in a vector.
z = #b; (assigns to z the value 3)

Selection. Is the extension of array index to vectors
z = b[c]; (assigns to z the values 3:2:3)

Binary assignment. [t is treated as any other operator
r =y = z = a; (assigns the value 5 to z, y and z)

Ternary assignment. [t requires three operands.
m[3 : 4] = 5 : 2; (assigns to the third and fourth elements of m, the values 5 : 2)

Address. It is intended to be used only to interface directly C routines. It returns the physical
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address of a permanent variable, coded in four bytes of a string.
z = &a; (can result in z having the value "9&%0b”)

The syntax to calling a function is the usual one in computer languages:
T = power(c, 2); (assign to = the values 1:9:1)

Each operator has a precedence that determines in which order operations are performed (3%2+1
evaluates to 7, not to 9). The use of parenthesis overrides this order (3 * (2 + 1) evaluates to 9). The
language allows for structured programing with if, while, and for constructs

if(a > 3){
b=a+1;
} o

else{

}

b=a-1;

while(a < 3){
1f(bla] == 0)break;
a = a + beta(a);

for(i = 0;i < 10;7 =1+ 1){
j=ixit];
}

Other structures are not standard. The trap construct allows to bound the effects of an error.
If an error occurs (f.e. division by zero, or a call to an non-existent function) inside the braces, the
execution 1s reassumed at the first line outside. For example

trap{
flag =1,
nim(alpha, beta);
flag =0;

}

if(flag)print(” function nlm does not ezist”);
The run construct permits to execute a string as a fragment of code

a = "C — 23” : ”12;7’;
trap a;

Assigns the value 2312 to ¢. The function or routines return always some value (by default a
zero), and can be of three types:

a) C library routines accessed directly. The arguments must be coded to the internal represen-
tation of the computer ( by means of & operator, or funtions tol, toD and toF ), a typical example
is

systemn(&” cat filea > fileb”);
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b) Internal routines develloped specially for this code. A list is given in the next section
¢) Routines defined in 791 as in the following example

de fine minimum(a,b)

{
r=ax(a<b)+bx(a>=1b)
return(r);

}

If return is not present or has no argument, a zero value is returned. The variables beginning
with lowercase are local to the function. The ones begining with uppercase are global to all funtions,
and its value is preserved. A function can be called by itself, for example

define fac;forial(a){if(a == 1)return(l); else return(a * factorial(a — 1)); }

When a funcion is found for the first time, it is searched in a table of defined functions (of any
type). If not present, the file with the name of the function prefixed by r91. is read, and loaded. If the
function is still not defined, an error results. Thess files can contain several functions separated by a
white line. The above process can have the side effect of loading other functions present in the file.
This is useful for creating libraries: once a call to a dummy function is done, the whole set of routines
are available. To start the interpreter, a first routine (without arguments) must be called. The name
is given in the input line. By default the routine start is called. It contains a small program that
executes line to line the user input.

define start(){
while(1){
print(” >");
trap run input();

2.7.1 r91 Internal Routines

The following routines coded in file BLIB are of general purpose

print(a) prints a vector or a string

input() read a string from the standard input
char(a) converts a vector in a string
numero(a) converts a string in a vector

sel(a,b) returns the elements of a for whitch b is true
floor(a) mathematical function

ceil(a) mathematical function

fabs(a) mathematical function

exp(a) mathematical function

log(a) mathematical function

log10(a) mathematical function

sqrt{a) mathematical function

sin(a) mathematical function

cos(a) mathematical function

tan(a) mathematical function

asin(a) mathematical function
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fromI(a)
toD(a)
fromD(a)
toF(a)
fromF(a)

The following functions contained in the file GLIB implement the interface with the XWindows.

mathematical function

mathematical function

adds all the elements of a vector

multiply all the elements of a vector

minimum element in a vector

maximum element in a vector

codes a number as an integer (in four characters)
decodes an integer

codes a number as a double (in eight characters)
decodes a double

codes a number as a float (in four characters)
decodes a float

Graphical coordinates and dimensions are normalized with the width of the window.

xstart(a)
xstop()

xcreatemap()

xmap(a)

xclip(a)

xfunction(a)

xflush()
xsettex(a)

xsetline(a)

xsetarea(a)

xline(a)

xarea(a)

xtext(a,b)
xsize()
xsend(a)
xreceive()

xgin()

opens a window of witdh a, and height a,

closes the window

creates a colormap (to be used in 4 bits screens only)

defines colors

ay,as,a3 are the red, green, and blue component of the first color
a4,as,as are the red, green, and blue component of the second color

cliping is done outside the rectangle of corners (a,,a3) and (az,a4)
if @ = 0 graphic primitives are ORed against the background
Useful to implement a zoom

The picture is refreshed

set properties of text

ay is the size of characters

a» is unused

az is 7L”,”C” or "R, for left, center or right alignment

aq 1s ”D”,”C” or "U”, for down, center or upper alignment

as is the color

set properties of lines

a; is type (0 if continuous)

as is the color

as is the thickness in pixels (0 is faster)

set properties of fill regions

a; is the color

plots one or more lines

ay,a7 are the coordinates of the first point, az = 0 if a new line begins
aq,as are the coordinates of the second point, ag = 0 if a new line begins
plots one or more poligons ‘
a is coded as for lines

draws string b in point of coordinates ay,a;

returns width and height of the window

sends a message (string) to the server

reads a message from the server

graphic input. returns three values: two coordinates and:

—1 if the mouse key 1 has been pressed

—4 if the mouse key 2 has been pressed

—2 if the mouse has been moved while a key is pressed

—3 if a mouse key has been released
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a code between 0 and 256 if an ordinary key in the keyboard has been pressed
a code between 1001 and 1005 if an arrow key has been pressed

a code between 2001 and 2001 if an insert or delete key has been pressed

a code between 3001 and 3012 if a function key has been pressed

—100 if the constents of the window have been lost

—200 if a new message is available

The following funtions contained in file PLIB implement the Postscript output. Graphical coor-
dinates and dimensions are normalized with the width (bigest side) of the paper.

pstart(a)
pstop()
pclip(a)
psettex(a)

psetline(a)

psetarea(a)

pline(a)

parea(a)

ptext(a,b)

2.7.2 r91.control

opens a Postscript output file with name a

closes the output file

cliping is done outside the rectangle of corners (a,a3) and (a3,a4)
set properties of text

a, is the size of characters

a, is the rotation angle in degrees

asz is "L”,”C” or "R”, for left, center or right alignment

a4 is ?D”,”C” or "U”, for down, center or upper alignment

as is the color

set properties of lines

ay is type (0 if continuous)

aq 1s the color

az is the thickness in pixels (0 is faster)

set properties of fill regions

a, is the color

plots one or more lines

ay,as are the coordinates of the first point, a3 = 0 if a new line begins
ag4,as are the coordinates of the second point, ag = 0 if a new line begins
plots one or more poligons

a is coded as for lines

draws string b in point of coordinates a;,as

This is assumed to be the entry point for the interactive use of the code. To start this program
go to the directory r91 and type:

r91 controlé

A window appears on the screen with several "keys” on it. The first one "CASE:” allows to
specify a case to work with. The labels ended by "~ >” activate submenus. To go back press key
2 of the mouse or escape key on the keyboard. To exit the program press escape key several times.
This program perform the following tasks

1) Create a new case.

g

i1) Copy definition files from other cases into it.

iii) Edit definition and output files.

iv) Select a text editor (in our configuration vi, teztedit, a zedit are available.)

v) Print definition files

vi) Run the preprocessor to generate data files with the initial conditions

vii) Compile the code

viii) Run the code. It tries that the values of time in file rtimes correspond exactly with the
values of time for which results are available. The executable module is run (in the background), and
files deleted as necessary.
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ix) Erase the results and the executable code (to try a new run with different parameters, or
simply to free disk space).

x) Destroy a case.

xi) Start another programs (described in the following sections)

2.7.3 r91.ctab, r91.ttab, r91.vtab

ctab presents in a window the list of cases availables. When one of them is pressed, a message is
sent to the other running programs, with the meaning ”put attention to this case”. When ttab receives
such message, it displays a list of files with results (times) available for the selected case. When one of
these is selected, a new message (”put attention to this time”) is sent. Finally, when vtab has received
both messages, it displays a list of variables and modificators (logarithmic scale, lagrangian/eulerian
representation, ...) available for this case and for this time. When one is selected, a new message is
sent. This proccedure allows a maximum of flexibility; the described windows can be placed anywhere
on the screen, and can have any size. The flow of messages control the display windows as described
below.

2.7.4 r91.nav2

The basic graphic presentation of 2D results is through colour plots. The tone or intensity in a
given point represents the value of some scalar variable there. In addition the computational grid can
be plotted, and vectorial variables draw as fields of arrows. The program nav?2 generates the window
that controls the format of the plots. Colour scales, viewport, size of text, axes, background, margins,
and type of line, are controled through menus. Each time a change is produced, a message is sent to
the display programs. Additionally, some programs can be started also from this program.

2.7.5 r91.sup

This program creates a window where the actual drawing takes place. Several cases started
from nav2, can run concurrently, displaying different views, variables, cases, .... Initially, a black
background is presented in the plot area. Once the program has received messages specifying case,time
and variable to be plotted, the plot is produced, triggered either automatically (see below), or by
touching the plot area. Additional messages update correspondingly the drawing. These windows are
equiped with a control menu with the following ”keys”:

Schloss: pressing here, the window enters into a closed state. No messages are received. Pressing
it again, the normal mode is entered. This allows to select which window will receive messages, and
thus control independently what is presented in each window. Once the normal mode is entered, a
new message (f.e. selected time) affects all the windows, but produces different plots (f.e. different
variables at that time) in each.

Auto enables or disables the automatic triggering of the plot. The user must touch the plot area
to produce the plot. This proves convenient when several successive changes have to been done, and
the time need to redraw the plot is not negligible. Also when the plot is lost due to window resize or
exposure, the user must touch the plot area to redraw the window.

Skala changes the viewport to the values specified by nav2.

Zoom+ changes the viewport by means of a Press-Drag-Release process.

Zoom— similar to the former, but the size of the figure is reduced.

Beweg. the plot is just translated. This, and the above three selections are implemented
indirectly, through messages. All the non-closed windows are affected (including the original one).
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Kopie produces a graphic metafile. The name is generated as a number (correlative) prefixed by
km.

2.7.6 r91.doc

This programs acts as an intermediate processor for graphic output. It loads graphic metafiles (
ussually produced by sup, for example), some text, lines, ...can be introduced, and output generated
in metafile or Postscript format. The elementary use is to press LOAD, type the input file name
(without prefix), press POST, and type the output file name (without prefix), repeat the former cycle
as needed, and press escape key to exit. Once postscript files are produced use Ipr Unix comand to

send them to some printer.

2.7.7 r91.gtab, r91.rtab

These programs present lists of graphic metafiles, and processes running in the background,
respectively.

2.8 Install procedure

Let us assume that files R91V19 and M92V23 in the current directory are archive files containing
the graphic processor and the 2D code, respectively. Type

mkdir r91 ¢ v
cd r91
ar x ../R91V19

make
cd ..

to install the system (it take about five minutes),

cd v

mkdir 2.3

cd 2.3

ar x ../../M92V23
cd ../..

to install the 2D code,

cd v/2.3
FALL

2

2.3.1

cd ../..

to install an example (named 2.3.1) case, and

cd r91
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r91 control&

to start operations. Good luck !!!

Appendix: Opacity Parameters

The table below gives typical values of the mean free path for radiation, obtained by fitting power
laws to SNOP computations (Tsakiris). The mean free path is related to the opacity x by A = 1/xp,
and this approximated by & ~ aT*p", (k in ¢cm?/g, T in ev und p in gr/cm®). This expression is
valid for temperatures between 30eV and 1KeV and densities between 0.1g/cm3 and 10g/cm®. The
coeficients are

(Rosseland opacity)

Material a s r

Al 3.78 -2.482 0.481
Ti 7.19 -2.209 0.386
Fe 9.74 -2.268 0.314
Cu 13.89 -2.207 0.295
Mo 67.42 -1.493 0.222
Sn 72.19 -1.571 0.160
Ba 81.34 -1.619 0.142
Eu 129.30 -1.450 . 0.094
W 244,12 -1.119 0.005
Au 279.90 -1.058 . 0.001
Pb 290.54 -1.047 0.000
U 205.05 -1.145 0.037

(Planck opacity)

Material a s r

Al 34.18 -2.415 0.483
Ti 85.84 -2.071 0.436
Fe 89.97 -2.131 0.377
Cu 100.81 -2.120 0.355
Mo 315.86 -1.563 0.308
Sn 328.55 -1.588 0.228
Ba 324.04 -1.644 0.244
Eu 413.90 -1.536 0.238
\i 646.40 -1.225 0.199
Au 666.04 -1.233 0.165
Pb 645.51 -1.270 0.155
U 590.61 -1.415 0.194
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The following table has been obtained by fitting power laws to data available from the SESAME
library (Murakami). A is aproximated by an expresion in the form aT?p® with A in ¢cm, T in ev und
p in gr/cm3. The coefficients are:

Material a b c

CH 1.0-107%2 4 -2

Al (Rosseland) 8.7-107° 2.5 -1.5

Al (Planck) 1.8-10°° 2.4 -1.5

Au (Rosseland) 6.0-1076 1.0 ~1.0

Au (Planck) 3.0-10°7 1.2 ~1.2
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Demonstration Runs

We created a collection of typical cases with the double purpose to check the code (when some
modification has been done, we run the complete set, in order to be sure that no side-effects are
produced), and to allow the user to start with a configuration more or less similar to his needs. The
cases are briefly described below. Prefix 2.3 refers to the actual version fo the code. The time necessary
to run the code on our IBM RISC/6000 Mod. 320 is given.

2.3.1) A 100 eV thermal radiation is incident over the central region of an optically thick disk.
A thermal wave propagates. Only radiation is enabled. (Fig 3., 206 sec.)

2.3.2) A two-dimensional shock tube, but with one-dimensional solution. Only lagrangian hy-
drodynamics enabled. (Fig 4., 75 sec.)

2.3.3) Simulation of a non-linear Rayleigh-Taylor instability. Only eulerian hydrodynamics en-
abled. (Fig. 5 and 6, 2959 sec.)

2.3.4) Spherically symmetric implosion of a composed pellet, driven by an external pressure.
Only mixed eulerian-lagrangian hydrodynamics enabled. (Fig. 7, 160 sec.)

2.3.5) Disk irradiated by 100 eV thermal radiation. Ablation takes place, and a shock wave
appears inside the target. Radiation and lagrangian hydrodynamics (Fig. 8 and 9, 615 sec.)

2.3.6) Spherically symmetric implosion of a composed pellet, driven by radiation. Radiation and
AEL hydrodynamics. (Fig. 10, 1510 sec.)

2.3.7) Capilar tube irradiated from one side with 150 eV planckian radiation. Plasma collision
on the axis. Radiation and AEL hydrodynamics. (Fig. 11, 12, 13, and 14, 11327 sec.)

2.3.8) Cylinder shot by a 700 Tw ion-beam. Conversion of the beam enrgy to thermal radiation.
Radiation, lagrangian hydrodynamics, and beam deposition. (Fig. 15 and 16, 567 sec.)

2.3.9) Hohlraum simulation. The inside of a spherical cavity is irradiated by a laser-beam that
enters through a hole. All routines enabled. (Fig. 17, 18, 19, and 20, 2412 sec.)
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