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simultaneously interacts with two photons. Owing to the nonlinearity of this inter-
action, the two photons need to cooperate to enter the cavity.



Abstract

The radiative properties of an atom are not only determined by its internal struc-
ture, but also by its environment. By modifying the density of the surrounding
electromagnetic modes, the interaction of an atom with light can be increased sig-
nificantly. Such a situation is realized for an atom placed inside a cavity which
supports only a single mode. If the coupling of the atom to this privileged mode
exceeds the interaction of atom and cavity with the external modes, a new system
with its own characteristic energy structure emerges. This constitutes the ’strong-
coupling regime’ of cavity-QED. Here, the energy levels of the system form a ladder
of doublets. The first doublet has a classical interpretation -the normal-mode split-
ting resulting from a harmonic dipole oscillator being coupled to an electromagnetic
field-, and has been experimentally observed in the spectrum of various types of
cavity-QED systems.
This thesis reports on the first experimental observation of a higher-doublet state in
the transmission spectrum of an optical cavity-QED system, consisting of a single
rubidium atom which is localized in the mode of a high-finesse Fabry-Pérot type
microcavity by means of an intracavity dipole trap. When probing the system at
low intensity, only single-photon transitions to the first doublet are driven, and the
spectrum reveals the normal modes. For rising intensities, a state consisting of two
photons strongly coupled to the atom is populated via a two-photon transition, vis-
ible as an additional resonance at a characteristic frequency and with an amplitude
rising quadratically with the probe intensity.
The observed transmission spectra are compared to different theory models. Only
the quantum model, in which a two-level atom is coupled to a quantized cavity
mode, is able to reproduce the measurements, whereas theories for a classical field
fail to explain the data. These results prove the quantum nature of the combined
atom-cavity system in the optical domain and show that states consisting of a single
atom entangled with a quantized field are experimentally accessible, paving the way
for more fundamental studies on this model system for light-matter interaction.
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Chapter 1

Introduction

Nearly one hundred years ago, Max Planck introduced the idea of quantizing the
exchange of energy between the electromagnetic field and matter in order to explain
the spectrum of black-body radiation [1]; a few years later, the quantum hypothesis
was extended by Albert Einstein’s explanation of the photoelectric effect [2]. The
origins of quantum theory actually lie in the interpretation of electrodynamical pro-
cesses between matter and light, and quantum electrodynamics (QED) has remained
an area of active research until today.

A single atom coupled to a single mode of the radiation field became a model system
for the fundamental study of QED. This system has been experimentally realized
in the domain of cavity QED, which exploits the modified mode density in confined
space, for example between two highly reflecting mirrors, to resonantly enhance the
interaction of an atom with only one mode sustained by the cavity. Depending
on the quality of the cavity mirrors, this coherent interaction can dominate the
incoherent coupling of the atom and the cavity field to the non-privileged modes
of the surrounding vacuum. Such a situation marks the strong-coupling regime of
cavity QED [3]: atom and photons lose their respective identities to form a bound
system with unique characteristics.

The seminal work of Jaynes and Cummings [4] constitutes the first theoretical
study of the strong-coupling regime. A central result was the description of the
energy eigenstates of the coupled system, which consist of a ladder of doublet states
(’dressed states’) with anharmonic splitting, mirroring the two-state atom coupled
to the equidistant ladder of Fock states of the quantized light field. The frequency
splitting of a given doublet defines the Rabi frequency, i.e. the rate at which en-
ergy is exchanged between the atom and the light field. This splitting depends on
the square root of the number of photons in the mode; thereby the quantization of
matter-light interaction becomes accessible to experimental observation.

Experiments can be divided into two domains: microwave and optical cavity QED.
The first experimental realization of strong coupling of a single atom to a cavity field
was achieved with superconducting microwave resonators at cryogenic temperatures
[5], which are characterized by extremely long field decay times of up to several
100 ms [6, 7]. Using alkali atoms in a long-lived, highly excited Rydberg state,
coherent evolution of the coupled system is mostly limited by the transit time of
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2 CHAPTER 1. INTRODUCTION

atoms passing through the cavity and can be observed through the appearance of
Rabi oscillations in the atomic state behind the interaction zone (see [8, 9] for a
review). The anharmonicity of the energy-level structure and thus bound atom-
photon states were first seen in the time domain via the collapse and revival of these
Rabi oscillations [10, 11].

In the optical regime, both coupling and decoherence of atom and cavity field evolve
on a much faster timescale, which prohibits monitoring the system via the detection
of the short-lived atomic state. Instead, information is obtained by detecting photons
which escape from the cavity; in contrast to microwaves, excellent photodetectors
are available at optical wavelengths. Here, the loss of photons from the cavity is not
a detrimental decoherence process, but rather allows for continuous observation,
as is necessary, for example, for studies on the conditional evolution of an open
quantum system [12, 13].

The energy-level structure of an optical cavity-QED system can be probed in a
spectroscopy experiment. A splitting due to the first doublet of dressed states has
already been observed in the spectrum of several of such systems [14, 15, 16, 17,
18, 19, 20]; the observation of this ’normal-mode splitting’ has been established
as a benchmark measurement for having entered the strong-coupling regime. But
only the observation of the higher states promises essential insight into the physical
nature of the underlying system. The normal modes by themselves can be explained
by three theories [21]: Firstly, by classical linear dispersion theory [14] or a model
of coupled harmonic oscillators; secondly, in a mixed classical-quantum approach
by combining a classical light field with a quantized two-state atom, leading to
the bistability state equation [22]; and finally in the frame of quantum mechanics,
quantizing both atom and light field. Only the higher states, which are predicted
exclusively in the quantum picture, allow to confirm its validity in this context.
For this reason, spectroscopic observation of the higher dressed states has been an
incentive for several theory proposals [23, 24, 25] and is also a goal for cavity-QED
systems outside atomic physics [26, 27].

The central result of this thesis is the first experimental observation of a dressed state
beyond the first doublet in a spectroscopy experiment, performed with a single atom
trapped inside a high-finesse cavity. This state, consisting of two photons strongly
coupled to one atom, is excited directly by driving a two-photon transition from
the ground state of the system. A resonance appears in the spectrum which is
distinct from the normal-mode resonances, owing to the anharmonicity of the level
splitting in the Jaynes-Cummings model. Introducing another scan technique to
cross a parameter region which is devoid of any classical resonances, the quantum
resonances are probed exclusively. The observed peaks in the spectra provide direct
proof of the quantization of atom-field interaction in the optical regime, which up
to now could be evidenced only indirectly in experiments monitoring fluctuations in
the intensity of the transmitted cavity field [28, 29, 30, 31].

The success of this experiment relied on both physical insights and technological
knowledge about optical cavity-QED systems in the strong-coupling regime which
has been gained in the course of many years of previous measurements. The chal-
lenge to achieve coherent coupling rates which surpass the cavity linewidth as well as
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the typical linewidth of optical dipole transitions was mastered in the 1990s, after it
became possible to produce extremely high-reflecting dielectric mirrors [32]. Optical
cavities critically depend on a small mode volume, with a mirror separation on the
order of 100 µm and an even smaller mode waist; therefore very slow atoms were
required to achieve transit times long enough for the observation of coupling effects
on the single-atom level. Consequently, optical cavity QED greatly profited from
the advance of laser-cooling and trapping techniques [33, 34, 35], which opened the
possibility of preparing cold atomic samples and slow atomic beams. By diluting
the flux, it became possible to observe the transit of single atoms through the cav-
ity mode [36, 37], and use the forces exerted by a cavity field containing only few
photons to localize the atoms inside the mode for a short time [38, 39].

The atomic motion inside the resonator is governed by forces which differ consider-
ably from the ones acting on an atom within a laser beam in free space [40, 41, 42,
43, 44, 45]. On the one hand, diffusion of the atom is enhanced due to fluctuations
in the cavity light field, on the other hand, the finite linewidth of the cavity leads
to a delayed adjustment of the cavity field to the position of a moving atom. This
mechanism is at the base of a very efficient cooling method [46], which is most useful
in connection with a dipole trap to localize the atom.

The implementation of dipole traps constituted a milestone in optical cavity QED
with single atoms. The first intracavity dipole traps, created by exciting additional
cavity modes far-red detuned from the atomic resonance [47, 48], already helped to
increase the interaction time between the atom and the mode significantly. Using a
combination of cavity modes of different longitudinal and transverse orders, a blue-
detuned trap has been realized which stores the atom at a place of vanishing trap
light intensity [20]. Trapping beams consisting of a standing-wave pattern which can
be shifted allow for a very precise control of the atomic position [49]; employing such
a trap in a configuration transverse to the cavity axis, single atoms have been loaded
into the cavity mode deterministically [50, 51, 52]. Combined with cavity-cooling in
three dimensions, the storage time of single atoms inside the resonator was shown
to increase to several seconds [53, 54].

The growing ability to localize the atom led to more and more progress in the study
of the structure of the atom-cavity system. The normal-mode spectrum was first
observed in thermal beam experiments [14, 15, 16, 17], down to diluted beams with
single atoms passing the cavity [55]. An experiment aiming to evidence signatures
of doublet states beyond the normal modes failed due to fluctuations in the number
of atoms in the cavity [56]. These fluctuations are removed by using a trapped
atom, as could be shown with the measurement of the normal-mode spectrum in a
single-trapped-atom–cavity system [18, 19, 20].

In the experiment reported here, a red-detuned intracavity dipole trap is used to
confine the atom in a region of strong coupling for a time span sufficiently long
in order to separately resolve the classical and quantum resonances [57, 58]. The
general features of the obtained spectra are in agreement with the predictions of
a quantum theory for a motionless atom, in this way ruling out the classical and
semiclassical model. A full understanding of the spectra is achieved by extensive
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numerical simulations, which take into account the residual motion of the atom
within the trapping potential.
The employed excitation scheme contains an inherent nonlinearity in the scaling of
the transition probability as a function of probe laser intensity. The two-photon
resonance is observed to grow nearly quadratically with rising probe intensity. This
scaling cannot be attributed to saturation of the atom, since we deliberately op-
erate in a parameter regime where the atomic excitation probability is small. It
rather is a unique quantum property of the combined atom-cavity system, which
can accommodate only photon pairs at the given resonance frequency. This system
therefore conveys a nonlinear interaction between two photons, mediated by only a
single atom.
This thesis is organized as follows: in chapter 2, the theory of the strongly-coupled
atom-cavity system, interacting with its environment, is introduced on the basis
of a quantum model of a two-state atom coupled to a quantized light field. The
connections of this model to the classical coupled-harmonic-oscillator model and the
model of optical bistability are highlighted. Chapter 3 gives a review on previous
works related to the higher-order dressed states, and puts forward a proposal for
the observation of these states in an optical atom-cavity system by analyzing the
expected signature of these resonances in a spectrum for the given experimental
setup. In chapter 4, theory is extended to include effects due to the residual motion
of the trapped atom. The experimental setup as well as the measurement and data
evaluation procedure are presented in chapter 5. Chapter 6 contains the results of
the measurements and the comparison to the different theories, and chapter 7 gives
perspectives for future measurements and possible applications of these quantum
resonances.



Chapter 2

Theory of the ideal strongly
coupled single-atom-cavity system

A single atom strongly coupled to a single mode of a high-finesse resonator (Fig. 2.1)
is a model system of quantum mechanics, allowing to research the interaction of
matter and light at a fundamental level. The beauty of this system lies in its
conceptual simplicity: it combines a basic unit of matter, a single atom, with the
simplest form of an electromagnetic field, a single mode, in such a way that their
mutual interaction surpasses any coupling to the environment. Yet this system
provides a wealth of physical effects, with explanations both inside and outside the
framework of classical physics, and offers a multitude of applications ranging from
cooling of particles to the generation of non-classical light and the wide field of
quantum information [8, 9, 59].

This chapter presents the theoretical concept on which this model is based. In
section 2.1, first the energy-level structure of the closed system is derived, leading
to the Jaynes-Cummings model. This model is extended to describe irreversible
coupling to the environment with the help of a master equation. Now, excitation
and decay of the states can be included, and ultimately, spectroscopy of the system
becomes possible. Up to here, the system is treated quantum mechanically. This
yields an infinite set of coupled equations for the system operators which cannot
be solved analytically. In section 2.2, two different theories which can be seen as

Figure 2.1: The atom-cavity system. A single atom is strongly coupled (coupling
rate g) to a single mode of the electromagnetic field inside a high-finesse optical
resonator. The system is coherently pumped by a laser impinging on one of the
mirrors (pump strength η). Losses can arise through spontaneous emission of photons
from the atom (rate 2γ) and through photons lost from the mode (rate 2κ), escaping
from one of the mirrors. Detection of these photons allows to observe the system.
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6 CHAPTER 2. THEORY OF THE COUPLED ATOM-CAVITY SYSTEM

approximations to the quantum theory are presented: the classical and the semi-
classical models. These models, which allow for analytical solutions, are discussed
separately and finally compared to the full quantum mechanical model, which is
solved numerically.

2.1 Quantum description of the atom-cavity sys-

tem

2.1.1 Closed quantum system

In this section, a quantum-mechanical model for a closed atom-cavity system is
derived, i.e. coupling to the environment is neglected. This model was introduced
to quantum optics by Jaynes and Cummings in 1963 to describe a molecular beam
maser [4], and has since become the standard model for many types of experimental
atom-cavity systems and also analogous systems from other fields [60].

Validity of the model

This model assumes that the atom possesses only two internal states (a ground state
|g〉 and an excited state |e〉), and interacts with only one mode of the electromag-
netic field inside the resonator. At first, the validity of these assumptions in the
experimental realization of the system needs to be verified. Usually, atoms have
a complicated internal level structure due to the fine and hyperfine splitting. In
the experiment, 85Rb atoms are optically pumped towards the outermost magnetic
sublevel of their ground state (5S1/2F = 3,mf = 3) and then driven to the excited
state (5P3/2F

′ = 4,m′f = 4) by a circularly polarized, near-resonant laser field; this
effectively restricts the internal structure to two levels. The atom is placed inside
a near-planar Fabry-Perot type cavity of high finesse, with a free spectral range
(FSR) on the order of 2π × 1 THz, exceeding the typical linewidths of atomic and
cavity resonances (on the order of 2π × 1 MHz) by 6 orders of magnitude. This
ensures that only one longitudinal spatial mode (without loss of generality and in
accordance with the experiment, a TEM00 mode is chosen) of the cavity is near-
resonant to the atomic transition. Modes of a different transverse mode order, e.g.
the TEM10 or TEM01 modes, are detuned by several GHz and thus can also be ne-
glected. With the help of polarization optics, only the circular polarization mode is
excited which drives the closed atomic transition. The choice of the circular basis is
possible because the cavity used here does not show birefringence and thus does not
impose a basis of polarization modes onto the system, as is checked experimentally
in appendix A.2. Under these conditions, the Jaynes-Cummings model gives a good
approximation of the experiment as long as the system is in the strong-coupling
regime, i.e. coupling to the environment can be neglected.
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Jaynes-Cummings Hamiltonian

In the dipole approximation1 and the rotating-wave approximation (RWA)2 , the
Jaynes-Cummings Hamiltonian for a system of a single atom interacting with a
single mode is given by

HJC = ~ωca†a+ ~ωaσ†σ + ~g(a†σ + σ†a) (2.1)

This Hamiltonian is intended to describe the evolution of the internal state of the
atom and the state of the field. Therefore, the kinetic energy of the atom is not
considered and the position is treated as a parameter. ωc and ωa are the resonance
frequencies of the cavity and the atom. a† and a are the bosonic creation and an-
nihilation operators for photons in the mode, which obey the commutation relation
[a, a†] = 1. σ† = |e〉 〈g| and σ = |g〉 〈e| are the rising and lowering operators de-
scribing the fermionic two-state atom, which follow the usual pseudo-spin algebra
[σ†, σ] = σz, [σz, σ

†] = 2σ†, [σz, σ] = −2σ of Pauli matrices, and σz = |e〉 〈e| − |g〉 〈g|
is the population inversion of the atom. The constant g describes the dipole coupling
between atom and field:

Coordinate system

g = g0ψ(r) (2.2)

g0 =

√
ωc

2~ε0V
dge (2.3)

ψ(r) = cos(kx)e−(y2+z2)/w2
0 (2.4)

ψ(r) is the spatial mode function of the TEM00 resonator mode with the wave
number k = ωc/c and the waist w0, V is the mode volume (approximately given
by V = πw2

0L/4,3 where L is the length of the resonator), dge is the dipole matrix
element which describes the transition strength between the two atomic states |g〉
and |e〉 for the given polarization, and ε0 is the permittivity of the vacuum.

The dipole interaction term ~g(a†σ + σ†a) describes processes where a photon in
the mode is annihilated while the atom is excited or vice versa. Therefore this
Hamiltonian couples states of the form |g, n+ 1〉 and |e, n〉, where (n+1) is the total

1The dipole approximation assumes that the size of the atom is much smaller than the wave-
length of the electromagnetic field; therefore the amplitude of the field can be considered constant
across the dimension of the atom.

2The full dipole interaction Hamiltonian is (a+ a†)g(σ + σ†). If |ωa − ωc| � (ωa, ωc), terms of
the form σa and σ†a† with a time evolution of e±i(ωa+ωc)t in the Heisenberg picture average out
on the timescale of the evolution of the operators σa† and σ†a, which evolve with (e±i(ωa−ωc)t).
In the rotating-wave approximation, these terms are neglected.

3The beam waist w is assumed to be constant over the length of the resonator (w ≈ w0 for
x < L), which is justified if the Rayleigh length of the mode xR = πw2

0/λ� L is much larger than
the resonator length (λ = 2πc/ωc is the wavelength of the mode).
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number of excitations in the system. The new eigenstates of the system, the dressed
states, are a linear combination of pairs of these bare states :

|n+ 1,+〉 = cos θ |e, n〉+ sin θ |g, n+ 1〉 (2.5a)

|n+ 1,−〉 = − sin θ |e, n〉+ cos θ |g, n+ 1〉 , (2.5b)

n = 0, 1, 2 . . .

apart from the singlet ground state |g, 0〉. The mixing angle θ is a function of the
coupling g and the detuning between atom and cavity resonance:

tan θ =
2g
√
n+ 1

(ωa − ωc) +
√

4g2(n+ 1) + (ωa − ωc)2
(2.6)

The eigenenergies of the system form a ladder of doublets, with a central spacing
of one photon energy ~ωc and a splitting which increases with the square root of n
(see Fig. 2.2):

E(n+1),± = ~nωc +
1

2
~(ωa + ωc)± 1

2
~
√

4g2(n+ 1) + (ωa − ωc)2 (2.7)

E(n+1),+ − E(n+1),− = ~
√

4g2(n+ 1) + (ωa − ωc)2 (2.8)

Spectroscopy of the first doublet of these states in a degenerate system (ωa = ωc)
gives a pair of resonances with the splitting E1,+−E1,− = 2g, the so-called vacuum-
Rabi splitting, which is discussed in section 2.2.1.
The Jaynes-Cummings model can be extended to account for more than one atom in
the mode, leading to the Tavis-Cummings model [61]. This model is not considered
here.

2.1.2 Open quantum system

A prerequisite for spectroscopy on the system is a coupling to the environment,
allowing the system to be driven and the observation of photons emitted either
through coherent radiation or through incoherent decay processes. Indeed, in the
optical regime decay usually cannot be neglected, but plays an integral role in the
evolution of the system [62]. The transition from the closed to the open quantum
system therefore requires two steps: (a) the inclusion of a pump term in order to drive
the system and replenish losses and (b) a coupling to modes other than the privileged
cavity mode to describe the decay of the excitation of both atom and cavity mode.
Note that the eigenstates of the system will gradually start to deviate from the ones
given in the Jaynes-Cummings model as the perturbations of the system through
probing and decay increase, and efforts have been made to analytically describe these
new eigenstates [63, 64]. However, in the following the perturbations are assumed to
be so small that although they cannot be neglected in the evolution of the system,
the Jaynes-Cummings model still gives a good approximation of the eigenstates.
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Figure 2.2: The Jaynes-Cummings model. This model describes the coupling
of a single two-state atom to one mode of the electromagnetic field, represented by
a harmonic oscillator with an infinite number of equally spaced levels. The energy
levels of the combined system form a ladder of doublets. The splitting between the
levels of one doublet increases with the square root of the principal quantum number
of the mode n, such that the level spacing becomes anharmonic. Losses are not
included in the Jaynes-Cummings model, which describes the coherent evolution of
a closed quantum system. The decay rates (γ, κ) of the atomic polarization and the
cavity field are introduced in the figure for later reference.

Pump term

In general, there are two ways to externally excite the system: the atom may be
pumped by a laser beam which enters the cavity from the side and the cavity mode
can be pumped by a laser beam shining on one of the mirrors. The latter possibility
is realized in the experiment, so the description is restricted to this case. Quantum
mechanically, the excitation of the cavity mode by a coherent near-resonant field can
be described by adding a pump term of the following form to the Jaynes-Cummings
Hamiltonian Eq. 2.1:

HJCP = HJC +HP (2.9a)

HP = ~η(ae−iωlt + a†eiωlt) (2.9b)

where η is the strength and ωl the frequency of the pump field. The spatial mode
matching between pump beam and cavity mode is assumed to be perfect and absorp-
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tion in the cavity mirrors is neglected; these imperfections can be included separately
when dealing with a specific experimental situation.

Master equation

There are several approaches which allow to model the interaction of a system
with its environment; an overview can be found in [65]. One way is to derive a
master equation, which describes the time evolution of the system density matrix
under inclusion of the coupling to the environment. An outline of the derivation of
the master equation is given below. A detailed description can be found, e.g., in
[66, 67, 68]. The idea is the following:
In principle, system and environment must be considered jointly, and thus are de-
scribed by a density matrix %tot, which includes all degrees of freedom. Mathemati-
cally, %tot is composed of vectors from the combined Hilbert space Htot = HS

⊗HR

of system and environment; the environment is the collection of all free-space modes
which couple to either the atom or the cavity mode. The time evolution of this
density matrix obeys the von-Neumann equation

%̇tot = − i
~

[Htot, %tot] (2.10)

where the total Hamiltonian Htot consists of the Hamiltonians of the subsystems
HJCP , HR and a Hamiltonian Hint describing their interaction:

Htot = HJCP +HR +Hint (2.11)

It is assumed that the interaction term is small and that the environment is not
influenced by the system, but essentially remains in a state of thermal equilibrium,
which is the vacuum state for modes of optical frequencies. Therefore, the total
density operator (in the interaction picture with respect to Hint) can be written as

%tot(t) = %S(t)⊗ %R +O(Hint(t)) (2.12)

and Eq. 2.10 can be calculated by perturbation theory in the Born approximation,
retaining terms up to second order in Hint.
However, only the time evolution of the density matrix pertaining to the system
(labelled %S) is of interest, whereas the environment is simply a reservoir which
provides a source of fluctuations and dissipates energy. %S can be obtained by
tracing over the degrees of freedom of the reservoir:

%S = TrR[%tot] (2.13)

Note that in this way, the system state is constructed to include a statistical mixture
of reservoir states, and thus is no longer expected to be a pure state. The trace over
the reservoir can be evaluated using the Markov approximation, which states that
the reservoir has a very short ’memory’ of its interaction with the system, in the sense
that correlations between the system and the reservoir and also correlations within
the reservoir itself decay very rapidly as compared to the timescale of evolution of the
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system density matrix, given by (g, γ, κ)−1. This allows to calculate the derivative
%̇S = d%S/dt on a timescale dt which averages over these fast fluctuations but is still
short compared to the typical time evolution of the system. With these assumptions,
the master equation for the density matrix %S ≡ % reads

%̇ = L% (2.14a)

L% ≡ − i
~

[HJCP , %] + κLa%+ γLσ% (2.14b)

La% ≡ 2a%a† − a†a%− %a†a (2.14c)

Lσ% ≡ 2σ%σ† − σ†σ%− %σ†σ (2.14d)

Here, the Liouville super operator L has been introduced; it is a sum consisting of a
unitary part (the commutator with the Hamiltonian) which describes the coherent
evolution of the closed system and a non-unitary part κLa%+ γLσ% which describes
the coupling of the mode and the atom to the environment. The coefficients κ and
γ are the decay rates of the cavity field and the atomic polarization, respectively.
The master equation can be used to calculate the time evolution of the expectation
value of any system operator ô:

〈 ˙̂o〉 = Tr[ô%̇] = Tr[ô(L%)] (2.15)

An instructive illustration is the calculation of the derivative of the expectation
value of the photon number in the mode

〈
a†a
〉

in the case g = 0, for which the
cyclic property of the trace and the commutation relation [a, a†] = 1 is invoked:

d

dt
〈a†a〉 = −2κ〈a†a〉 (2.16)

In this way, the phenomenologically known decay behavior of the field intensity is
recovered.

Heisenberg equations of motion

The next step is to derive the time evolution of a set of system operators (a, σ, σz)
from the master equation. The time evolution is governed by three different charac-
teristic frequencies: the atomic resonance frequency ωa, the cavity frequency ωc and
the frequency of the pump (or probe) beam ωl. In order to reduce the degrees of
freedom, we change to the reference frame of the probe beam and define detunings
with respect to ωl. Additionally, complex detunings which also include the decay
rates are introduced following ref. [69]:

∆a := ωl − ωa (2.17a)

∆c := ωl − ωc (2.17b)

∆̃a := ∆a + iγ (2.18a)

∆̃c := ∆c + iκ (2.18b)
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With these definitions, the time evolution of the operators reads:

〈ȧ〉 = i(∆̃c 〈a〉 − η − g 〈σ〉) (2.19a)

〈σ̇〉 = i(∆̃a 〈σ〉+ g 〈aσz〉) (2.19b)

〈σ̇z〉 = −2γ(1 + 〈σz〉) + 2ig(〈a†σ〉 − 〈aσ†〉) (2.19c)

These are the Heisenberg equations of motion for the operators of interest. The
steady state of the system is obtained by setting ({〈σ̇〉 , 〈ȧ〉 , 〈σ̇z〉} = 0).

2.2 Different cavity-QED models

This section discusses different approaches to solve the Heisenberg equations of mo-
tion. An exact analytic solution for these coupled operator equations is not possible,
because the set (a, σ, σz) is not complete. This can be seen from Eq. 2.19b, which
involves the time evolution of 〈aσz〉. However, the equations become analytically
solvable in certain limits, leading to different cavity-QED models which help to gain
insight into the system from different points of view.

2.2.1 Classical model of coupled harmonic oscillators

A simplification of the system which is often justified under experimental conditions
is the assumption of low atomic excitation, which is desired to keep the rate of
spontaneous emission and thus the heating rate low. Most often this limit is realized
by choosing an appropriately low pump intensity, but it can also be reached by
adapting the detuning of the pump beam so that the overlap | 〈e, 0|α〉 |2 of the
excited state |α〉 = α+ |1,+〉 + α− |1,−〉 with the bare atomic state |e, 0〉 is small.
Mathematically, this limit is reached by setting 〈aσz〉 = −〈a〉 in Eq. 2.19b (atom
always in state |g〉), and dropping Eq. 2.19c. In this way, a new, closed set of coupled
equations is obtained:

〈ȧ〉 = i(∆̃c 〈a〉 − η − g 〈σ〉) (2.20a)

〈σ̇〉 = i(∆̃a 〈σ〉 − g 〈a〉) (2.20b)

For this system, the steady state can be calculated [3]. Following the notation
of [69], a new dimensionless complex parameter ν is introduced in analogy to the
cooperativity parameter C = g2/2γκ

ν =
g2

∆̃a∆̃c

(2.21)

to obtain a concise form of the result:

〈a〉0 =
η

∆̃c

1

1− ν (2.22a)

〈σ〉0 =
η g

∆̃a∆̃c

1

1− ν =
g

∆̃a

〈a〉0 (2.22b)
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The steady state intracavity photon number and atomic excitation are given by the
modulus square of the last equations (we recall that

〈
ô†
〉

= 〈ô〉∗):
〈
a†a
〉

0
=

η2

|∆̃c|2
1

|1− ν|2 (2.23a)

〈
σ†σ
〉

0
=

η2 g2

|∆̃a∆̃c|2
1

|1− ν|2 (2.23b)

These equations are sufficient to calculate a spectrum of the system, which shows
two resonances, the normal-mode resonances. They are characterized by the eigen-
frequencies ω±, which can be obtained from Eqns. 2.20:

ω± − ωl = −1

2
(∆̃a + ∆̃c)± 1

2

√
4g2 + (∆̃a − ∆̃c)2, (2.24)

These frequencies ω± have complex values. The real part Re (ω±) determines the
position of the resonances; the imaginary part Im(ω±) describes their widths.
In Fig. 2.3(a), the position of the normal modes is indicated in a 2D-parameter plot
as a function of the detunings (∆a,∆c). Spectra which show the response of the
intracavity photon number (proportional to the signal of a detector in transmission
of the cavity) to a scan of the probe frequency for the degenerate case ∆a = ∆c and
two non-degenerate cases ∆c ≶ ∆a are presented in Fig 2.3(b). For ∆a = ∆c, the
amplitudes of both resonances are equal and the distance between the resonances
reaches its minimum value ω+ − ω− ≈ 2g. If atom and cavity are detuned, the
overlap |〈g, 1|1,+/−〉|2 of one of the dressed states with the bare cavity state |g, 1〉
increases, leading to a better visibility of this ’cavity-like’ peak since only the bare
cavity state is pumped as well as observed; in addition, the distance between the
resonances increases. Since effects of saturation are neglected in this low-excitation
limit, the obtained spectra are linear in the probe power (Ppump ∝ η2).
Considering the widths of the resonances (ΓHWHM = (γ + κ)/2 in the degenerate
case), it is clear that they can only be resolved in the strong-coupling regime, with
g � (γ, κ). Here, the influence of the decay on the position of the resonances can be
neglected, and the resonance frequencies match the first pair of dressed states in the
Jaynes-Cummings ladder (cp. Eq. 2.7). Therefore, this approximation is equivalent
to truncating the Jaynes-Cummings ladder after the first doublet and restricting
the maximal number of excitations in the system to 1 (see Fig. 2.4). Higher energy
levels are explicitly excluded.

Classical interpretation of the normal mode spectrum

The phenomenon that the originally degenerate resonances of bare atom and cav-
ity (for ωa = ωc) split into two new resonances in the coupled system is called
normal-mode or vacuum-Rabi splitting. It has been observed in many atom experi-
ments, with atomic beams passing a cavity [15, 16, 17], atoms trapped inside cavities
[18, 19, 20], and recently with Bose-Einstein condensates inside cavities [70, 71]. The
normal-mode splitting has also been seen in cavity QED systems outside atomic
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(a) Location of normal-mode resonances
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Figure 2.3: Normal-mode spectra. (a) The normal modes form an avoided
crossing between the resonances of the bare atom and the bare cavity (curves), with
the minimal splitting of 2g occurring for the symmetric case ∆a = ∆c. In (b),
spectra along different scan directions (as indicated in (a)) are shown. Due to the
experimental configuration of pumping and detecting losses from the cavity mode,
the amplitudes of the normal-mode resonances differ if ∆a 6= ∆c. The parameters
are (γ, κ) = 0.1g, η2 = κ2.

Figure 2.4: Normal-mode splitting. When atom and cavity are coupled, the
Lorentzian-shaped transmission spectrum of the cavity resonance splits into two
new resonances, the normal modes. This splitting is already predicted in the low-
saturation limit and is reminiscent of the normal-mode spectrum of two coupled
classical harmonic oscillators. The structure of the system is equivalent to truncating
the Jaynes-Cummings ladder after the first doublet of dressed states.

physics, with quantum dots coupled to micropillars [72, 73] or microdiscs [74] or
placed inside photonic crystals [75], and also with Josephson junctions as artificial
atoms which were coupled to microcircuits [76]. In fact, observation of the normal-
mode splitting is a benchmark signature that a system has reached the strong-
coupling regime of cavity QED.
However, this splitting is no pure quantum effect; it can as well be explained classi-
cally. This is already implicit in the form of Eqns. 2.20, which are the low-intensity
limit of the Heisenberg equations of motion. When replacing the expectation values
of the operators by classical amplitudes, these equations describe a set of coupled,
damped harmonic oscillators, which can be interpreted as the atomic dipole (ampli-
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tude governed by σ) and the single-mode field inside the cavity (amplitude governed
by a) [3]. The two observed resonances are equivalent to those obtained from this
classical picture, also explaining the terminology of ’normal modes’. However, this
analogy only holds as far as mean values are concerned; correlations of the operators
are lost in this picture. Quantum mechanically, the interpretation of the atom as a
harmonic oscillator becomes obvious from the initial approximation 〈aσz〉 → −〈a〉,
which is also satisfied when σz = [σ, σ†]→ −1. This changes the fermionic commu-
tator relation to the bosonic one, setting atom and light field on the same footing.
A different classical explanation of the normal-mode splitting was presented by Zhu
et al. [14], who derive this spectrum from linear dispersion theory. Here, the normal-
mode resonances are a consequence of the phase shift picked up by the light beam
on a round trip in the resonator. This phase shift depends on both the cavity length
and the refractive index caused by the presence of the atom and vanishes on the
normal-mode frequencies, leading to constructive interference.

2.2.2 Semiclassical nonlinear optical bistability theory

The classical limit described in the previous section treats both atom and field
as linear harmonic oscillators, omitting effects of saturation. Obviously, this ap-
proximation breaks down for stronger driving, when the substitution σz → −1 no
longer holds. In this case, a different approximation can be made which respects
the quantized nature of the two-state atom: only the field is treated classically by
assuming that the operator a can be replaced by a complex number 〈a〉. With this
approximation, the Heisenberg equations of motion (2.19) become:

〈σ̇〉 = i(∆̃a 〈σ〉+ g 〈a〉 〈σz〉) (2.25a)

〈ȧ〉 = i(∆̃c 〈a〉 − η − g 〈σ〉) (2.25b)

〈σ̇z〉 = −2γ(1 + 〈σz〉) + 2ig(〈a†〉 〈σ〉 − 〈a〉 〈σ†〉) (2.25c)

This set of equations is equivalent to the single-atom limit of the Maxwell-Bloch
equations, which are used to describe the interaction of a sample of two-state atoms
with a coherent light field. The steady state of this system can be solved analytically.
To this end, the saturation parameter s0 is defined:

〈σz〉0 ≡ −
1

1 + s0

(2.26)

Notice that s0 → 0 in the low saturation limit. With these definitions, a new coupled
set of equations is derived:

〈a〉0 =
η

∆̃c

[
1− ν

1 + s0

]−1

(2.27a)

s0 =
2g

|∆̃a|2
| 〈a〉0 |2 (2.27b)

This set of equations can be combined to a cubic equation for 〈a〉0, leading to three
solutions. For one class of input parameters, two of these solutions are complex and
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(a) Intensity dependence and hysteresis
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(b) Spectra for different intensities
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Figure 2.5: Optical bistability. In this model, only the atom is quantized (al-
lowing for saturation effects) while the electric field is described by the classical
Maxwell equations. (a) Depending on the cooperativity parameter C, more than
one stable solution for the intensity of the intracavity light field is possible and the
system can show hysteresis upon a change of the pump intensity (inset). Parameters:
∆a = ∆c = 0. (b) Spectra calculated at different pump intensities show that the
normal mode structure is recovered for small pumping. Bistability occurs only at
higher intensities, where the peaks bend and finally meet to form a closed structure.
Parameters: κ = γ = 0.1g (C = 50).

therefore not physically relevant. However, in certain regimes all three solutions
have real values, and consequently the steady state of the system is multivalued. In
this regime, the amplitude of the intracavity field can switch between two values (the
third solution is unstable), which is why this limit is called optical bistability theory
and the equation for |〈a〉0|2 (Eq. 2.27) is called the bistability state equation [22]. In
Fig. 2.5, the functional dependence between the pump strength and the intracavity
photon number is plotted for different cooperativity parameters C = g2/2γκ. While
for small C the solution stays unique, for C > 4 the typical s-shaped curve indicates
that two stable solutions are possible. Thus the system can show hysteresis, with
the observed transmission depending on its own history. In any case, the theory
of bistability predicts a nonlinear relation between input and output intensity. The
low-intensity limit (Eq. 2.23a) discussed in the previous section is formally recovered
if one sets s0 = 0.

Optical bistability for atomic ensembles and on the single atom level

The system for which optical bistability is traditionally known consists of a nonlinear
(saturable or with intensity-dependent dispersion) medium inside a resonator. The
first experimental observations of optical bistability succeeded with vapors [77]; in
the meantime, this effect has also been established with several cold atoms passing
through or stored in a cavity [28, 17, 78]. However, at the level of single atoms
measurements suggest disagreement with the prediction of optical bistability [55].
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The theory of OB is a mean-field theory in the sense that quantum fluctuations
of the field are neglected. If these fluctuations are significant, they should prevent
the system from settling into one of two possible steady states and thus destroy
bistability [79, 80]. Therefore such an effect is not expected for a single atom inside
the cavity as long as the number of photons in the mode is small, even if the atom
is saturated.

2.2.3 Quantum model

In the two cavity-QED models discussed so far, the field is treated classically. Field
quantization becomes important in an atom-cavity system which is characterized
by a small saturation photon number4 ns . 1, i.e. where the presence or absence of
a single photon in the mode has a large influence on the dynamics of the system.
To include field quantization, the term 〈aσz〉 in Eqns. 2.19 has to be retained,
precluding an analytical solution. For a numerical solution, a finite set of basis
vectors has to be chosen from the combined Hilbert space of the system Hs =
Ha ⊗ Hc = {{|g, i〉 , |e, i〉}, i ∈ N0}, where Ha = {|g〉 , |e〉} is the two-dimensional
Hilbert space of the atomic states and Hc = {|i〉 , i ∈ N0} is the Hilbert space of
the mode, expressed in the infinite basis of Fock states. High Fock states will not
be occupied at moderate pump intensities, therefore this basis can be truncated
for numerical calculations. One method which helps to ensure convergence of the
steady state even at a lower number of basis vectors, which is essential due to
limited computational power, is the introduction of a referred state following the
procedure in [69]. The referred state is chosen here to be the steady state %α of
the system in the low saturation limit. The basis of Fock states is then displaced
by shifting the field operator a by its position-dependent low-saturation expectation
value α(r) = Tr[a%α] = 〈a〉0 (Eq. 2.22a). This defines the new field operator c:

c = a− α(r)I (2.28)

where I is the identity matrix. The vacuum state of c then corresponds to a coherent
state α(r):

0 = c |0〉c = (a− α(r)) |0〉c → a |0〉c = α(r) |0〉c (2.29)

This is why states which do not deviate too far from the low-saturation limit converge
faster in the displaced basis.
The master equation 2.14 then reads

%̇ = − i
~

[Hc, %] + κLc%+ γLσ% (2.30a)

Lc% ≡ 2c%c† − c†c%− %c†c (2.30b)

Lσ% ≡ 2σ%σ† − σ†σ%− %σ†σ (2.30c)

with the shifted Hamiltonian Hc (α ≡ α(r) implicit)

Hc = −∆aσ
†σ − gασ† − gα∗σ + g(c†σ + cσ†)

−∆cc
†c+ (η + ∆̃cα)c† + (η + ∆̃∗cα

∗)c (2.31)

4The saturation photon number is defined as ns = γ2

2g2
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(a) Location of multiphoton resonances
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Figure 2.6: Quantum theory. This model retains the quantization of the light
field, reproducing higher doublets from the Jaynes-Cummings ladder which can be
accessed by simultaneously absorbing more than one photon from the pump field.
Such a two-photon transition to the state |2,−〉 is indicated in (a), together with
the location of the resonances from the first three doublets in the (∆a,∆c)-plane.
In (b), spectra for different pump powers are shown. At low powers, the normal-
mode spectrum is recovered; the additional resonances appear only at higher pump
powers. Parameters: γ = κ = 0.05g. For the calculation, the basis was truncated at
|nfock〉 = |10〉.

Expectation values of operators can then be calculated numerically using standard
methods (for details, see appendix A.1).
In Fig. 2.6, the steady state expectation value of the intracavity photon number〈
a†a
〉

= Tr[a†a%0] is shown as a function of the probe detuning (∆a = ∆c) for differ-
ent input intensities. In the low-intensity limit, the spectrum matches the spectra
obtained from the previous models, showing the normal-mode splitting. As the
pump strength is increased, additional resonances start growing on the inside slopes
of the normal modes. In terms of the Jaynes-Cummings picture, these resonances
can be interpreted as multiphoton transitions to higher-lying doublets (E(n+1),±).
Their location is determined by the resonance condition

(n+ 1)~ωl = En+1,± (2.32)

where En+1,± are the energy levels of the Jaynes-Cummings ladder. In Fig. 2.6(a),
the resonance condition for multiphoton transitions of different order is indicated
in the (∆a,∆c)-plane. The higher-lying states have no classical interpretation, their
existence is a direct consequence of field quantization.

2.2.4 Remarks on the essential differences between the mod-
els

In the low-saturation limit, the classical, semiclassical and the quantum model co-
incide in their description of the system: all three equally predict the normal-mode
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splitting, which occurs at arbitrarily low intensities. As the atomic excitation is
increased, the three models start to deviate. The classical model fails to describe
the system as saturation effects are neglected. These are considered in the semi-
classical theory, where the atom is quantized. Deviations between the semiclassical
and quantum theory arise in parameter regimes with low saturation photon num-
bers, and can already be significant at rather low, though non-vanishing excitation
probability of the atom.
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Chapter 3

Investigating the structure of the
atom-cavity system

There is a variety of experimental approaches to determine the structure of the cou-
pled atom-cavity system. In microwave experiments, the quantization of the system
can be observed via Rabi oscillations in the time domain. In the optical domain,
indirect evidence of the higher dressed states can be found in the photon statis-
tics of the transmitted light field, and there are also cavity-QED systems outside
atomic physics which are governed by the same Hamiltonian and thus suited for
similar studies. These experiments are reviewed in the first part of this chapter.
The second part concentrates on possibilities to observe the higher-lying states in
the spectrum of an optical cavity-QED experiment. Different methods to resolve
such a resonance under the given experimental boundary conditions are introduced,
and the inherent nonlinearity of the resonance is discussed.

3.1 Evidence of higher states in previous experi-

ments

3.1.1 Microwave experiments

With the advent of the one-atom maser in 1985 [5], it became possible to study the
energy exchange between a single atom and a single mode in the microwave domain:
When an atom in the excited state enters the mode, its excitation is coherently
exchanged with the field, and the probability of finding the atom in the excited
state after its exit from the resonator becomes an oscillatory function of its transit
time. If atom and cavity are on resonance, the rate of oscillation is given by the
single-atom Rabi frequency Ω = 2g

√
n+ 1, where 2g is the vacuum Rabi frequency

and n is the number of photons in the resonator field. When exciting the mode, the
intracavity field possesses a probability distribution over discrete photon numbers,
therefore the Rabi oscillations will collapse and revive after a time characteristic
to this distribution due to constructive or destructive interference of the Rabi nu-
tations of different frequencies. This effect was first observed in 1987 [10]. In a

21
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conceptually similar, but more refined experiment in 1996 [11], a Fourier transform
of the time-dependent excitation probability even revealed discrete resonances with
a characteristic decrease in distance proportional to

√
n−√n− 1 which is associated

with the occupation of dressed states in several consecutive doublets.

A similar signature of the quantized states was obtained in a very different system,
a trapped ion which was cooled almost to the motional ground state. The coupling
between the internal state of the atom and its quantized motion states is governed
by the same Jaynes-Cummings Hamiltonian used for the atom-cavity system, and
consequently the number state distribution of the motion couples in the same way
to the evolution of the internal atomic state [81].

In the dispersive regime of large detuning between atom and cavity resonance, the
dressed states separate into products of bare states, and each cavity photon linearly
changes the transition energy of the atom by a characteristic ac Stark shift. In
this regime, a non-destructive count of the number of photons in the resonator was
recently accomplished by real-time observation of the collapse of the wavefunction
of the field [82], representing maybe one of the most beautiful proofs of field quan-
tization in a regime where atom and field are mostly decoupled. Consequently, the
quantization of the electromagnetic field and the validity of the Jaynes-Cummings
model are well documented by cavity QED experiments in the microwave domain
[8].

3.1.2 Optical correlation experiments

In the visible regime, not only the coupling but also the decoherence rates of both
the atomic polarization and the cavity field are much higher than in microwave
experiments, therefore a similar state detection of the atom is not practicable. In-
stead, the photons escaping from the cavity can be used for an indirect observation
of the coherent evolution of the system in a photon correlation measurement. The
idea, as developed for multiple atoms in the cavity, is the following [83]: We start
by assuming that the atom-cavity system has evolved into its steady (pure) state,
sharing excitation between the atoms and the mode. Detecting a photon emitted
from the cavity projects the quantum-mechanical wavefunction of the system to a
non-equilibrium state with one less excitation in the mode. The system evolves back
to its steady state on the timescale given by the inverse Rabi frequency; only after
this time has the probability of emitting a photon from the mode reached its initial
value. Therefore, the second-order correlation function

g2(τ) =
〈p(t)p(t+ τ)〉
〈p(t)〉2 (3.1)

which gives the conditioned probability of measuring a photon at time (t + τ) af-
ter detecting a first photon at time t, normalized on the probability of detecting
two independent photons, shows oscillations on this timescale. This effect has been
seen in different experiments with atomic beams crossing an optical high-finesse res-
onator [28, 29, 30]. In general, measuring the intensity correlation is a possibility to
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distinguish between classical and non-classical fields. In classical physics, the fluc-
tuations of the field are described by stochastic probabilities, leading to restrictions
in the correlation function due to the Schwartz inequalities [80]: g(2)(0) > g(2)(τ)
and |g(2)(0) − 1| > |g(2)(τ) − 1|. These inequalities state at first that for classical
fields the correlation function must assume its absolute maximum at time 0, a re-
quirement which prohibits anti-bunching g(2)(0) < 1, as g(2)(∞) = 1 is the limit
assumed for infinite time when all correlations have decayed. Second, the largest
deviation from this limit must also appear at time τ = 0. Quantum physics provides
a way of violating these inequalities as probabilities must be replaced by amplitudes
which can interfere. Indeed, the afore-mentioned experiments reported non-classical
correlations, proving the quantum nature of the transmitted field.

Considering a single atom inside a high-finesse resonator, a non-classical feature in
the correlation function is intuitively accessible when having in mind the energy
spectrum given by the Jaynes-Cummings model: The transmitted light is anti-
bunched if the system is probed on one of the normal-mode resonances. Due to
the anharmonic splitting of the doublets, the photon energy required to drive a
transition from the ground state to the first doublet differs from the one needed to
drive a transition from the first to the second doublet (see Fig. 2.2). Therefore, once
the system is excited to the first doublet, no other photon of the same frequency
can enter the cavity as long as the first excitation has not decayed. The resulting
anti-bunching was observed for a single Cs atom [31] trapped inside a high-finesse
resonator, for an atom passing a microdisk resonator [84] and for a quantum dot
placed inside a photonic crystal cavity [85].

3.1.3 Cavity-QED systems outside atomic physics

In recent years, cavity-QED systems outside atomic physics have undergone a rapid
development. In these systems, the two-level atom is replaced by an ’artificial atom’
made of a microscopic structure in a solid-state device which is integrated into a
cavity. Such systems promise easier manageability and scalability than classical
atom or ion traps, which is essential for applications in the field of quantum com-
putation [86]. Several of these systems have already shown normal-mode splitting,
and are now suited to investigate the strong-coupling regime competitively to the
traditional atom-cavity experiments. In the following, two groups of such systems
are introduced.

Superconducting circuits

One modern field of cavity QED is circuit QED [86], which employs superconducting
circuits on chips to implement strong coupling. Charge (’Cooper pair box’) or flux
qubits consisting of Josephson junctions pose as artificial atoms, emitting in the
microwave regime. Such a qubit can be coupled to superconducting LC circuits in
the form of SQUIDs or transmission line resonators printed on the chip, in which a
microwave photon manifests itself as electric current. In the near-resonant regime,
these systems have shown normal-mode splitting in the spectrum [76, 87, 88] and
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in the time domain [89], where moreover signatures of distinct interfering Rabi
oscillations from higher dressed states [90] were found in a manner similar to refs. [11,
81]. In another experiment in the dispersive regime, the intensity-dependent ac
Stark shift was used in order to spectrally resolve the photon-number distribution
of coherent and thermal pump fields [91]. Spectroscopic observation of the quantized
light-matter states in the near-degenerate case, where the contributions of atom and
cavity are non-separable, has so far not been reported.

Quantum dot systems

Cavity QED with semiconductor structures has also progressed quickly [26]. Here,
a quantum dot [92] with a resonance at optical frequencies is used as artificial atom.
The quantum dot can be combined with different kinds of optical microcavities [93].
The most important ones having already reached the strong-coupling regime are
micropillars consisting of two opposing Bragg reflectors [72], microdisks which rely
on total internal reflection to sustain whispering gallery modes [74, 94], and photonic
crystal slabs which consist of a periodic structure of holes with a defect to confine
light [75, 95, 96]. In these systems, the search for two-photon nonlinearities is a
major goal as well [26, 27].

3.2 Spectroscopy of higher levels in optical cavity

QED

While there is evidence for the existence of the higher doublets of the Jaynes-
Cummings ladder from previous cavity-QED experiments, these experiments op-
erate in a regime where cumulative effects from the presence of several different
energy levels are observed. This section provides the theoretical background needed
to devise an experiment which allows direct excitation and spectroscopic detection
of a two-photon state. The signature of this state in the spectra is addressed under
consideration of the parameters and limitations provided by the given atom-cavity
apparatus (see section 5).

3.2.1 Monochromatic spectroscopy

The idea of resolving the higher-order states in optical spectroscopy has been dis-
cussed in literature for several years [3, 23, 24]. In general, one can distinguish
between two possible approaches to excite a higher doublet: The first one is the
bi-chromatic (step-wise) excitation, which starts with the resonant excitation of one
of the normal-modes using one frequency, and continues from there to excite a state
of the next doublet by using light with a second frequency. This idea has been
experimentally approached in a system with an atom beam [56], which failed mostly
due to large atom-number fluctuations, and also in a previous measurement with
a single trapped atom in this experiment, where the measurement result was not
conclusive owing to lack of signal to noise ratio [97, 98]. Here, the second approach is
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chosen: monochromatic excitation, i.e. a direct excitation of a higher state via a vir-
tual level, using two photons of the same frequency as illustrated in Fig. 2.6(a). This
approach has several advantages: for one, a higher doublet state can be populated
without inadvertently probing also one of the normal-mode states, such that this
background can be minimized and an exclusive excitation of the desired final state
becomes feasible; for another, monochromatic excitation comes along with a non-
linear dependence of the higher state population on the probe intensity. While the
intensity-dependence is discussed in more detail in section 3.2.2, the next paragraph
concentrates on the unique addressability of the higher states.

Anharmonicity of the spectrum

In order to drive a multiphoton transition, the resonance condition (Eq. 2.32) has
to be met. Written in terms of detunings, the resonance condition for the excitation
of the (n+ 1)th doublet reads

(n+ 1)∆c =
1

2
(∆c −∆a)± 1

2

√
4g2(n+ 1) + (∆a −∆c)2 (3.2)

In the degenerate case ∆a = ∆c, this equation reduces to

∆c = ± g√
(n+ 1)

(3.3)

This equation shows that the level spacing is anharmonic, i.e. that a light field
of a given frequency can resonantly excite at most one eigenstate of the system
even if multiphoton transitions are considered, as long as n is small. In the limit
n → ∞, the resonance frequency tends towards ∆c = 0, and consequently the
anharmonicity of the level structure is lost in this semiclassical limit. Therefore, a
separate resolution of these states is most promising if the number of excitations
in the system is kept low, and best resolution is obtained for the first and second
doublet |±, 1〉 , |±, 2〉, where the difference in the detunings reaches its maximum
of ±(1 − 1/

√
2)g. In order to resolve these resonances in a spectrum, the coupling

constant g obviously must by far exceed the linewidths of the resonances, given by
a combination of (γ, κ); therefore the system must be situated deeply in the strong
coupling regime. The parameters given by the measurement setup (see chapter 5)
are (g0, γ, κ) = 2π(16, 3, 1.25) MHz, and the effective coupling g is reduced by a
factor of about 0.7 due to non-ideal localization of the atom in the cavity mode.
Using these parameters, the spectrum of the atom-cavity system for the degenerate
case is depicted in Fig. 3.1(a). It is obvious that the coupling is not large enough to
separate the single- from the two-photon resonance.
However, by leaving the degenerate case and introducing a detuning between the
bare atom and cavity resonance frequencies, it is possible to increase the distance
between resonance frequencies for the lower dressed states of consecutive doublets,
while the distance for the upper states is reduced. This is illustrated in the two
upper panels of Fig. 3.1, where the positions of the resonances in a spectrum are
indicated by the intersection of the straight arrow, which depicts the probe frequency
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(a) Symmetric diagonal spectra
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(b) Asymmetric diagonal spectra
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Figure 3.1: Quantum spectra. Scanning the laser frequency, the quantum model
predicts resonances stemming from multiphoton transitions in addition and close to
the normal-mode resonances. These additional resonances appear only at higher
intensities. For the parameters of the system (g, γ, κ) = 2π(0.7 · 16, 3, 1.25) MHz,
these resonances cannot be separately resolved in a symmetric spectrum (∆a = ∆c)
(a), but only in an asymmetric spectrum (here: ∆a = ∆c+g), where the two-photon
transition appears as a separate peak at ∆c ≈ −2π × 11 MHz (b). The pump power
for the consecutive spectra is η2 = (0.5, 1.5, 2.5)κ2.

scan, with the different curves indicating the resonance conditions for the different
doublets in the (∆a,∆c)-plane. Fig. 3.1(b) displays a scan calculated for ∆a−∆c = g,
a parameter set which allows to separate the resonances |1,−〉 and |2,−〉. Observing
these two resonances at the predicted positions would confirm that the system is
correctly described by the anharmonic ladder structure of the Jaynes-Cummings
model.

Selective excitation of the quantum resonances

A disadvantage of these spectra is that the classical normal-mode resonances are
the most prominent ones for pump intensities which are experimentally reasonable;
the purely quantum multiphoton resonances appear small in comparison. In order
to circumvent this problem, a new scanning technique is proposed here which allows
to concentrate purely on the quantum part of the spectrum. This technique is
based on the observation that the resonance condition (Eq. 3.2) for the first doublet
n = 0 cannot be fulfilled for any detuning ∆c as long as the probe frequency is
equal to the bare atom frequency, i.e. ∆a = 0, whereas it can be fulfilled for all
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(a) Vertical scan idea
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(b) Vertical spectra

 0

 0.01

 0.02

 0.03

-25 -20 -15 -10 -5  0  5  10  15  20  25

<
a+

a>

∆c/2π [MHz]

|2,+〉|3,+〉|3,-〉
|2,-〉

Figure 3.2: Quantum spectra for vertical scan direction. (a) By scanning
vertically along (∆a = 0), the normal-mode resonances can be avoided and only the
multiphoton resonances are visible. (b) The lowest-order resonance which appears is
a two-photon resonance, whereas a contribution from three-photon transitions leads
to a double-peak structure at higher scan intensities. The pump power is η2 =
(0.5, 1.5, 2.5, 3.5)κ2 for the consecutive spectra. For other parameters, see Fig. 3.1.

higher doublets (n ≥ 1). This break in symmetry arises from the fact that the atom
is a two-state particle whereas the light field has an infinite number of states, a
property which becomes important as soon as Fock states beyond the first pair are
occupied. This structural property of the system can be exploited to avoid crossing
the normal modes by performing a scan along the direction ∆a = 0, as illustrated
in Fig. 3.2. Technically, this scan direction can be realized by varying the cavity
frequency instead of the probe frequency: ωl = ωa = const, ωc = variable. For these
parameters, resonances of the higher doublets will occur at

∆c = ± g√
n
, n ≥ 1 (3.4)

The spectrum for different probe intensities is depicted in Fig. 3.2(b). The two visible
resonances stem from the excitation of the states |2,±〉 and |3,±〉; the normal modes
do not produce a resonance, but only a background stemming from off-resonant
excitation due to their finite linewidths. This is illustrated in Fig. 3.3, where two of
the symmetric spectra introduced in Fig. 3.2(b) are approximated by curves which
describe the contributions of the different transition orders. The contribution of
the single-photon transitions is calculated in the classical limit presented in section
2.2.1, without the use of fit parameters. The contribution of the higher photon
transitions is modeled by Lorentzian curves with a position and width given by
the real and imaginary part of the solution of Eq. 3.2, when replacing (∆a,∆c) →
(∆̃a, ∆̃c) and solving for (∆a = 0); the amplitude of these Lorentzians is fitted.
This ansatz reproduces the spectra calculated from the numerical solution of the
master equation reasonably well for not too high input intensities, except for the
region around ∆c = 0, where higher transition orders would already have to be taken
into account. It shows that the single-photon contribution gives a broad, slightly
curved background which approximates the quantum spectrum only in the limit of
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(a) Pump power η2 = 0.5κ2
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Figure 3.3: Line shapes of vertical spectra. The spectra calculated by nu-
merically solving the master equation (points) for two different pump powers are
approximated by a sum (solid line) of different contributions: a background from
single-photon off-resonant transitions calculated with the classical model (Eq. 2.23a
) (n = 0), and Lorentzian transmission curves with the peak positions and linewidths
obtained from Eq. 3.2 for complex detunings (∆̃a, ∆̃c). Three Lorentzian curves for
the two-photon (n = 1), the three-photon (n = 2) and the four-photon (n = 3) tran-
sitions were considered. Their amplitudes are fitted in the region −2π × 25 MHz to
−2π × 7 MHz. This model reproduces the peak shapes reasonably well apart from a
small deviation around ∆c = 0.

far detuning |∆c| � g, and the most important contribution for these spectra stems
from two-photon transitions, with the relative weight of three- and more photon
transitions growing for higher powers.
A scan taken along a vertical line slightly mismatched from ∆a = 0 will lead to
an asymmetric spectrum with non-equal peak heights and spacings, as shown in
Fig. 3.4(b) for ∆a = 2π × 2 MHz. Nevertheless, the contribution of single-photon
transitions remains small as long as the deviation from ∆a = 0 is small in comparison
to g.

3.2.2 Nonlinear intensity response

In the last section, it was shown that the anharmonicity of the level spacing in
the Jaynes-Cummings model allows to selectively excite a multiphoton transition
by choice of the appropriate input frequency, visible in the separate resolution of
a single- and a two-photon resonance in the spectra. These spectra 3.1(b),3.2(b)
also indicate that the different orders of resonances react differently to a change in
the input power. This intensity response is the topic of the following section. How-
ever, first comes a short digression concerning different classes of optical nonlinear
processes and how they relate to the nonlinearity observed in this experiment.

Origin of nonlinear optical effects

In general, a great variety of nonlinear processes are known in optical physics which
occur from the interaction of light with a medium. They can be roughly separated
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(a) Photon number for different detunings
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(b) Asymmetric vertical spectra
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Figure 3.4: Asymmetric vertical spectra. Scanning vertically with a slight,
constant detuning from (∆a = 0) results in an asymmetric spectrum, where the
amplitudes of the left and right group of peaks quickly start to deviate. The average
intracavity photon number as a function of detunings (∆a,∆c) for a pump power of
(η2 = 2.5κ2) is depicted in (a). Notice the nonlinear color bar. The solid curves
indicate the position of the resonances according to Eq. 3.2 and the arrow indicates
the scan direction for the spectra shown in (b). The spectra are calculated for ∆a =
2π× 2 MHz and pump powers of η2 = (0.5, 1.5, 2.5, 3.5)κ2. For other parameters, see
Fig. 3.1.

into two groups: effects which rely on inducing a nonlinear polarizability of the
medium, resulting in a nonlinear susceptibility, and effects which are based on the
actual excitation of an electronic transition. The first type is commonly used for
effects which are broadly labeled ’frequency mixing’, including sum- and difference
frequency generation and optical parametric amplification inside a nonlinear crystal
[99]. Microscopically, the nonlinear response of the polarization of the medium to
an intense driving field can be explained by an oscillator model: Induced by the
electric field of the impinging light, the bound electron oscillates about the nucleus
in a potential which is harmonic in lowest order, but becomes increasingly anhar-
monic for higher driving intensities. This model accounts for the redistribution of
intensity from one frequency component of the field to another, but also allows
for self-modulation of the impinging light by an intensity-dependent refractive in-
dex, the optical Kerr effect. However, the nonlinearity created by a single atom is
small, and usually macroscopic media and high intensities are required to observe
these phenomena. Although the light field is enhanced greatly inside a high-finesse
resonator, it can be shown that the classical model with the usual ansatz of an
anharmonic potential does not reproduce the phenomena connected to the higher
energy levels which are predicted by the quantum Jaynes-Cummings model [100].

The second type of nonlinearities are characterized by a (near-)resonant interaction
of the light with an electronic transition in the medium. This field covers all kinds
of saturation nonlinearities, from saturation broadening of an atomic transition line
to spectral hole burning and saturable absorbers which are used for short pulse gen-
eration in lasers. A special kind of saturation nonlinearity can occur if the absorber
is placed inside a cavity: optical bistability, which was already introduced in sec-
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Figure 3.5: Three-level systems. The Λ-system is characterized by two (near-)
degenerate ground states and one excited state, whereas in the Ξ-system the levels
are aligned in a ladder structure.

tion 2.2.2. Since optical bistability is so closely related to cavity QED, nonlinear
effects arising from this theory will be discussed in more detail below. Another
type of nonlinearity stems from the interaction of the light with more than one elec-
tronic transition. One example is electromagnetically induced transparency (EIT),
a phenomenon which can occur in three-level Λ-type systems (see Fig. 3.5 for an
illustration). EIT can be used to slow down the group velocity of light pulses passing
through a medium [101]. Finally, also in free space multiphoton transitions can be
driven in Ξ-type systems, used for example for two-photon absorption spectroscopy.
Due to the analogy of this kind of spectroscopy to the spectroscopy performed on
the Jaynes-Cummings system, this nonlinearity will also be discussed in more detail
in the following section.

Nonlinearities in the optical bistability theory

In section 2.2.2, optical bistability was introduced as a theory which describes the
interaction of a classical light field with a quantized medium. Nonlinearities in this
system are solely due to the fact that the atom, as a two-level particle, can saturate
and thus the absorption of an impinging light field is bleached. Inside a resonator,
the back-action of the atom on the field can, under certain conditions, lead to two
stable states: either the atom is saturated, resulting in low absorption and a high
field intensity (this state is labeled upper branch), or the atom is mostly in the
ground state, in which case the light field inside the resonator is suppressed (lower
branch). The numerical analysis of this effect and an illustration were already pro-
vided in section 2.2.2 and Fig. 2.5(a). Single-atom bistability has not been observed
yet, although it is predicted by theory [79, 80] for parameter regimes of small field
fluctuations. Since here the interest lies in a parameter regime of very low photon
numbers and small detunings, this condition is not fulfilled, and bistability is not
expected to hold. Still, it is instructive to review the intensity response predicted
by this theory for the vertical scan proposed in section 3.2. At this point, it is useful
to introduce a notation which allows to characterize the intensity response of the
system: a development of the intracavity photon number

〈
a†a
〉
OB

as a power series
of a parameter I ≡ η2 which characterizes the impinging intensity:〈

a†a
〉
OB

= β1I + β2I
2 + β3I

3 + . . . (3.5)
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Of course, this approximation is only allowed as long as the nonlinearity is small,
i.e. if one stays on the lower branch. As long as the intensity is low, only the first-
order term is relevant and terms proportional to higher orders can be neglected. In
this case, the classical limit of the normal-mode resonances is recovered, which is
why the parameter β1 is identical to the low-intensity limit: β1 = 1/(|∆̃c|2|1− ν|2)
(cp. Eq. 2.27 with the saturation parameter s0 = 0). At slightly higher input
intensities, the coefficient β2 starts to become relevant. It can be calculated from
perturbation theory:

β2 =
4|ν| (|1− ν|2 − Re(1− ν))

|∆̃a||∆̃c|3|1− ν|6
(3.6)

where Re(·) denotes the real part. This coefficient shows resonances only at the
positions of the normal modes. Following up on the vertical scan idea presented
in section 3.2, which proposes a scan direction avoiding the normal modes, it is
clear that the bistability theory does not provide a resonance nor a strong nonlin-
ear response for the proposed scan parameters. In fact, spectra calculated for the
parameters from Fig. 3.2(b) only show a small deviation between the semiclassi-
cal optical bistability theory and the spectrum expected from the classical theory
(Fig. 3.6(a)). The intensity response in this region consequently deviates only slowly
from the classical linear function (Fig. 3.6(b)) at the position where quantum the-
ory predicts the two-photon resonance (∆a = 0,∆c = g). The nonlinearity can be
quantified by approximating β1, β2 for these parameters in the limit (g � γ, κ):

〈
a†a
〉
OB

∆a=0,∆c=g≈
(
γ

g

)2(
η

g

)2

+

(
2γ

g

)2(
η

g

)4

(3.7)

As long as the pump strength satisfies η � g, only the first term, which is linear
in the intensity, is significant. This is expected since for the chosen parameters the
excitation probability of the atom remains low (< 0.1), therefore the system remains
on the lower branch of optical bistability theory. Consequently, resonances and
strong nonlinearities observed in this parameter region are not based on saturation
effects and optical bistability.

Nonlinearities connected to multiphoton transitions

From the viewpoint of quantum theory, the higher-order resonances are accessed
by multiphoton transitions. Intuitively, one would assume that the probability of
driving a two-photon transition rises with the square of the input intensity, as it is
a second-order process which requires two absorptions. In contrast, the probability
of a first-order transition from the vacuum to one of the normal modes is linear
in the input intensity, as is confirmed by the calculated transition probability in
the classical limit (Eq. 2.23a). In the following, the intensity dependence for the
excitation of the second doublet will be analyzed.
Spectroscopy of the Jaynes-Cummings system has parallels to the spectroscopy of
other multilevel systems, and this experiment can profit from insights obtained in
other fields. Actually, a good analogy for the process of two-photon excitations in the
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(a) Vertical spectra for ∆a = 0
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Figure 3.6: Vertical spectra in the bistability theory. (a) The spectra
calculated with the theory of optical bistability for a vertical scan along ∆a = 0
(solid lines) closely resemble the spectra obtained from the classical limit (dashed
lines) for all chosen input powers. The parameters are identical to the ones used for
Fig. 3.2(b). (b) The dependence of the cavity transmission on the impinging power
at the position of the expected two-photon resonance (∆c = −2π × 11.2 MHz, solid
curve) is only slightly nonlinear in the chosen intensity range and also stays close to
the classical limit (dashed line).

atom-cavity system is provided by a two-photon absorption process in a free-space
atom with three anharmonically spaced levels in a Ξ-configuration (see Fig. 3.5).
The three relevant levels would then, for example, be the levels (|g, 0〉,|1,−〉,|2,−〉).
Due to the strong coupling, the levels |1,+〉 and |2,+〉 are far enough detuned as
to be neglected, as are states from higher doublets at the moment. The dependence
of two-photon absorptions in free-space atoms on the properties of the light field
has been investigated thoroughly. It is found that the intensity dependence of the
transition probability is governed by the photon statistics of the impinging light1

[102]:

P2ph ∝ G2(0) (3.8)

The photon statistics are expressed here by the second-order non-normalized inten-
sity correlation function G2(τ) at time τ = 0. Generally it is defined as

G2(τ) =
〈
a†p(t)a

†
p(t+ τ)ap(t+ τ)ap(t)

〉
(3.9)

where a†p and ap are the creation and annihilation operators for photons in the mode
of the impinging light field. G2(τ) gives the probability of detecting a photon at
time t + τ if a first photon has been detected at time t. This allows an intuitive
interpretation of Eq. 3.8: the probability of a two-photon absorption process is
proportional to the probability of having two photons arrive at the same time,
just as the single-photon transition probability is proportional to the probability of
having one photon arrive; the latter is given by the averaged light intensity.

1This relation is valid as long as the bandwidth of the impinging light is much smaller than the
linewidth of the transition and saturation effects are negligible
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In Eq. 2.9b, which defines the Hamiltonian describing the pumping of the system,
the probe light was modeled as a coherent field. In this case, the correlation function
factorizes:

G2
coherent(0) =

〈
a†p(0)ap(0)

〉2 ∝ 〈I〉2 (3.10)

This relation confirms that the amplitude of a two-photon resonance in a spectrum
should scale with the square of the input intensity. Note that this relation is ex-
pected to change if light with a different photon statistics is used: for example, for
squeezed light the transition rate should asymptotically become a linear function in
the limit of low intensity [103], an effect which was actually observed in the two-
photon absorption rate of a cold atom cloud [104]. For a coherent field, deviations
from the quadratic dependency of transmitted versus input intensity can arise from
saturation, or if other transitions are excited off-resonantly. While in the vertical
spectra (Fig. 3.2(b)) saturation is small, the off-resonant excitation from single- and
three-photon transitions will influence the intensity dependence on the two-photon
resonance. This can again be explained in the development:〈

a†a
〉

= ζ1I + ζ2I
2 + ζ3I

3 + . . . (3.11)

ζ1 describes the off-resonant excitation of the normal modes, given by the low-
intensity limit just as in the case of the optical bistability theory (Eq. 3.5) ζ1 = β1.
This process dominates the intensity dependence at the position of the two-photon
resonance for very low intensities (for illustration, imagine Fig. 3.3 extrapolated
to lower pump intensities). ζ2 describes the two-photon process, and differs radi-
cally from the coefficient obtained for optical bistability ζ2 6= β2

2. This transition
dominates at medium intensities. Higher orders of ζ take into account the higher
multiphoton transitions. The intensity response on the two- and three-photon reso-
nances are depicted in Fig. 3.7. The deviation from the linear classical limit as well
as the nonlinear character of the curves is obvious. On the two-photon transition,
the intensity dependence is almost quadratic, and it is more than quadratic on the
three-photon resonance.
Fig. 3.8 shows the excitation probability of the atom for the same parameters as
used in Fig. 3.7. Here, the difference from the classical limit remains small, and the
overall excitation stays well below 10%, in spite of the fact that the field intensity in
the resonator is strongly enhanced as compared to the classical case. This shows that
the additional excitation is predominantly stored in the field and not in the atom;
the role of the atom is mainly to mediate the nonlinear response of the field. At
this point, the analogy to a free-space two-photon absorption process fails, because
there the excitation can only be stored in the atom.
Concluding, one can say that the nonlinearity on the two-photon resonance is a
purely quantum effect which appears only for a single atom and a small photon
number, since it relies on the anharmonicity of the strongly-coupled atom-cavity
system. It can be observed in a regime where the atomic excitation probability is
kept small, and thus is fundamentally different from saturation nonlinearities which

2The analytical form of ζ2 is difficult to obtain and has not yet been calculated.
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(a) Two-photon resonance
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(b) Three-photon resonance
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Figure 3.7: Intensity response in the quantum theory. Accounting for the
quantization of the light field, theory predicts a mainly quadratic intensity response at
the position of the two-photon resonance (∆a = 0,∆c = −2π × 11.2 MHz) (a) and a
more than quadratic intensity response on the three-photon resonance (∆a = 0,∆c =
−2π × 7.9 MHz) (b), with the signal strongly exceeding the classical expectation.
For other parameters, see Fig. 3.1.

(a) Two-photon resonance
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Figure 3.8: Excitation probability. The excitation probability of the single
atom is calculated for a quantized field (solid lines) and for the classical limit (dashed
lines), for parameters matching the two- and the three-photon resonance. The dif-
ference between the two theories remains quite small, showing that the excitation of
a multiphoton resonance does not necessarily coincide with saturation of the atomic
transition. For parameters, see Fig. 3.7.



3.2. SPECTROSCOPY OF HIGHER LEVELS IN OPTICAL CAVITY QED 35

have been recently observed in other atom-cavity systems [96, 82] at low photon
numbers. This nonlinearity could be used to implement a two-photon gateway:
only photons which arrive in pairs can be transmitted by the system, while single
photons are blocked. Such a feature would be obvious in the photon statistics of the
transmitted light: the probability of photons arriving pairwise should be enhanced.
This is the topic of the next section.

3.2.3 Remarks on the photon statistics

One way of gaining knowledge about the structure of a system is to analyze its spec-
trum as described in the previous section; a complementary way of obtaining insight
is the analysis of the photon statistics of light emitted by the system. Experiments
which analyze the correlation of light emitted from a cavity were already discussed
in section 3.1.2; especially it was mentioned that light stemming from the excitation
of one of the normal-mode resonances in the strong-coupling regime shows anti-
bunching because during the time the system needs to decay from the first excited
doublet to the ground state, a second excitation with the same frequency is blocked.
A similar effect is observed for light emitted by single atoms in free space [105],
where also no higher levels are accessible. However, when populating the second
doublet, anti-bunching should reverse to bunching, as now two quanta of excitation
can be lost from the system within a timescale given by the decay rates; only the
emission of a third photon should be suppressed.
In quantum theory, the normalized second order correlation function of light emitted
by the cavity is given by

g2(τ) =
〈a†(t)a†(t+ τ)a(t+ τ)a(t)〉

〈a†(t)a(t)〉2 =
G2(τ)

〈a†(t)a(t)〉2 (3.12)

This corresponds to Eq. 3.1, where the same quantity was expressed with detection
probabilities; notice that detection efficiencies below unity do not influence this
quantity. g2(τ) is displayed for different intensities and scan directions in Fig. 3.9.
In a diagonal spectrum (Fig. 3.9(a)), the difference between slight anti-bunching in
the region of the normal modes and strong bunching in the region of the multiphoton
transitions is clearly visible. A vertical spectrum (Fig. 3.9(b)) shows bunching across
the whole scanning range. Generally, bunching as well as anti-bunching reduces
as the input intensity is increased; this is unfortunate for experiments, since the
measurement time is inversely proportional to the square of the mean transmitted
intensity. Observing these correlations was proposed as a means to see higher-order
transitions in conventional atom-cavity systems [24], and recently also in condensed-
matter atom-cavity systems [27].
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(a) Diagonal autocorrelation spectrum
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Figure 3.9: Autocorrelation spectra of the transmitted light. (a) A spectrum
of the autocorrelation of the transmitted light for an asymmetric diagonal scan reveals
anti-bunching close to the normal modes, and bunching in the region of multiphoton
transitions. The pump power was η2 = 0.5κ2 (solid line) and η2 = 2.5κ2 (dashed
line). For other parameters, see Fig. 3.1(b). (b) A vertical spectrum for ∆a = 0 only
reveals bunching, which is strongest for the lowest input intensity. For parameters,
see Fig. 3.2(b).



Chapter 4

Motional dynamics in the system

In the previous chapters, the theory of the atom-cavity system was introduced under
the simplifying assumption that the position of the atom within the mode is fixed.
In the experiment, an intracavity dipole trap confines the atom in a region of strong
coupling. The atom oscillates inside the trap, so that there are variations in the
coupling and Stark shift. The transmission signal obtained by spectroscopy of a
single atom inside the cavity therefore heavily depends on its individual trajectory.
A complete spectrum is recorded by averaging over a sufficiently large sample of such
trajectories and postselecting on the atoms which were adequately well-coupled (see
section 5.2.3).
As it is not straightforward to reconcile this experimental situation with a static
theory, another approach is followed: a sample of individual atomic trajectories is
calculated in a Monte-Carlo type simulation. Care is taken to imitate the measure-
ment conditions as well as the evaluation procedure as closely as possible.
In the following chapter, the theory which is necessary to implement this simulation
is presented. The first step is a discussion of the intracavity dipole trap and its
inclusion into the Hamiltonian of the system. The second step comprises the calcu-
lation and interpretation of the different forces which follow from this Hamiltonian
and the corresponding master equation and which govern the motion of the atom.
The calculations were done in the frame of all three cavity-QED models which were
introduced in chapter 2. At last, an algorithm is presented which is used to simulate
trajectories on the basis of these forces. The results of the simulations are compared
to the measurements in chapter 6.

4.1 Dipole trap

In a classical picture, the dipole trap relies on the attractive potential on the atomic
dipole which is exerted by a far-red detuned strong light field [106]. It exploits the
fact that the scattering rate of photons from the field vanishes quadratically with the
detuning, whereas the force exerted by the field decreases only linearly. Choosing
a large detuning from the atomic transition and a standing-wave intensity pattern
thus results in a nearly conservative trap with a potentially long storage time and a
small trapping volume.

37
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The intracavity dipole trap [47] is created by resonantly exciting a red-detuned
TEM00 mode with the spatial modefunction ψdip(r). Its trapping potential for an
atom in the ground state is given by the imposed ac Stark shift on that state:

Ug(r) = −~S(r) = −~S0|ψdip(r)|2 (4.1)

S0 denotes the Stark shift at an antinode, where ψdip(r) is normalized to reach
1. The Stark shift can be calculated from Eq. 2.7 in the limit of far detuning
(ωa � ∆dip � g,∆c = 0):

S0 = −g
2
dip n

∆dip

(4.2)

Here, gdip is the maximal coupling between the dipole mode and the atom, n is the
number of photons occupying the mode, and ∆dip is the detuning between the dipole
field and the atom. The excited state of the atom experiences a Stark shift of the
same size as the ground state shift, but in the opposite direction (Ue(r) = −Ug(r)).
Thus, the atomic transition frequency ωa is shifted by a total of 2S(r).

This short theory description of the dipole trap is valid for a two-level atom. An
atom effectively behaves as a two-level atom if other transitions can be neglected due
to even farther detuning or due to selection rules in the addressed dipole transition.
The description of dipole traps which do not fulfill these approximations is more
involved, but these traps allow for interesting configurations like a magic-wavelength
trap, which is characterized by identical Stark shifts of ground and excited state
and thus does not alter the atomic transition frequency. Avoiding the Stark shift
completely at the trap center is possible by implementing a blue-detuned intracavity
dipole trap [20], where the atoms are stored at a node of the field. These traps are
discussed in appendix B.

4.2 Hamiltonian and force operators

4.2.1 Hamiltonian including the dipole trap

The position dependence of the atomic ground state potential and resonance fre-
quency needs to be included in the description of its interaction with the near-
resonant mode. Therefore, the Hamiltonian of the coupled system (Eq. 2.9a in a
frame rotating with the probe frequency ωl) is adapted accordingly:

HJC,kin(r) =
P2

2m
+HJCP (r) (4.3a)

HJCP (r) = −~∆ca
†a− ~∆a(r)σ†σ + ~g(r)(a†σ + σ†a) +

+ ~η(a† + a)− ~S(r) (4.3b)

The kinetic energy of the atom, which has been ignored before, is now explicitly
noted in terms of the momentum operator P and the atomic mass m. The atom
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detuning ∆a(r) includes the Stark shift, and the coupling constant g(r) depends on
the probe mode function ψ(r):

∆a(r) ≡ ωl − ωa − 2S0|ψdip(r)|2 (4.4)

g(r) ≡ g0ψ(r) (4.5)

The spatial variation in the ground state potential Ug(r) = −~S(r) is also consid-
ered. The eigenstates of the internal energy of the system including the dipole trap
can be calculated from HJCP (r), and the steady-state expectation values of the sys-
tem operators calculated in chapter 2 are obtained by the replacement ∆a → ∆a(r).
Moreover, this Hamiltonian includes all necessary terms for the calculation of forces
acting on the atom in the resonator.

4.2.2 Force operator

Generally, the force operator is the time derivative of the momentum operator
P = −i~∇, which is governed by the dual Liouvillian superoperator (see appendix,
Eq. A.11):

F = Ṗ = L̃P (4.6)

This force operator can be divided into two parts: its expectation value and fluctu-
ations around this value:

F = 〈F〉+ ∆F (4.7)

The first term leads to a directed force, and the second term will describe momentum
diffusion.

4.3 Forces and diffusion in the different theory

models

The following section contains an overview over the physical origin and the calcula-
tion of the forces acting on the atom in the combined cavity-trap system. At first,
some general assumptions are discussed which allow to simplify the calculations.

4.3.1 General assumptions on the motion

The motion of the atom is governed by the trapping potential, the probe-field po-
tential and cavity-induced dissipative forces. For the theoretical description of the
influence of the cavity fields on the atomic position, some reasonable assumptions
are made: First, the total momentum of the atom should be much larger than the
momentum transferred during one spontaneous emission. Also, the interaction time
between the atom and the field is assumed to exceed the lifetime of the atomic ex-
cited state and the decay time of the cavity field by far, so that an average over many
emission cycles is possible. Thus, the random character of the diffusion processes
causes a stochastic spreading of the atomic momentum distribution, which can be
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described by diffusion constants. Moreover, the atomic wavepacket is assumed to be
very small as compared to the wavelength of the light fields, so that forces can be
approximated to act on the barycenter of the atom. Consequently, it is possible to
describe the atom as a point-like particle, treating its motion classically by apply-
ing Ehrenfest’s theorem to the position r and velocity v. These external variables
evolve under the influence of forces, friction and diffusion coefficients whose values
are in turn determined by the evolution of the atom’s internal degrees of freedom,
and which thus have to be calculated according to the underlying theory model 1

[107]. In the following, r and v will appear as parameters in the calculation of the
internal state of the system.

4.3.2 Dipole force

Using the Hamiltonian (Eq. 4.3b) in the unitary part of the master equation, the
force operator takes the form

F = −~∇g(r)(a†σ + σ†a)− ~∇S(r)
(
2(σ†σ)− 1

)
(4.8)

The first term describes the dipole forces exerted by the near-resonant probe light on
the atom, while the second term describes effects of the dipole trap. This expression
implicitly contains the atom’s velocity. For calculations, a development in orders of
velocity has to be made. The zeroth and the first order are discussed in the following
sections. Higher orders are expected to be small and are thus neglected.

4.3.3 Dipole force on an atom at rest

For an atom at rest, the expectation value of the force is obtained by replacing the
system operators in Eq. 4.8 by their steady-state expectation value 〈·〉0:

〈F〉0 = −~∇g(r)〈a†σ + σ†a〉0 − ~∇S(r)
(
2〈σ†σ〉0 − 1

)
(4.9)

The first term describes the dipole interaction between atom and probe light; it
attracts the atom to regions of high intensity in the case of red detuning and repels
the atom from such regions in case of blue detuning, as long as the atom is in the
ground state. The force exerted by the dipole trap (second term in Eq. 4.9) has
the same characteristics; it is in fact the formal limit of the first term for large
detunings, and adapted to the parameters of the dipole trap mode. However, notice
that the expression (2〈σ†σ〉− 1) = 〈σz〉 in the trap force term is equal to the atomic
inversion and thus influenced by the near-resonant light, which is the main cause of
atomic excitation. It describes the fact that the (red) trap confines only atoms in
the ground state, whereas atoms in the excited state are expelled for reasons of the

1This approach of separating the evolution of the external and internal variables, and, if appli-
cable, quantizing only the internal variables, is often referred to as ’semiclassical’. In this context,
this term refers to the classical treatment of atomic position and velocity, while the atom and the
field are fully quantized. It should not be confused with the ’semiclassical’ bistability theory of the
fixed-atom cavity system introduced in chapter 2, which treats the light field classically.
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inverted Stark shift. This is why a high atomic excitation probability reduces the
effective trap depth.
In the classical [42, 108] and bistable [69] limit, the steady-state dipole force can
be calculated analytically by separating the mixed operator products of the form〈
a†σ
〉

and inserting the respective single-operator expectation values as calculated
in section 2.2. The quantum model requires a numerical calculation of the operator
products (for implementation, see appendix A.1).

4.3.4 Velocity-dependent forces and cavity cooling

If the atom is at rest inside the cavity, there is sufficient time for the system to
evolve into its steady state, which is assumed on a timescale of (γ, κ)−1 after a
disruption of the system as caused, for example, by the emission of a photon. If
the atom moves inside the mode, the system is not able to reach the steady state
for the current atomic position, but lags slightly behind. Consequently, the system
acquires a hysteresis, which leads to a velocity-dependent (’friction’) force. The sign
of this force depends on the respective atom and cavity detunings. It can cause very
efficient damping of the atomic motion (cavity-cooling, [46]) but can also accelerate
the atom.
As long as the velocity of the atom is small enough such that it travels only a fraction
of a wavelength within the relaxation time of the system (kv � (κ, γ), where k is
the wavevector of the field), the friction force can be calculated with perturbation
theory to first order in the atomic velocity. Then, the total force can be expanded
into orders of velocity, thus defining a friction tensor β̄:

〈F〉 = 〈F〉0 + 〈F〉1 := 〈F〉0 − β̄v (4.10)

Classical and semiclassical calculation

Calculation of the friction tensor in the classical [42] and semiclassical [69] case is
lengthy but conceptually simple, again due to the advantage of separating opera-
tor products. The procedure [109] is sketched here: At first, the relevant system
operators ((a, a†, σ, σ†, [σz]) for the [semi]classical case) are expanded in orders of
velocity:

〈ô〉 = 〈ô〉0 + 〈ô〉1 + . . . (4.11)

Then the operator products in 〈F〉 are separated and the force operator is expanded,
retaining only terms in first order of the velocity:

〈F〉1 = −~∇g(r) (〈a〉∗0 〈σ〉1 + 〈a〉∗1 〈σ〉0) + c.c.

− 2~∇S(r) (〈σ〉∗0 〈σ〉1 + 〈σ〉0 〈σ〉∗1) (4.12)

Next, the expectation value of these operators is calculated with perturbation theory
to the first order in velocity, using the Heisenberg equations of motion (Eq. 2.19).
To this end, the total time-derivative on the left-hand side of these equations is
expanded:

〈 ˙̂o〉 =
∂

∂t
〈ô〉+ v∇〈ô〉 ≈ v∇〈ô〉0 +O(v2) (4.13)



42 CHAPTER 4. MOTIONAL DYNAMICS IN THE SYSTEM

Since the Hamiltonian contains no explicit time dependence, the partial derivative
is dropped. The operators on the right-hand side of Eqns. 2.19 are also expanded.
This leaves a coupled set of 2 (classical) or 5 (bistable) equations of terms linear in
the velocity, which can then be solved.
The lengthy analytical result for the classical calculation including the dipole trap
can be found in [108]. An expansion of this expression to a three-dimensional trap
lattice configuration can be found in [54]. The friction coefficient in the semiclassical
model was reduced to matrix form and then calculated numerically.

Quantum calculation

In the quantum model, the calculation of the friction tensor is more involved. It
was originally performed in [107] for an atom moving in a free-space field, yielding
a result which is analogous to classically derived friction tensors. It states that the
friction tensor βi,j ({i, j} refer to Cartesian coordinates {x,y,z}) can be expressed in
terms of two-time correlations of the Cartesian components of the force operator F:

βij =
1

~
Im

(∫ ∞
0

dτ τ 〈Fi(t)Fj(t− τ)− Fj(t− τ)Fi(t)〉0
)

(4.14)

Owing to its generality, this expression is also applicable for an atom inside a res-
onator. It reproduces the friction tensors deduced in the frame of the classical
and semiclassical cavity QED models as described in the previous section, and it
can be evaluated numerically for the case of the quantized atom-cavity system (see
appendix A.1).

4.3.5 Momentum diffusion

Random changes in the atomic momentum ∆Pi = Pi − 〈Pi〉 lead to a spread in its
expectation value. The linear order of this spread is characterized by a diffusion
tensor D̄:

2Dij =
d

dt
〈∆Pi∆Pj〉 (4.15)

Diffusion in the atom-cavity system is caused by two different processes: spontaneous
emission and dipole force fluctuations.

D̄ = D̄sp + D̄dp (4.16)

Spontaneous emission

Each spontaneous emission of a photon is accompanied by a recoil kick on the atom.
Since the emission direction is random, this results in diffusion. The diffusion tensor
is given by the square of the momentum transferred to the atom during an emission
process (~k)2 times the emission rate, which is the product of the decay rate 2γ and
the excitation probability 〈σ†σ〉:

2Dsp,ij = ~2k2εij 2γ〈σ†σ〉 (4.17)
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The tensor εij describes the spatial distribution of the photon emission, which is
determined by the orientation of the dipole moment with respect to the polarization
of the probe light field. For σ+-transitions, induced by circularly polarized probe
light exciting an atomic dipole which is oriented along the cavity axis, the dipole
emission characteristics is given by {εxx = 2/5, εyy = εzz = 3/10, εi 6=j = 0} [110].

Dipole force fluctuations

Fluctuations of the dipole force around its mean value (cp. Eq. 4.7) also lead to a
spread in the expectation value of the atomic momentum, which can be expressed
in terms of correlations of the force fluctuations. This can be seen by formally
integrating ∆Fi = d(∆Pi)/dt

∆Pi(t) =

∫ ∞
0

∆Fi(t− τ)dτ + ∆Pi(0) (4.18)

Inserting the result into Eq. 4.15 yields

2Ddp,ij = Re

(∫ ∞
0

dτ 〈∆Fi(t)∆Fj(t− τ) + ∆Fj(t− τ)∆Fi(t)〉0
)

(4.19)

This expression is the quantum analogue of the classical diffusion tensor appearing
in the theory of Brownian motion; it is also obtained in a more rigorous derivation
[107]. To determine its value in the frame of the different cavity QED models, the
correlations have to be evaluated as discussed in section 4.3.4.
In the limit of low intensity, it is possible to recast the trace of the diffusion tensor
D̄dp into a universal form which is reminiscent of the coupled harmonic oscillator
model [45]:

2Ddp = |~∇〈σ〉 |2 · 2γ + |~∇〈a〉 |2 · 2κ (4.20)

The first term describes a fluctuating dipole coupled to classical field, and is also
valid for an atom in a free-space laser field [111]. The cavity setting gives rise to the
second term, which describes a fluctuating field coupled to a classical dipole. This
expression can be evaluated analytically [42, 108].

4.4 Monte-Carlo simulations

The comparison of measurement results to simulations has a longstanding tradi-
tion in this group [112, 18], and the simulations have been of great assistance in
understanding the details of measurements, as, for example, the complex impacts
of different heating mechanisms on the system [113]. The main goal of the simu-
lations presented here is to point out the deviations in transmission spectra which
are expected from the different theory models if the low-saturation limit is lifted.
The following section presents the basic algorithms of the simulations; an extensive
discussion can be found in [100].
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4.4.1 Algorithm

The atomic trajectory is calculated by numerically integrating the coupled set of
three-dimensional Langevin equations of motion for a classical, point-like particle
with position r and momentum p:

ṙ =
p

m
(4.21a)

ṗ = F(r,p) = 〈F〉0 − β̄
p

m
+ ˙δpsp + ˙δpdp (4.21b)

We assume that the internal atomic variables reach their steady state on a timescale
much faster than the motion. The change in momentum is then determined by the
steady-state expectation value of the dipole force at the given atomic position and
the friction tensor in first order of velocity. Only these forces are considered when
performing a time step in the integration. Diffusion due to spontaneous emission
and dipole force fluctuations is implemented by adding random momentum kicks
δpsp, δpdp to the total momentum after each time step δt. The average size of these
kicks is a function of the respective diffusion tensors, chosen such that the averaged
spread in each direction fulfills Eq. 4.15〈

δp2
ii

〉
= 2Diiδt (4.22)

For the spontaneous emission, the momentum kicks are allotted by choosing random,
uniformly distributed vectors out of an ellipsoid. The main axes of the ellipsoid are
given by pmaxsp,ii =

√
10Dsp,iiδt; the deviation from a sphere reflects the dipole-emission

pattern. For the diffusion due to dipole force fluctuations, only the component along
the cavity axisDdp,xx is considered, as the other components are small. This diffusion
is simulated by choosing a random momentum kick out of an interval [−pmaxdp , pmaxdp ]

with pmaxdp =
√

6Ddp,xxδt. This procedure reproduces the first momentum of the
stochastic spreading of the velocity distribution.

4.4.2 Simulation run

In the experiment, the atoms are injected into the dipole trap from an atomic
fountain (see chapter 5). This is simulated by starting with an atom which is
located at a distance of y0 = −2w0 below the cavity center, and moves towards the
cavity with an initial velocity of vy = 0.1 m/s. The initial position in the (x, z)-
plane is randomized over the area x0 ∈ [−20λ,+20λ], z ∈ [−0.4w0,+0.4w0], and the
atom possesses a random initial velocity of maximally three recoil-velocities vz ∈
[−3vrec,+3vrec] in the direction perpendicular to the cavity axis and the injection
direction.
Starting from this configuration, the integration algorithm is executed with a time
step of δt = 10 ns. During the run, the experiment is imitated as closely as possible,
by copying the trigger mechanism for the trapping of an atom in the dipole trap and
the subsequent measurement sequence. After each time step, the intracavity photon
number and the excitation of the atom are noted. The simulation run is continued



4.4. MONTE-CARLO SIMULATIONS 45

until an atom escapes the cavity volume either in radial direction (y2 + z2 > (2w0)2)
or by hitting a mirror (|x| > 75λ). The photon number and excitation are then
averaged over different intervals determined by the measurement sequence and the
result is entered into a database, together with other key results of each run such as
the atom’s position at the triggering of the trap or the storage time of an atom. The
recorded data include the set of information obtained from a run of the experiment,
therefore the evaluation can be done analogously.

4.4.3 Numerical methods and computational effort

The integration routine is based on the multistep algorithm by Adams, Bashforth
and Moulder [114, 115], which requires only one calculation of forces, friction and
diffusion constants per time step. For implementation of the stochastic processes,
the ’Mersenne Twister’, a highly equidistributed uniform pseudorandom number
generator [116], is used.
As mentioned in the previous section, the implementation of the force and diffusion
calculations depends on the model. Each model requires different computational
effort:

• Coupled harmonic oscillator model: All required expressions are avail-
able as analytical formulas, allowing for fast computation.

• Model of optical bistability: The numerical calculations are fast. In
this model, two solutions are possible in the bistable regions. If such a case
is encountered, the value closest to the one from the last iteration is chosen,
corresponding to the physical principle of hysteresis.

• Quantum model: The numerical effort for calculations rises quickly with
the number of Fock states N used for the basis, as the number of coupled
differential equations scales as N2. Therefore, N had to be limited to three
(|0〉,|1〉,|2〉), fully including only the dressed states up to the second doublet.
Comparison to fixed-atom theory shows that this is sufficient to describe most
of the measurements. Only some measurements performed at higher intensities
are expected to be influenced noticeably by the presence of the third doublet,
and thus associated simulations require an inclusion of this doublet. This was
done in a hybrid model: Four Fock states were used for the calculation of
the intracavity photon number during every 20th time step, and only these
intervals were used for the evaluation of the average transmission. In this
way, population of the third doublet is included in the transmission spectrum,
although it has no influence on the propagation of the atom. With these type
of simulations, the calculation of a single spectrum requires about 50 hours on
30 nodes of a computer cluster.

4.4.4 Trap depth fluctuations

Although the intensity and frequency of the laser used for the dipole trap are stabi-
lized via a feedback loop in the experiment, fluctuations of the trap depth cannot be
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completely avoided. Such fluctuations transfer to the Stark shift and thus bear influ-
ence on the trajectory. They are included into the simulations by randomly choosing
a value from a Gaussian distribution centered around the intended trapdepth. The
rms width of the distribution is set to 7% of the average value, which is an upper
limit for the fluctuations measured in the experiment. The simulated fluctuations
are uncorrelated, i.e. they correspond to white noise. Therefore they are not able to
reproduce parametric heating, which occurs if the spectral noise density has sizable
components at twice the trap frequency of the dipole trap [117]. This may be a rea-
son for storage time deviations between simulation and experiment. Implementation
of fluctuations with a more realistic spectral noise density is under way [100].



Chapter 5

Technical realization of the
experiment

The history of the experiment being reported on here dates back about a decade;
it became fully operational in 1999 with the observation of single atoms transiting
through the high-finesse resonator after being launched from an atomic fountain
[37]. Since this time, the fountain and the resonator remained basically unchanged.
Major improvements in the laser system and computer control and especially the
addition of an intracavity dipole trap, which allows to store the atom inside the
resonator, provided the basis for spectroscopy of the strongly coupled atom-cavity
system. In the first section of the following chapter, an overview on the physical
properties of the resonator and the technical implementation of the experiment is
provided; a more extensive description can be found in earlier works [118, 108, 98].
The second section details the measurement procedure and the data evaluation for
the spectroscopy measurements which resulted in the observation of multiphoton
transitions in this system; the obtained spectra are discussed in chapter 6.

5.1 Setup

A simplified sketch of the setup is shown in Fig. 5.1. The heart of the experiment
is the high-finesse resonator (section 5.1.2). Two TEM00 modes, separated longi-
tudinally by two free spectral ranges (FSR), can be independently excited by two
different laser beams (section 5.1.3): one beam, the probe laser, is near-resonant to
the D2-transition of 85Rb at a wavelength of 780.2 nm. The second laser, with a
wavelength of 785.2 nm, provides the red-detuned intracavity standing-wave dipole
trap. It is also used to continuously stabilize the cavity length. Note that the antin-
odes of probe field and dipole trap overlap at the center of the cavity, and only
single atoms entering the cavity in this region are trapped (section 5.2.1). The
atoms are prepared as a cold atomic cloud in a magneto-optical trap (MOT) below
the resonator and launched towards the resonator by means of an atomic fountain
(section 5.1.1). The presence of an atom in the mode changes the transmission of the
probe field, which is monitored by two single-photon counting modules (SPCM) in
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a Hanbury-Brown-Twiss configuration. The dipole trap light is detected separately
by a photomultiplier module; the two light fields are separated behind the resonator
with the help of a grating (section 5.1.4).

Figure 5.1: Schematic of the experimental setup. Cold atoms are prepared
in a MOT below the resonator, injected into the resonator by means of an atomic
fountain and trapped in an intracavity dipole trap (red). The presence of the atoms
is detected by monitoring the transmission of the near-resonant probe laser (blue),
which is separated from the trap light with a grating.

5.1.1 Magneto-optical trap and atomic fountain

Rubidium atoms can be released into the lower part of the vacuum chamber (Fig. 5.2),
which is connected to the main part of the chamber by a differential pumping tube,
by running current through a dispenser (SAES Getter). These atoms are loaded
into the MOT, which is a standard means to prepare a cold atom cloud [119]. The
MOT consists of six pairwise counter-propagating beams which intersect at the zero
point of a magnetic field produced by a pair of coils in anti-Helmholtz configuration
(see Fig. 5.1). These six beams are created from two initial beams, each of which
double-passes through an acousto-optic modulator (AOM) for frequency tuning. Be-
hind the AOM, each beam is split into three beams, providing the lower respectively
upper MOT beams. Initially, the detuning is set to a value of ∆ = −2π × 45 MHz
below the MOT transition 5S1/2F = 3→ 5P3/2F

′ = 4 of 85Rb. By adding a molasses
cooling phase after the loading phase, the atom cloud can be cooled to a temperature
of ≈ 5 µK. Then, the lower MOT beams are gradually detuned to a frequency of
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−2π× 41.8 MHz in order to accelerate the atom cloud upwards (’atomic fountain’).
The atoms perform ballistic trajectories towards the cavity, which is situated at the
turning point, 25 cm above the MOT, in the main part of the vacuum chamber. In
this way, slow atoms from the diluted cloud enter the cavity after a time of flight of
≈ 210 ms, and can be trapped with the intracavity dipole trap (see section 5.2.1).

(a) Picture of the vacuum chamber (b) Schematic of the vacuum chamber

16 mm

50 mm

195 mm

238 mm UHV area
cavity

MOT &
fountain

ion getter
pump
300 l/s

ion getter
pump
25 l/s

CCD 1

CCD 2

Figure 5.2: Picture and schematic of the vacuum chamber. The lower part
of the vacuum chamber is used for the MOT; it is attached to the main part of
the chamber, which holds the cavity on a vibration isolation setup, via a differential
pumping tube. The chamber is suspended from an ion getter pump, which is attached
to a metal rack. The pressure in the main chamber is below 10−10 mbar. The wooden
frames visible in the left picture hold coils used for compensating the earth’s magnetic
field.

5.1.2 High-finesse cavity

The cavity consists of a pair of mirrors with a diameter of 7.75 mm and a radius
of curvature of 200 mm (see Fig. 5.3(a)). The dielectric coating of the mirrors is
characterized by very low transmission and loss coefficients (T = 2.8 ppm, L =
4.5 ppm). The mirrors are glued to aluminum holders, which are mounted on a
piezo-ceramic tube used for fine-tuning the cavity length (Fig. 5.3(b)). Holes drilled
in the piezo tube enable the atoms to enter the resonator. The mirrors and piezo
tube are clamped within a Teflon block so that the piezo-tube is able to elongate.
The Teflon block is placed upon a two-stage vibration isolation consisting of copper
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disks separated by Viton tubes; this setup shields the cavity from acoustic noise
[120].
The FSR of the cavity was measured to 2π × 1.21 THz. This amounts to a cavity
length of L = 2πc/(2FSR) = 123 µm. The cavity length is actively stabilized (see
section 5.1.3). The linewidth (HWHM) of the cavity is κ = 2π × 1.25 MHz. From
this, the finesse of the cavity can be calculated to be F = FSR/2κ = 490000. An
average intracavity photon number of 1 leads to an average transmission of 0.9 pW.
The waist of the TEM00 mode of the cavity is w0 = 29.1 µm. The mode volume
of this near-planar cavity is given by V = πw2

0L/4 and determines the value of
the coupling constant between atom and light field, together with the atomic dipole
transition matrix element (Eq. 2.2). Since the probe light is right circularly polarized
(σ+) and a weak magnetic field along the cavity axis defines the quantization axis,
the atoms are rapidly pumped to the closed transition 5S1/2F = 3,mf = 3 →
5P3/2F

′ = 4,m′f = 4 of 85Rb. With these settings, the coupling at an antinode of
the standing wave field amounts to g0 = 2π × 16 MHz.

(a) Mirrors

(b) Mounting of the high-finesse mirrors

(c) Mirror holder and vibration isolation

Figure 5.3: High-finesse resonator. (a) Picture of the cavity mirrors glued to
aluminum holders.(b) Schematic of the mounted mirrors separated by a piezo tube.
(c) Picture of the vibration isolation stage with the mirrors placed on top inside a
Teflon holder.

5.1.3 Laser system and length stabilization of the science
cavity

For the measurements presented in this thesis, three different lasers are required.
The first laser, a Titanium-Sapphire laser (Coherent model MBR110), is tuned to
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emit light at 780.2 nm. This laser is stabilized onto a Rb vapor cell via Doppler-free
saturation spectroscopy. Apart from the stabilization path, the light is divided into
four more beams: two beams (’upper and lower MOT beams’) are needed to operate
the MOT and the atomic fountain, while the third beam (’probe beam’) is used to
probe the atom-cavity system. The intensity of each of these beams is stabilized by
feedback onto an AOM set up in double-pass configuration, which at the same time
allows to adjust the frequencies. The last beam is used to create a reference for the
length stabilization of a transfer cavity. This cavity, with a FSR of 2π × 300 MHz
and a linewidth of 2π × 150 kHz, is needed in turn to provide a stable reference for
the frequency locking of the dipole laser.
The dipole laser is a diode laser set up in Littrow configuration (Toptica model
DL100), which produces light at 785.2 nm. It is stabilized onto a mode of the
transfer cavity at a frequency lying close to a resonance of the high-finesse science
cavity, two FSR red detuned from the mode excited by the probe light. The beam
of the dipole laser which is directed onto the science cavity (’dipole beam’) can be
frequency tuned by an AOM in order to reach resonance conditions. This light serves
as a reference for stabilizing the length of the science cavity, via a feedback on the
piezo tube. Changing the detuning of the dipole laser via the AOM then in turn
allows to adjust the cavity length. At the same time, this light is used to create an
intracavity dipole trap for the atoms. The light intensity and thus the trap depth
are controlled by feedback on the AOM. A change in the trap depth would normally
lead to a change of the amplitude of the error signal which is used for the length
stabilization. To avoid this, the error signal is normalized onto the input intensity
with an electronic divider [108].
Two additional lasers (one Titan-Sapphire laser at 772 nm and one diode laser at
775 nm), which are also stabilized onto the transfer cavity, provide the possibility to
create a blue-detuned intracavity dipole trap. This kind of trap has not been used
for the measurements presented here, but will be shortly introduced in appendix B.1.
For operation of the MOT, one more laser is required to repump atoms from the
state 5S1/2F = 2 to the state 5S1/2F = 3 (see Fig. A.1). This laser (a Toptica model
DL100-diode laser) is stabilized onto a Rb vapor cell on the repump transition
5S1/2F = 2→ 5P3/2F

′ = 3 and overlapped with the lower MOT beam.

5.1.4 Detection of probe and trap light

Probe light and dipole light are emitted by the cavity into the same polarization
and almost identical spatial modes, but with an intensity difference as big as ≈ 105.
In order to allow for independent detection of the weak probe light (which typically
has a power between a few fW and several pW), the two frequencies need to be
separated efficiently. This is done with a holographic reflection grating (American
Holographics) with 2300 lines/mm, which reflects vertically polarized light with an
efficiency of 90%. To obtain polarization-independent reflection, the circularly po-
larized light is divided into two components of linear polarization with a polarizing
beam cube (PBC), the horizontally polarized part is rotated with a half-wave plate
(HWP) and the two components are directed separately onto the grating. After
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reflection, horizontal polarization of the second component is restored with another
HWP and the components are recombined on a second PBC. Now the spatial sep-
aration between the probe light and the dipole light is sufficient to allow to direct
the beams onto different mirrors. Residual dipole light in the path of the probe
beam is filtered out by a narrow-band (1 nm) interference filter (Nano layers) with a
peak transmission of 80%. Behind this filter, the dipole light is suppressed by about
80dB. The probe light is split up by a non-polarizing beam splitter and directed onto
two single-photon-counting modules (SPCM AQR-13, Perkin&Elmer), which detect
photons with a quantum efficiency of about 50 %, a dead time of about 50 ns and
a dark count rate of about 250 Hz. The two SPCMs form a Hanbury-Brown–Twiss
configuration [121] to allow for correlation measurements. The overall detection ef-
ficiency for photons transmitted by the cavity is about 30%. A photon detection of
each SPCM is recorded as a time stamp with a resolution of 1 ns on one channel of
a time-digitizer card (P7888 by FASTComtec).
The dipole light is detected by a photomultiplier module (H6780-20, Hamamatsu),
amplified with a low-noise transimpedance amplifier (FEMTO current amplifier,
gain 500 kΩ, bandwidth 4 MHz) and recorded by a transient recorder card (SPEC-
TRUM PCI.248). The detection setup also includes the possibility of independently
detecting dipole light from the optional blue-detuned dipole trap (see [98]).

5.1.5 Computer control of measurement sequence

The experiment is computer-controlled by a program written in C++, which al-
lows for automatized control of all relevant settings like intensities and detunings
of the probe, dipole and MOT beams. These parameters are calibrated regularly
in separate gauge measurements. Complex timing sequences are executed by a
programmable timer card (NI PCI-6025E) which is controlled by the measurement
program. The raw data of photon arrival times and dipole power during a mea-
surement are directly stored on a hard disc, whereas the measurement parameters
as well as key results of the measurement are entered into a relational database
(PostgreSQL), which greatly simplifies statistical data evaluation.

5.2 Measurement and data evaluation

The main goal of this thesis is to explore multiphoton transitions by measuring
spectra of the system along two different directions in the (∆a,∆c)-parameter plane
and at varying probe intensities. In the following section, a short overview over
the protocol used for trapping slow atoms in the intracavity dipole trap and for
measuring the spectrum of the atom-cavity system will be given. In order to ensure
constant strong coupling, postselection of the measured data is required; the data
evaluation and postselection process is discussed briefly. More details can be found
in [98, 108], where a similar protocol was used to measure the normal-mode spectrum
of the system.
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5.2.1 General information

Loading of the dipole trap

Slow atoms from the MOT are injected into the cavity by means of the atomic
fountain. In order to trap these atoms in the conservative potential of the red
intracavity dipole trap, the potential depth has to be increased as soon as the atoms
are located inside the trap. At the beginning of the sequence, a trap power of 80 nW
is used to guide the atoms into the antinodes of the trap. The arrival of the atoms
is monitored by observing the transmission of probe light resonant to the cavity,
which shows a sharp dip as an atom enters a region of strong coupling. A deep drop
in transmission is only caused by atoms arriving at the center of the cavity, where
antinodes of probe light and dipole trap overlap. Upon detection of such a large dip,
a trigger is activated which causes the trap power to rapidly increase to 140 nW,
thereby trapping the atom. The trapping efficiency is above 95% and the lifetime
of undisturbed atoms in the trap is on the order of several 10 ms. The triggering
mechanism is enabled only 210 ms after launch of the atom cloud from the MOT. At
this time, the center of the cloud has passed the resonator and single atoms arrive
with a velocity ≤ 10 cm/s. Therefore, the probability of accidentally trapping more
than one atom is small. The probe light which is used to detect the atomic transit
is slightly blue-detuned from the atomic resonance frequency. Therefore it cools the
axial motion of the atom via cavity cooling [46].

Idea of scanning and postselection mechanism

Measuring a spectrum of the system entails detuning of the probe light from the
cavity resonance ∆c 6= 0, away from cavity-cooling conditions. To ensure that the
atom remains strongly coupled during the measurement, the desired measurement
parameters (probe and cavity detunings and probe power) are set only for a short
interval of 100 µs, labelled ’probe interval’. Before and after each probe interval, the
cavity detuning ∆c is reset to 0 and the probe power is set to 0.3 pW for an interval
of 500 µs duration, the ’check interval’. In the check interval, the atom is axially
cooled and its localization is apparent from the cavity transmission. A measurement
cycle consists of a series of 20 to 30 pairs of probe and check intervals and finishes
with a check on the stabilization of all lasers and the cavity. After the measurement
has been completed, the transmission during each check interval is evaluated to
obtain information on the localization of the atom. Only the probe intervals for
which both surrounding check intervals show a coupling of at least a certain fraction
of g0 (usually 60%) are postselected for further evaluation, leaving a subset of probe
intervals that fulfill the condition of sufficiently strong coupling. This postselection
criterion is independent of the history of the system and allows to combine probe
intervals from many different trapping events. Averaging the transmission detected
during these probe intervals then gives the spectrum of the system.
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A single trapping event

As an illustration of the measurement sequence, a sample trace is shown in Fig. 5.4.
Here, an atom arrives 223.5 ms after the launch of the atom cloud and triggers
the switching of the dipole trap power. Upon the trigger, the sequence of probe
and check intervals is started. The two kinds of intervals are easily distinguishable
due to the different powers of the impinging probe light1 (high during the probe
interval and low during the check interval). The probe intervals are additionally
marked with boxes. After the trigger, transmission of the probe light is mostly
suppressed by the strongly coupled atom during the check intervals and sometimes
vanishes completely, whereas transmission does occur during the probe intervals.
After the atom gets lost from the trap at about 234.5 ms, the check intervals show
a high transmission whereas almost no photons arrive during the probe intervals.
These probe intervals are filtered out by the postselection process. The postselection
criterion for the probe intervals in this case requires that less than 5 photons are
detected during each of the neighboring check intervals, which corresponds to an
average coupling g of better than 60% of the maximal possible value (g > 0.6g0).
All probe intervals which fulfill this condition are marked by a shaded background.

More details on the technical implementation of the measurement sequence, statis-
tics of the measured data and the postselection process will be given in the rest of
the chapter.

Intensity switching

Whereas possibly high intensities have to be set during the probe intervals, it is not
expedient to use a high intensity during the check interval: cavity cooling works
efficiently at low intensities and higher intensities would only enhance radial heat-
ing, which cannot be counteracted in the present setup and thus reduces the storage
times. Therefore, the probe intensity has to be switched rapidly from 0.3 to max-
imally 3.5 pW. The necessary gain is too high for the servo loop which normally
controls the probe power. Therefore, during the probe and check cycle the control of
the RF-intensity on the AOM which determines the probe power is transferred to a
function generator. The voltage resulting in the correct probe power depends on the
probe detuning because of the frequency-dependent efficiency of the AOM; because
of this, the correct voltage is determined in a separate gauge measurement directly
before each atom trapping event. This setup achieves a switching time below 2 µs.
Photons arriving during this time are ignored in the evaluation of the data. The
repeatability of the probe power settings is discussed separately for the different
types of measured spectra in the following subsections (see also Figs. 5.6 and 5.8).

1For reasons of simplicity, the power of the impinging probe light is defined as the transmission
which would be measured on resonance of the empty cavity. The part of the impinging light which
is reflected because of non-perfect geometrical mode matching and impedance mismatch as well as
light scattered by the cavity mirrors is not considered.
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(a) Sample trace
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(b) Zoom of (a)
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Figure 5.4: Sample trace to illustrate the measurement sequence. (a) The power
of the dipole trap laser (upper panel), the impinging probe power (central panel) and
the transmitted probe power (lower panel) are shown. A single slow atom arrives
inside the mode at 223.75 ms after launch of the atom cloud, leading to a sharp
drop in the transmitted probe light. Detection of this drop triggers an increase of
the dipole trap power, trapping the atom. Simultaneously, the measurement cycle
is started with a check interval (impinging probe intensity reduced from 1 pW to
0.3 pW). After 500 µs, the probe intensity is increased to 2.6 pW and ∆c is switched
from 0 to −2π × 22 MHz for 100 µs. The sequence of probe and check intervals
is repeated. The probe intervals are additionally marked by hatched boxes. At
234.5 ms, the atom leaves the trap, visible in the increased transmission during the
check intervals. (b) A zoom of the transmitted power shows that, if the atom is
well-coupled (postselection criterion: g < 0.6g0), more photons arrive during the
probe intervals (which then coincide with a normal-mode resonance). The intervals
postselected for further evaluation are shaded.
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5.2.2 Diagonal scan

The first type of spectrum, which is supposed to show the location of multiphoton
transitions with respect to the normal modes of the system, requires a diagonal
scan in the (∆a,∆c)-plane (see Fig. 3.1). The sequence starts with the parameters
(∆a,0,∆c) = 2π × (35, 0) MHz. In the dipole trap, the atomic transition is Stark
shifted, so that ∆a < ∆a,0; the exact value depends on the location of the atom in
the trap. The average Stark shift 2S as a function of the trap depth is calibrated by
the position of the normal-mode peaks in the spectrum (see section 6.1.2); it is about
2π × 0.14 MHz/ nW. For a trap depth of 170 nW, the atom detuning is therefore
shifted to ∆a ≈ 2π×11 MHz. To measure along a diagonal line in the (∆a,∆c)-plane,
the probe frequency ωl is modified during the probe intervals, which in turn changes
∆a and ∆c in parallel (see Fig. 5.5(a)). Technically, detuning ωl only requires a
change in the frequency of one AOM and is therefore done fast. During all check
intervals, ωl is reset to the initial value. Accordingly, the postselection criterion on
how many atoms are maximally allowed during a check interval is uniform across
the whole spectrum. For a complete spectrum, many individual measurements need
to be combined. These measurements provide a large set of data, and thus require
statistical evaluation. As an example, we choose data from a spectrum which is
analyzed in detail in section 6.1.2 (taken for a probe power of 1.4 pW and a trap
depth of 170 nW). This data set contains 400 000 probe intervals stemming from
≈ 13 000 trigger events in total, and between 5 000 and 25 000 probe intervals for
each individual probe detuning. A statistical analysis of this data set is shown in
Fig. 5.6, where histograms of the distribution of the impinging probe light, as well
as the transmitted probe light before and after the postselection are given for the
probe intervals (Fig. 5.6(a)) and the check intervals (Fig. 5.6(b)). The impinging
power (first panels in Fig. 5.6) shows a Gaussian distribution around central values
of 1.45 pW (probe interval) and 0.3 pW (check interval) with a standard deviation
of 5%. The transmitted power clearly shows a bimodal distribution during the check
intervals (central panel in Fig. 5.6(b)), representing two types of events: the first
set shows a transmission of ≈ 300 fW, which matches the impinging power; these
events indicate there was no atom inside the cavity. For the second data set, the
transmission drops to a low value, indicating the atom was present. These two sets
are clearly separated; in about 93% of all check intervals the transmitted power was
either larger than 230 fW or smaller than 50 fW. For two regions of detunings
(−20 MHz < ∆c/2π < −10 MHz and 2 MHz < ∆c/2π < 10 MHz), only few
strongly coupled atoms exist. These are the regions of strong cavity heating near
the normal-mode resonances.

With regard to the probe intervals of this data set, the most apparent feature is
the Lorentzian transmission peak of the empty-cavity resonance centered at ∆c = 0,
which reaches a maximum of ≈ 1400 fW, equivalent to the impinging power. The
base of this peak is shown in the central panel of Fig. 5.6(a). Only a small subset
of events is visible at small intensities below the empty-cavity peak. With the help
of the postselection procedure, this peak can be almost totally suppressed; the re-
maining probe intervals show the double-peak structure of the normal modes (lower
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(a) Diagonal scan
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Figure 5.5: Illustration of scanning procedures. The detunings during a check
interval (circles) and during a probe interval (squares) are shown for four points out
of a diagonal and a vertical scan in the (∆a,∆c)-plane. Notice that only ωl can
be switched rapidly; this corresponds to diagonal jumps between probe and check
intervals in this frame of reference. (a) For all points on a diagonal scan, the check
intervals are performed at identical parameters; only the detunings during the probe
intervals differ. (b) In a vertical scan, each scanning point has its own combination of
probe and check detunings. The underlying illustration shows the position of cooling
regions (blue) and heating regions (red), expressed in terms of the friction coefficient
βxx (cp. Eq. 4.14), which was averaged over the interval [−0.24λ, 0.24λ] along the
cavity axis. Care has to be taken that the check interval coincides with a cooling
region.

panel in Fig. 5.6(a)). The postselection process keeps only those probe intervals for
which the surrounding check intervals fall below 9.5 fW, which is equivalent to 0.6g0

for the measurement parameters (lower panel in Fig. 5.6(b)).

Postselection

Different postselection criteria and the resulting averaged spectra are shown in
Fig. 5.7. Using the postselection process to select only intervals without atoms
present (0 < g < 0.1g0), the Lorentzian transmission curve is obtained. Already a
postselection criterion of g > 0.2 reduces the averaged probe interval transmission
by almost one order of magnitude at ∆c = 0, and the double-peaked normal-mode
structure appears. For a more restrictive postselection, the distance between the
normal-mode peaks increases and the two-photon peak becomes better visible, as
less well localized atoms are more and more eliminated at the cost of increasing
statistical errors.
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(a) Histogram on probe intervals
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(b) Histogram on check intervals
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Figure 5.6: Diagonal scan histograms. Histogram of the measured imping-
ing probe power and transmitted probe power before and after postselection for the
probe intervals (a) and the check intervals (b), as a function of the cavity detuning
∆c. The power distribution is normalized separately for each detuning ∆c. While
the impinging powers are constant for both interval types, the transmitted power
during the probe intervals predominantly shows the empty-cavity Lorentzian before
postselection; after postselection, this peak is suppressed and a new structure is
revealed. The transmitted intensity during the check intervals shows a bimodal dis-
tribution with a high transmission level for badly localized or absent atoms and a low
transmission level for well localized atoms, the latter intervals being retained during
postselection.
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(a) Spectrum for different postselection levels
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Figure 5.7: Postselection levels for diagonal scan. The spectrum obtained
from averaging over the transmission during the probe intervals (a) strongly depends
on the postselection criterion applied to the check intervals (b). For g < 0.1g0,
the cavity is predominantly empty and the spectrum accordingly shows the typi-
cal Lorentzian resonance centered at ∆c = 0. For increasing postselection levels
g > (0.2, 0.4, 0.6, 0.8)g0, the cavity resonance is more and more suppressed; several
different peaks (the normal modes at ∆c = 2π × (−18, 7) MHz and a two-photon
resonance at ∆c = 2π × (−11) MHz) appear.

5.2.3 Vertical scan

The second type of spectrum is taken along the direction ∆a = 0, showing multi-
photon transitions while avoiding the normal modes. The intuitive scan parameter
for this ’vertical’ direction in Fig. 3.2 is the cavity frequency ωc. However, ωc is a
function of the cavity length, which cannot be changed quickly due to the inertia of
the cavity mirrors. Therefore, switching ωc between probe and check intervals is not
an option. Instead, for each point in the spectrum a different initial cavity length is
chosen, from ωc = ωa to ωc = ωa + 2π× 25 MHz. For trapping the atom and during
the check intervals, ωl is then set to ωc (∆c = 0), whereas during the probe intervals
ωl is switched such that ∆a = 0. This method assumes that ωa, i.e. the average
Stark shift, is known, which is true only to a certain extent since this depends on
the quality of the localization of the atom in the trap. It follows that the resulting
∆a can deviate from 0 by about ±2π × 2 MHz and thus has to be treated as a fit
parameter for comparison to theory. Notice that measurements for ∆c > ∆a are not
possible with this method, since this would lead to strong heating during the check
intervals with ∆a < 0 (see Fig. 5.5(b)).

In Fig. 5.8, the data set for a vertical scan measurement (impinging probe power
3.4 pW, trap depth 140 nW, expected Stark shift 2π × 21 MHz) is visualized. This
data set contains 244 000 probe intervals from 11 600 atoms. As in the previous sec-
tion for the diagonal measurement, histograms on the distribution of the impinging
and transmitted probe power before and after the postselection are shown (probe in-
tervals in Fig. 5.8(a), check intervals in Fig. 5.8(b)). While the impinging power is in-
dependent of the cavity detuning for the probe intervals (upper panel in Fig. 5.8(a)),
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it shows a slight variation in the check intervals (upper panel in Fig. 5.8(b)), which
repeats itself in the transmitted intensity (central panel in Fig. 5.8(b)). This is
due to a systematic error in the gauge of the input intensity. Before postselection,
the transmitted intensity during the probe intervals clearly shows the empty-cavity
Lorentzian (central panel in Fig. 5.8(a)), which is suppressed after postselection with
the criterion gmax < 0.6g0 (lower panel in Fig. 5.8(a)). A systematic increase of the
transmission near ∆c = 0 is present, although hardly visible; in this context, also
notice the nonlinear progression of the postselection border in the check intervals
(lower panel of Fig. 5.8(b)), which drops to 0 at ∆c = −2π × 3 MHz. This will be
explained in the next paragraph.

Postselection

In each point of the vertical scan a different atom detuning ∆a is set during the check
intervals. This has to be accounted for in the postselection procedure, since the
drop in transmission is not only a function of g, but also of ∆a (cp. Eq. 2.23a). The
allowed number of photons during a check interval has to be adapted accordingly.
For example, while for a coupling of 0.5g0 and a detuning of ∆a = 2π × 25 MHz
(∆c = 0), one expects 27 photons on average during one check interval, for ∆a = 0
the expected photon number is only 0.5. Considering shot noise in the photon
detection, this means that this postselection mechanism is not suitable to distinguish
between ’strong’ and ’very strong’ coupling near ∆a = 0, exactly in the region
where the empty-cavity resonance is met during the probe intervals. This leads to
a systematic increase in the observed spectra for probe interval detunings |∆c| <
2π × 3 MHz, where couplings below 0.5g0 cannot be distinguished anymore. This
could be remedied by increasing the power during the check intervals, but with the
disadvantage of higher heating rates.
In Fig. 5.9, different postselection levels and the resulting averaged probe transmis-
sion are shown2. The Lorentzian empty-cavity spectrum is obtained for a postselec-
tion level of g < 0.1g0. The spectrum obtained for g > 0.6g0 is further evaluated in
section 6.1.3.

5.2.4 Photon statistics

As mentioned in section 5.1.4, the photons emitted by the cavity are detected by
two SPCMs in a Hanbury-Brown–Twiss configuration, and the photon arrival times
are recorded by a fast two-channel time-digitizer card. This setup allows to evaluate
the photon statistics of the light by correlating the photon arrival times of the
two detectors: we evaluate the count rate R12(τ, δt) of photons arriving at the two
detectors with a time lag of τ by dividing each probe interval of length ∆t into short
time bins δti with start time ti and duration δt. Then, for each click of detector 1
in time bin δti we count the coincident clicks of detector 2 in time bin δti + τ (τ
has to be an integer multiple of δt). The coincidences coming from all possible start

2These postselection criteria are calculated under the assumption that the average Stark shift
due to the dipole trap is 2S = 2π × 19 MHz.
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(a) Histogram on probe intervals
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(b) Histogram on check intervals
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Figure 5.8: Vertical scan histograms. Histogram of the impinging and trans-
mitted probe power before and after postselection for the probe intervals (a) and
the check intervals (b), as a function of the probe-interval cavity-detuning ∆c. The
power distributions are normalized separately for each detuning ∆c. While the im-
pinging powers are largely constant for both interval types (the slight modulation in
the upper panel of (b) can be ascribed to a systematic error in the power gauge),
the transmitted power during the probe intervals predominantly shows the empty-
cavity resonance before postselection. After postselection, a new, smaller resonance
appears. The transmitted intensity during the check intervals shows a bimodal dis-
tribution with a high transmission level for badly localized or absent atoms, which
are removed during the postselection process, and a low transmission level for well
localized atoms. Notice that for a vertical scan, a level of constant coupling is asso-
ciated with decreasing transmission as the cavity detuning approaches zero (see also
Fig. 5.9(b)).
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(a) Spectrum for different postselection levels
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(b) Postselection levels and check interval his-
togram

 0

 0.01

 0.02

 0.03

re
la

tiv
e 

oc
cu

rr
en

ce

-25 -20 -15 -10 -5  0
∆c /2π [MHz]

2

5
10
20

50
100
200
400

T
ra

ns
m

itt
ed

 p
ow

er
 [f

W
]

0.4
0.2

0.6

0.1

Figure 5.9: Postselection levels for vertical scan. Averaged probe interval
transmission (a) for different postselection critera (b). For this scan direction, the
postselection intensity (i.e. the transmitted intensity during a check interval for which
g ≷ xg0) is a nonlinear function of the detuning ∆c. For g < 0.1g0, the resonance of
the empty cavity is observed. For increasing postselection levels g > (0.2, 0.4, 0.6)g0,
the cavity resonance is more and more suppressed and the remaining signal is due to
the broad multiphoton resonance.

time bins δti of all probe intervals in the sample are summed, and normalized to the
total number of time bins in all probe intervals:

R12(τ, δt) = w(τ)

∑
probe intervals

∑
i Coinc(δti, τ)∑

probe intervals ∆t/δt
(5.1)

Additionally, one must consider that it is less probable to see coincidences for larger
correlation times τ , since fewer suitable pairs of time bins exist within one probe
interval due to its finite length. This is taken into account by the weighting factor
[112]

w(τ) =
1

1− |τ |/∆t (5.2)

With the independent count rates of each detector Dj, (j ∈ {1, 2})

Rj(δt) =

∑
probe intervals

∑
i Clicks Dj(δti)∑

probe intervals ∆t/δt
(5.3)

the normalized intensity correlation function can be calculated:

g2(τ) =
R12(τ, δt)

R1(δt)R2(δt)
(5.4)

This normalization is only valid for a sample of probe intervals which are measured
under the same conditions, i.e. the same detuning and the same probe intensity.



Chapter 6

Observation of multiphoton
transitions

This chapter concentrates on the presentation and discussion of the measurement
results. The transmission spectrum of the strongly-coupled atom-cavity system is
analyzed for different intensities and scan directions, and the intensity correlation
of the spectroscopy data is briefly discussed.

6.1 Spectroscopy of the coupled atom-cavity sys-

tem

As the benchmark of strong coupling is the occurrence of the normal-mode split-
ting, the spectroscopic observation of this single-photon effect is recapitulated first.
Next, the spectroscopy of the system is extended to additionally reveal evidence
of multiphoton transitions in a diagonal scan which allows to see a single- and a
two-photon transition side by side, and in a vertical scan in which higher-order
transitions are excited almost exclusively. The data is compared to the different
cavity-QED theories which have been introduced in detail in chapters 2, 3 and 4.

6.1.1 Normal modes

The normal-mode spectrum of the atom-cavity system is a consequence of the
avoided crossing of cavity and atomic resonance which occurs if the atom is strongly
coupled to the light mode. Thus, the resonances change their character from cavity-
like to atom-like or vice versa if the atom-cavity detuning ∆ac is modified. In this
system, only the cavity mode is pumped as well as probed; therefore the amplitude
of a normal-mode resonance mirrors the projection of the corresponding eigenstate
onto the cavity-like contribution, leading to an unbalanced height of the two normal
modes if atom and cavity are non-degenerate. This is visible in Fig. 6.1(a), where the
avoided crossing appears in the expectation value of the intracavity photon number
of the pumped atom-cavity system (cp. Eq. 2.23a) as a function of the detunings ∆a

and ∆c. Fig. 6.1(b) shows a measured scan across the normal modes (data points)

63
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for four different atom-cavity detunings around ∆a = ∆c. The interchange between
the atom-like and the cavity-like character of the normal-mode peaks is clearly vis-
ible. The atom-cavity detuning ∆ac is modified by changing the depth of the dipole
trap and consequently the Stark shift of the atomic resonance frequency. The solid
lines are the results of numerical simulations based on the single-photon limit (cp.
chapter 4). This limit is valid for the low pump power (0.3 pW) which has been
used in these measurements. More details on these measurements and simulations
can be found in [18, 108].
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Figure 6.1: Avoided Crossing for low intensities and normal-mode spectra.
(a) shows the avoided crossing between the atom- and cavity resonance as a function
of ∆c and ∆a, for a pump power Ppump = 0.3 pW. The contours are isolines for
transmitted powers of (0.1, 0.5, 1, 2, 5, 10, 20, 50) fW. The diagonal arrows indicate
the scan direction for the normal-mode spectra shown in (b). The solid lines in (b)
are the result of numerical simulations.

6.1.2 Normal modes and multiphoton transitions

In order to resolve the state |2,−〉 in addition to the normal modes in the spectrum of
the coupled atom-cavity system, measurements have been done at higher intensities
and for an atom-cavity detuning ∆ac ≈ g, where the distance between the resonances
of states |1,−〉 and |2,−〉 surpasses their individual widths (cp. Fig. 3.1(b)).



6.1. SPECTROSCOPY OF THE COUPLED ATOM-CAVITY SYSTEM 65

First observation of the two-photon transition

Diagonal spectra of the atom-cavity system (cp. sections 3.2, 5.2.2) were taken
for two different trap depths with two different probe powers each. In detail, the
parameters were

• Parameter set (i):

∆a,0 = 2π × 35 MHz; Pdip = 140 nW; Ppump = (0.5, 2.5) pW

• Parameter set (ii):

∆a,0 = 2π × 35 MHz; Pdip = 170 nW; Ppump = (0.5, 1.5) pW

The resulting spectra are shown in Fig. 6.2. In a 2D-plot above the measured data,
the location of the scan parameters in the (∆a,∆c)-plane is indicated with respect
to the position of the single-, two- and three-photon resonances. Both scans are
in the regime ∆a � ∆c, since the Stark shift induced by these trap depths is not
enough to compensate for the bare-atom detuning of ∆a,0 = 2π × 35 MHz. For the
parameter set (i), the effective detuning ∆a is larger and thus the asymmetry is
more pronounced. This is visible in the low-intensity scans of each parameter set,
with normal-mode spectra consisting of a small atom-like resonance (state |1,−〉)
on the left and a higher cavity-like resonance (state |1,+〉) on the right. The peak
of the latter resonance is not shown due to poor statistics in this region, where the
heating rates are high (cp. Fig. 6.3). For an increased pump intensity, an additional
peak on the right of state |1,−〉 appears in both spectra (upper scans in Fig. 6.2).
Two immediate remarks about these new peaks can be made when comparing the
two spectra: first, the distance between the atom-like normal mode and the new
peak decreases with reduced asymmetry of the spectrum; second, the height of the
new peak increases (notice the higher pump intensity in parameter set (i)). This
behavior is expected for the resonance |2,−〉 and is a good indication that this peak
is indeed the first direct observation of a two-photon resonance. A quantitative
evaluation of the spectra follows in the rest of this section, after a short discussion
on the spectra of loss rates.

Loss rates

Scanning across a resonance involves changes of forces and diffusion coefficients. The
velocity-dependent force may change from cooling to heating or vice versa, the rate
of spontaneous photon emission by an atom increases in parallel to its excitation
probability on a peak in the spectrum, and also diffusion due to fluctuations of
the atomic polarization or the cavity field are enhanced. All these effects influence
the heating rate which the atom experiences in the trap and thus influence the
storage time. Fig. 6.3 displays the loss rates of atoms from the trap during the
measurement of the spectra in Fig. 6.2. The loss rates are greatly enhanced in
the area of the normal modes, which is mostly due to an increase in the diffusion
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(a) Parameter set (i)
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(b) Parameter set (ii)
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Figure 6.2: Diagonal scan spectra for two different parameter sets. The
scan direction of parameter sets (i,ii) is indicated and the resulting measured spectra
are displayed. The lower-intensity spectra of each parameter set show a distinct
normal-mode splitting (states |1,−〉 and |1,+〉). In both higher-intensity scans, an
additional resonance appears in the space between the normal-mode peaks; this is
the first signature of a two-photon transition to the state |2,−〉.
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(b) Parameter set (ii)
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Figure 6.3: Loss rates. The rate at which an atom got lost from the trap during a
probe interval while measuring the spectra in Fig. 6.2 also reveals a normal-mode like
structure due to the frequency-dependent friction and diffusion coefficients. Owing
to the width of the resonances, single- and two-photon effects cannot be resolved
separately.



6.1. SPECTROSCOPY OF THE COUPLED ATOM-CAVITY SYSTEM 67

coefficient due to dipole force fluctuations, as shown in [18, 113]. Especially, the loss
rates on the cavity-like normal-mode peak are very high (with atoms being trapped
for less than one probe interval on average for the high-intensity spectra), which is
why data-collecting on these resonances is extremely difficult, and statistics in the
transmission spectra are low. The resonance of the atom-like normal-mode peak in
the loss spectrum is so broad that contributions of higher-order transitions cannot
be resolved here.

Comparison of the transmission spectra to a fixed-atom theory

In a basic model of the atom-cavity system, the atom is assumed to be fixed at a
specific location, ideally at an antinode of the mode. This model was described in
detail in chapter 2. The assumption of an immobile atom is not justified in this
setup due to residual oscillations of the atom in the trap. Moreover, the probe
mode and the dipole trap mode dephase along the cavity axis, so that the antinodes
of the dipole light, where the atoms are localized, do not necessarily coincide with
antinodes of the probe light. Still, the fixed-atom theory can be used to approximate
the system if the coupling g and the atom detuning ∆a (as function of the Stark
shift) are taken as independent fit values to incorporate these delocalization effects.
At first, the fixed-atom multiphoton theory (section 2.2.3) is used to fit the spectra
of Fig. 6.2. The resulting curves are shown in Fig. 6.4 for all four measured spectra,
and the fit results are listed in table 6.1. In addition, the fixed-atom single-photon
theory (2.2.1) is plotted for the same parameters in order to visualize the influence of
multiphoton transitions on the theory spectra. This influence is small as long as the
probe power is low. Only for the higher-intensity spectra both theories deviate, and
the multiphoton theory describes the measured data more successfully. A detailed
discussion for both parameter sets follows.

Parameter set (i): Both the low- and high-intensity spectrum of parameter set
(i) are reasonably well approximated by the fixed-atom theory. Especially, the
position of the resonance |2,−〉 with respect to the position of the normal-mode
resonances is reproduced. However, notice that the fit values (g,∆a) are not identical
for the two intensities. For an input power of 0.5 pW, the fitted coupling corresponds
to 72% of the maximal possible value (g = 0.72g0) and the fitted ac Stark shift
amounts to 2S = 2π × 22 MHz or S = 0.75S0. For the higher-intensity scan, the
fit values correspond to g = 0.7g0 and also S = 0.7S0

1. Both average coupling
and average Stark shift are reduced for the higher-intensity scan, which leads to the
assumption that the atom is more delocalized due to stronger heating (notice that
the probe intensity differs by a factor of 5 between the two scans). This is consistent
with the fact that the storage time of the atoms in the trap is reduced for higher
probe intensities (see Fig. 6.3).

1 Since the atom is localized in the dipole trap, the average coupling to the dipole mode gdip
(see sec. 4.1) always exceeds the average coupling to the probe mode g. However, notice that
the coupling to the dipole mode enters into the Stark shift quadratically (S ∝ g2

dip), so that
S/S0 < g/g0 is possible.
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Parameter set (ii): For this parameter set, matching the multiphoton fixed-
atom theory to the shape of the measured spectra is more difficult; the best match
to both low- and high-intensity spectra occurs for an average coupling and ac Stark
shift of (g = 0.7g0, S = 0.7S0). Here, one set of fit parameters describes the peak
positions of both intensities. This might be due the fact that the probe power is
only increased by a factor of 3, which means that the heating rates differ less than in
the first parameter set. Again, the position of the additional resonance |2,−〉 is well
approximated by the fit. However, the most striking disagreement in this fit lies in
the peak height of the normal-mode |1,−〉, which is severely overestimated by the
fixed-atom theory in both high- and low-intensity spectra, whereas the amplitude
of the two-photon resonance is underestimated. While this tendency is also visible
for parameter set (i), it is much more pronounced here. Per se, the fact that the
strongest disagreement between fixed-atom theory and data occurs on the normal-
mode peak is not surprising, since here the heating rate reaches a local maximum
(see Fig. 6.3) and therefore effects of motion are also strong. One should keep in
mind that due to the variation of heating rates across the spectrum, the coupling and
ac Stark shift of a set of atoms can take different average values for each detuning,
and to use only one set of (g,∆a) to describe the entire spectrum is a simplification.
By assuming a reduced coupling on the normal mode, the decreased peak height
would be explained; moreover the normal-mode resonance would broaden on the
right slope, since a reduced g also reduces the splitting between the two normal
modes and thus shifts this peak to the right. This can cause an offset in the region
of the two-photon transition which raises the spectrum and thus lets the two-photon
peak appear higher. However, a reduction in g generally coincides with a reduced
ac Stark shift, moving the normal-mode peak to the left. Therefore, a qualitative
interpretation of the details of the measured spectra is hard. Instead, numerical
simulations which include the motion of the atom are performed to explain the
shape of these spectra.

Numerical simulations of the transmission spectra

The simulations which are used to numerically model atomic trajectories under the
given experimental conditions were introduced in chapter 4. For each individual tra-
jectory, the steady-state expectation value of the intracavity photon number

〈
a†a
〉

is
calculated repeatedly and then averaged over each probe and check interval. This
information is used to apply the same postselection procedure as in the experiment;
also statistical fluctuations of the detected photon number due to shot noise are
taken into account for the qualification process.
Numerical simulations of the spectra of parameter set (ii) have been performed on
the basis of the classical, semiclassical and quantum cavity-QED models. Before the
simulation results are presented, a few general remarks applying to all simulations
in this chapter are given:

Choice of simulation parameters: Consistently for all simulations, the corre-
spondence (1 intracavity photon ≡ 1 pW transmitted power) is used for both probe
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(a) Parameter set (i)
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(b) Parameter set (ii)
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Figure 6.4: Comparison to fixed-atom theories. Diagonal scan results (data
points) compared to the fixed-atom theory including only single-photon transitions
(dashed lines) and including higher-order transitions (solid lines). The normal-mode
peaks can be described by both theories, the additional peaks are predicted only by
a multiphoton theory. For parameters, see table 6.1.

Parameter set (i) (ii)
Pdip 140 nW 170 nW
Ppump 0.5 pW 2.5 pW 0.5 pW / 1.5 pW

g/(2π MHz) 11.5 11.2 11.2
∆a/(2π MHz) 13 15 10.5

Freq(|1,−〉)/(2π MHz) -19.7 -21.0 -17.6
Freq(|2,−〉)/(2π MHz) -12.0 -12.5 -11.0
Freq(|2,+〉)/(2π MHz) 5.5 5.0 5.7
Freq(|1,+〉)/(2π MHz) 6.7 6.0 7.1

Table 6.1: Fit results for diagonal spectra. Results of a parameter fit of the
fixed-atom multiphoton theory to the scan data, see Fig. 6.4, and resulting positions
of the resonances according to Eq. 3.2. Notice that contrary to parameter set (ii),
for parameter set (i) no common fit parameters can be found which simultaneously
describe the position of the resonances for both probe intensities. This is probably
due to the larger difference in the localization, resulting from a larger difference in
the heating rates between the low- and high-intensity scan (cp. Fig. 6.3). Reasonable
fits are obtained within a band of (g±δg, δg/2π ≈ 0.3 MHz, ∆a±δa, δa/2π ≈ 1 MHz.)
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(a) Single-photon transitions
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(b) Optical bistability theory

 0

 5

 10

 15

 20

 25

 30

 35

-30 -20 -10  0  10

T
ra

ns
m

itt
ed

 p
ow

er
 [f

W
]

∆c/2π [MHz]

(c) Multiphoton transitions
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(d) Loss rates - multiphoton transitions
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Figure 6.5: Measured spectra compared to moving-atom simulations based
on different theory models. In (a), the spectra of parameter set (ii) are compared
to simulations based on a theory including only single-photon transitions, in (b)
the data are compared to simulations based on the semiclassical theory of optical
bistability. Both theories reproduce the normal mode peaks, but clearly disagree
with the data in the region of the two-photon peak. This peak is only reproduced
with the quantum multiphoton theory, displayed in (c). The simulations were done
with (a) 170 000, (b) 160 000, and (c) 165 000 photons in the dipole trap mode.
In (d), the measured loss spectra (points) are compared to the loss rates obtained
from the multiphoton simulations (lines). Globally, the loss rates predicted by the
simulations are too small by a factor of about 2.5 (see left and right scale); however,
the shapes of the spectra are reasonably well reproduced by the simulations. The loss
rates obtained from the other types of simulations look similar and are not shown
here.

light and dipole trap light. This gives good agreement with the measurements and
comes close to the experimentally determined value of 0.9 photons/pW (which is
the gauge used for the fixed-atom theory). The origin of the discrepancy is not
clear; it might be due to an asymmetric loss coefficient of the two cavity mirrors.
The position of the normal modes in the simulated spectra is very sensitive to the
exact number of photons in the trap; already a change of 3% in the trap depth
leads to a noticeable displacement of the normal modes. It is found that for each
theory, a slightly different trap depth was needed to reproduce the obtained position
of the normal modes, which is explained by the different forces and thus different
localizations in each theory. The trap depth is the only parameter which was fine-
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tuned separately for each theory to optimize the agreement between simulations
and experiment, and the finally used trap depths lie within a band of (±5%) of
each other. Notice that each set of low- and high-intensity spectra was simulated
with exactly the same parameters, with the natural exception of the probe power
Ppump. The other slight adjustment which is made from experiment to simulations
is the choice of the postselection level. It is found that simulated spectra with a
postselection level of (g > 0.5g0) match the measured spectra with a postselection
level of (g > 0.6g0). This indicates that in overall, the atoms are better localized in
the simulation than in the experiment, perhaps because technical heating present
in the experiment is not included in the simulations. The fact that the dipole trap
storage times of simulated atoms always exceed the measured ones (see Fig. 6.5(d))
supports this assumption. In general, the simulations show consistently good agree-
ment with the experiment, with minor deviations between simulation parameters
and parameters of the experiment.

Discussion of the results: The simulated spectra are compared to the experi-
ment in Fig. 6.5. The classical simulations including only the single-photon tran-
sitions were done for a trap depth corresponding to 170 000 trap photons and are
displayed in Fig 6.5(a). Both normal modes in the low- and high intensity scan are
well reproduced by these simulations. This proves that the difference in peak height
between the measured normal modes and the fitted fixed-atom theory (Fig. 6.4) is a
consequence of the atomic motion. The major disagreement between this simulation
and the data lies, as expected, in the additional resonance which is experimentally
observed in the high-intensity scan but not present in the simulation. The spectra
obtained from the semiclassical theory (Fig. 6.5(b)), done with a trap photon num-
ber of 160 000, closely resemble the single-photon spectra and also lack any signal
in the region of the two-photon transition. Only if the quantization of the light
field is taken into account together with the quantization of the atom (simulations
done with 165 000 photons in the trap), not only the normal modes but also the
additional resonance is reproduced (Fig. 6.5(c)). This proves that this resonance is
indeed caused by a two-photon transition.
These spectra allow to verify position of the multiphoton resonance with respect to
the normal modes, but they show the quantum two-photon resonance as a small
feature in close proximity to the essentially classical normal-mode resonance. While
it is possible to better separate these resonances by increasing the atom-cavity de-
tuning ∆ac and thus increasing the asymmetry of the spectra, this also leads to a
further decrease in the amplitude of the quantum resonance as its character becomes
more atom-like, and thus it can be pumped less efficiently via the cavity. To fur-
ther evaluate the multiphoton transitions, we therefore switch to the vertical scan
direction.

6.1.3 Exclusive excitation of multiphoton transitions

By changing the scan direction from diagonal to vertical in the (∆a,∆c)-plane (sec-
tion 3.2), the normal modes can be suppressed. If the cavity detuning is scanned
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from negative values ∆c � 0 to ∆c
∼= 0 while the atom detuning is kept constant at

a value ∆a & 0, the normal modes are avoided; at the same time, the higher states
are sufficiently cavity-like in order to be pumped reasonably well. In this way, a
spectrum is obtained in a parameter regime where all theories based on a classical
field predict only a small, off-resonant background while all observed resonances are
explained by a quantized system.
Again, series of scans were performed with two different parameter sets, labeled
(iii) and (iv). The scan procedure was presented in chapter 5.2.3. The initial atom
detuning ∆a,0 and the trap depth were chosen such that the resulting Stark-shifted
atom detuning ∆a is expected to lie close to zero, with the Stark shift caused by
the trap being known from the previous measurements. Since the amplitude of the
multiphoton resonances is expected to rise with intensity, four different input powers
Ppump were used. In detail, the parameters were:

• Parameter set (iii):

∆a,0 = 2π × 21 MHz; Pdip =170 nW; Ppump =(0.5, 1.5, 2.4, 3.3) pW

• Parameter set (iv):

∆a,0 = 2π × 21 MHz; Pdip =140 nW; Ppump =(0.5, 1.5, 2.4, 3.3) pW

The resulting spectra are shown in Fig. 6.6, together with transmission curves ob-
tained from the different fixed-atom theories.

Transmission spectra and fit to fixed-atom theory

In both series of spectra in Fig. 6.6, the transmission signal of the lowest-intensity
scans is nearly flat as compared to the higher-intensity scans, where a peak appears
and grows as the input power is increased. As indicated in the upper panels, this is
the region where resonances of the states |2,−〉 and |3,−〉 are expected. Comparing
the scans of both parameter sets, it is found that for parameter set (iii) the resonance
appears farther to the right, and with a higher amplitude. This is consistent with
the fact that the dipole trap power is higher for these scans and thus the atom
detuning ∆a is smaller.
As a first approach, the match between these spectra and a fixed-atom theory is
investigated. Since for a classical light field no resonances are predicted in this
parameter regime, only the quantum multiphoton theory is considered. The fit
values are the coupling g and the atom-detuning ∆a, which are assumed to be
independent of the input power within one parameter set. We find that in order to
obtain a good agreement between data and theory, a third fit parameter is required:
an offset which depends on the input power but not on the detuning. The origin
of this additional offset lies in the atomic motion, as will be shown later. All fit
parameters for both parameter sets (iii) and (iv) are summarized in table 6.2. For
parameter set (iii), the fitted coupling amounts to g = 0.7g0, and the effective Stark
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Parameter set (iii) (iv)
Pdip/ nW 170 140
Ppump/ pW 0.5 1.5 2.5 3.5 0.5 1.5 2.5 3.5

g/(2π MHz) 11.2 11.5
∆a/(2π MHz) −1 +1

offset/fW 1.8 3 3 3 0.8 1.5 2 2.5

Freq(|2,−〉)/(2π MHz) −10.7 −12.0
Freq(|3,−〉)/(2π MHz) −7.7 −8.4

Table 6.2: Fit results for vertical spectra. Results of the parameter fit of the
fixed-atom multiphoton theory to the scan data, see Fig. 6.6, and resulting position
of the resonances according to Eq. 3.2. Reasonable fits are obtained within a band
of (g ± δg, δg/2π ≈ 0.3 MHz, ∆a ± δa, δa/2π ≈ 1 MHz.)

shift is 2S = 2π × 22 MHz or S ≡ 0.62S0, leading to ∆a = −2π × 1 MHz.2 For
parameter set (iv), the fit values are (g,∆a) = (0.72g0, 2π×1 MHz) or (S = 0.69S0).
We find that the parameter set with higher absolute transmission shows smaller
coupling and Stark shift, which indicates a higher heating rate (see Fig. 6.7). The
fitted offset lies in the range of 0.8 to 3 fW, small with respect to the peak heights
in the high-power spectra.
In general, the observed peak heights and widths match the prediction of the fixed-
atom theory for the given fit parameters. The largest deviation between data and
theory is found at small detunings |∆c| < 2π × 3 MHz, where the transmission
increases due to a systematic error in the postselection procedure, as explained in
section 5.2.3. From this theory, it is apparent that the observed resonances are
mainly caused by an excitation of the state |2,−〉. The state |3,−〉 has a minor con-
tribution which starts to grow at higher intensities, leading to the two-peak structure
of the theory spectra. The closeness of the two- and three-photon resonance prevents
their separate resolution in the measurement. Contributions of even higher states
would appear still closer to the state |3,−〉, raising transmission around this peak,
but are expected to be small for the chosen input powers.
Fitting of the measured spectra to theories with a classical light field does not
yield a reasonable result, since no peak is expected in these theories. However, for
illustration of the difference between the theories, the respective spectra have been
calculated with the fit parameters obtained from the quantized theory (including
the phenomenological offset), and are presented together with the data and the
multiphoton theory in Fig. 6.6.

Loss spectra

The loss spectra for the measurements of parameter sets (iii) and (iv) are shown in
Fig. 6.7. For both series of spectra, the loss rate is uniform across all measured detun-

2Since ∆a is slightly negative, a single-photon resonance can occur, in contrast to the stated
aim of suppressing this leading order. However, this resonance is expected to appear at a detuning
of ∆c < −2π × 100 MHz, far out of the scanning range used for this measurement
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(a) Parameter set (iii)
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(b) Parameter set (iv)
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Figure 6.6: Vertical scan results compared to the fixed-atom quantum
theory. The measurement results for two series of vertical scans for the parameter
sets (iii,iv) (data points) reveal a resonance which rises with growing input intensity.
The data are well described by a fit to the fixed-atom multiphoton theory (solid
lines), whereas the fixed-atom single-photon theory (dotted lines) and bistability
theory (dashed lines) do not predict a resonance (for fit parameters, see table 6.2).

ings as long as the input power Ppump is low. As the input power increases, the loss
rate grows only slowly for large detunings ∆c/2π < −15 MHz, but faster for a band
of frequencies around the multiphoton resonances −15 MHz < ∆c/2π < −3 MHz.
For both parameter sets, these resonances appear at approximately the same posi-
tion as the resonances in the transmission spectra, and also with approximately the
same width. Notice that the loss rates are generally higher for parameter set (iii),
which also shows higher transmission than parameter set (iv) (see Fig. 6.6). In the
spectrum for the highest input power of Ppump = 3.3 pW of this parameter set, a
relatively narrow peak is visible at about ∆c/2π = −6 MHz (Fig. 6.7(a)), which
might be caused by friction and diffusion forces in connection with state |3,−〉. Of
all parameters in the spectra, here this state is occupied most. The expectation
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value of the atomic excitation probability also reaches its maximum of only 6% at
this detuning, according to the fixed-atom theory.

(a) Parameter set (iii)
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(b) Parameter set (iv)
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Figure 6.7: Loss rates. The spectra of loss rates for the measurements of param-
eter set (iii) and (iv) are displayed for increasing pump powers Ppump (from bottom
to top). For growing Ppump, a peak in the loss rate appears at the frequency of the
multiphoton transitions |2,−〉 and |3,−〉, indicating enhanced diffusion.

Numerical simulations

Numerical simulations based on the three previously discussed theories were per-
formed for parameter set (iv) to investigate the influence of atomic motion on the
spectra. Details regarding performance and technical implementation of the simu-
lation routines were described earlier, therefore only the details specific to this run
are discussed here. For all simulation runs shown in Fig. 6.8, the photon num-
ber in the dipole trap was set to 140 000 and the bare-atom detuning was set to
∆a,0 = 2π × 22 MHz. With respect to the multiphoton quantum theory, it is evi-
dent from the analysis of the fixed-atom theory that the state |3,−〉 contributes to
the high-intensity spectra. Therefore at least the four Fock states (|0〉,|1〉,|2〉,|3〉)
need to be included in the simulation to obtain a realistic transmission spectrum.
However, permanently calculating all relevant parameters for four Fock states was
not possible due to lack of computational power. As a workaround, the atom was
propagated within the mode for 20 integration steps using a basis of only three
Fock states, assuming the contribution of the fourth Fock state to the total forces
acting on the atom would be small. After these steps, a single intermediate step
was performed which included the fourth Fock state. The transmission spectrum
was then calculated only on the basis of these intermediate steps. In this way, the
transmission spectra show signatures of the state |3,−〉, whereas its contribution
to the loss spectra is suppressed; the loss rates are therefore not compared to the
simulation.
Fig. 6.8(a) shows the transmission data compared to the results of simulations based
on single-photon and multiphoton transitions. The multiphoton simulation is able to
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reproduce the measured spectra for all intensities. The largest deviation lies in the
region of the three-photon transition, where the simulation slightly underestimates
the signal. This might be due to the absence of the state |3,−〉 in the calculation
of the force and diffusion coefficients, or from the disregard of contributions from
the states |4,−〉 and higher. Apart from this region, the multiphoton simulations
correctly predict the signal height across the whole spectrum, without the need of
an additional offset which had to be added phenomenologically to the fixed-atom
theory. This confirms that this offset is a consequence of atomic motion in the trap.

As expected, the single-photon simulations do not predict any peak for this pa-
rameter region, but they do fit the data in the off-resonant region −25 MHz ≤
∆c/2π ≤ −20 MHz, where contributions of the multiphoton transitions to the spec-
tra are small. This indicates that the single-photon theory is able to reproduce the
frequency-independent offset, and that this offset therefore stems from a background
of single-photon transitions which is enhanced by motion-induced fluctuations of
coupling and Stark shift. Also notice that both types of simulations reproduce the
rise of the transmission for |∆c|/2π < 3 MHz, but only if shot noise is considered
in the postselection procedure. This proves that this rise is due to a systematic
shot-noise limitation in the postselection procedure, as discussed in section 5.2.3.

The third type of simulations is based on the bistability state equations and shown
in Fig. 6.8(b). These simulations are unable to explain the observed resonances in
the transmission signal. However, they show an enhanced transmission as compared
to the single-photon simulations, especially for the highest-intensity scan. These
simulations are more sensitive to variations in the coupling and trap depth, since
bistability predicts larger gradients in the transmission as the distance to a normal-
mode resonance is reduced. In very rare events, fluctuations can be so large that a
bistable region is reached for the highest input intensity, resulting in the small bulge
visible in this calculated spectrum. Yet even changing the initial parameters of
the simulation considerably, no parameter set was found which could reproduce the
measured data. Summarizing, the simulations verify that the observed resonances
are multiphoton transitions which can only be explained by quantizing both atom
and light field.

6.2 Nonlinear intensity response

On a two-photon resonance, quantum theory predicts a mainly quadratic response
of the transmission to a change in input intensity, as a consequence of the system’s
ability to accept only photon pairs (see sec. 3.2.2). Stated differently, the single
atom is able to mediate a nonlinear interaction between two photons: the presence
of one photon in the input port decides over the transmission or reflection of the
second photon.

To see this effect, the following analysis concentrates on the spectra of parameter set
(iv), where, as compared to parameter set (iii), the states |2,−〉 and |3,−〉 are better
separated and the contribution of the state |3,−〉 is smaller. The data of parameter
set (iv) are averaged over two bands of frequencies for each intensity. The first



6.2. NONLINEAR INTENSITY RESPONSE 77

(a) Single-photon and multiphoton theory

 4
 6
 8
 10
 12
 14
 16
 18
 20

-25 -20 -15 -10 -5

 2
 4
 6
 8

 10
 12
 14

T
ra

ns
m

itt
ed

 p
ow

er
 [f

W
]

 2
 4
 6

 0
 2

-25 -20 -15 -10 -5
∆c/2π [MHz]

(b) Theory of optical bistability
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Figure 6.8: Measured spectra compared to moving-atom simulations
based on different models. (a) The data of parameter set (iv) (data points)
are only reproduced by simulations which include atomic motion and account for
multiphoton transitions (dashed lines), whereas simulations based on single-photon
transitions (dotted lines) fail to describe the data. (b) Also, simulations based on
the theory of optical bistability do not match the measured data. All simulations
were done with 140 000 photons in the dipole trap.

frequency band is the region of the two-photon transition, −15 MHz ≤ ∆c/2π ≤
−10 MHz, while the second band −25 MHz ≤ ∆c/2π ≤ −20 MHz serves as a
reference for the contribution of single-photon transitions to the signal. The aver-
aged intensities of both bands are plotted in Fig. 6.9(a); obviously the on-resonance
transmission increases faster than the off-resonant transmission. The difference be-
tween both bands is taken in order to obtain the transmission due to the two-photon
resonance. In Fig. 6.9(b), this two-photon transmission is plotted together with an
analytical fit function of the form f(x) = bxa, with x in units of [pW]. The fit results
are a = 1.74 ± 0.08, b = 1.3 ± 0.1 fW/ pW. The fit parameter a shows that the
dependency of output vs. input power is almost quadratic. In Fig. 6.9(c), the same
data are compared to the fixed-atom multiphoton and bistability theory. These the-
ory curves were obtained in the same way as the data points, namely by averaging
the theoretically expected transmission of the on- and off-resonance band for differ-
ent input powers and subtracting the results. The parameters (g = 2π× 11.5 MHz)
and (∆a = 2π×1 MHz) needed for the calculation were taken from Fig. 6.6(b). The
fixed-atom multiphoton theory describes the data well, with the exception of the
last data point, which is slightly over-estimated by the theory curve. This deviation
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(b) Data and analytical fit
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Figure 6.9: Nonlinear intensity response. (a) For each input power, the trans-
mission data of parameter set (iv) are averaged over two frequency bands, the off-
resonant region (circles) and the region of the two-photon transition (squares). The
curves are guides to the eye. (b) The difference of both bands is compared to an
analytical power law fit, showing that output vs. input power scales with an exponent
of (1.74± 0.08). (c) The data difference is compared to the fixed-atom multiphoton
theory (solid line) and bistability theory (dashed line) taken from Fig. 6.6.

is likely to be caused by effects of the motion, which dampen the resonance; this
might be remedied by implementing a more efficient cooling protocol [53].
In comparison, the bistability theory shows only a small nonlinearity, as saturation
of the atom is low for the chosen parameters: The excitation probability of the
atom remains below 5% according to multiphoton fixed-atom theory or 7% accord-
ing to the multiphoton simulations. Clearly, bistability cannot explain the observed
nonlinearity.

6.3 Correlation signal

As a last item in the evaluation of the data, the intensity correlation function for
different regions in the observed spectra is briefly studied. The extraction of the
correlation signal from the measured data was discussed in section 5.2.4; here the
focus lies on the discussion of the observed features. In general, there are two fun-
damentally different reasons for observing structure in the time-resolved correlation
function: the first is a consequence of mechanical motion of the atom in the dipole
trap, the second stems from the internal structure of the atom-cavity system. These
two items are shortly highlighted in the next subsections.

6.3.1 Signature of atomic motion

The atom, being localized in the cavity by means of the intracavity dipole trap,
performs oscillations within the trap well. Due to the large aspect ratio of the well,
the trap frequencies in axial and radial direction differ by a factor of about 70; the
axial frequency lies in the range of 300 kHz, the radial frequency on the order of
4 kHz. In the case of moderately large oscillation amplitudes, for example caused by
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insufficient postselection of well-coupled atoms, these oscillations lead to a periodic
variation in the coupling which is large enough to be visible in the transmission
signal. The corresponding frequencies then appear in a correlation measurement,
leading to strong bunching as shown in Fig. 6.10. The data underlying this figure
were taken at high input powers for detunings ∆a ≈ ∆c = 0, where the postselection
procedure is known to fail (see section 5.2.3). The motion of the atoms is clearly
visible in the correlation signal, leading on the one hand to an oscillation on a
short timescale, which corresponds to the axial motion, and on the other hand to a
decay of the correlation signal on the timescale of the probe interval length, which
corresponds to the radial oscillation. A systematic study of these oscillations can be
found in [108]. They are suppressed in regions with more reliable postselection.

(a) Atomic motion
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Figure 6.10: Trap frequencies. The correlation signal of the data from parameter
set (iii) for detuning ∆c = 0, input power Ppump = 2.4 pW and a qualification of
gmin=0.3 shows modulation on two timescales: a fast oscillation with a frequency of
250 kHz, which originates from the axial oscillation of the atom in the trap, and a
slow decay of the signal on a timescale larger than the probe interval length, which
stems from the radial oscillation of the atom in the trap.

6.3.2 Signature of photon bunching

A conceptually different source of modulations in the correlation signal is the internal
structure of the atom-cavity system: as explained in section 3.2.3, the transmitted
photons should be weakly anti-bunched on the normal-mode resonances for our
cavity parameters, but strongly bunched in regions where multiphoton transitions
can be excited. This behavior can be found in a diagonal scan. Fig. 6.11(a) shows
the averaged correlation signal for three bands of detunings in parameter set (ii):
On the left side of the normal modes (−25 MHz ≤ ∆c/2π ≤ −20 MHz) and near
the empty-cavity resonance (−4 MHz ≤ ∆c/2π ≤ −2 MHz), the correlation signal
is flat, while a sharp peak at τ = 0 is visible for detunings near the two-photon
resonance (−13 MHz ≤ ∆c/2π ≤ −6 MHz). A similar, but better resolved peak
occurs when averaging over a band of detunings of (−8 MHz ≤ ∆c/2π ≤ −4 MHz)
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(a) Correlations in a diagonal scan
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(b) Correlations in a vertical scan

 0

 5

 10

-10 -5  0  5  10

Figure 6.11: Photon bunching. (a) The transmission signal from the measure-
ments of parameter set (ii) is evaluated for correlations. Data from different input
intensities Ppump = (0.5, 1.5, 2.4, 3.3) pW and three bands of detunings ∆c/2π from
−25 to −20 MHz (upper panel), from −13 to −6 MHz (central panel), and from −4
to −2 MHz (lower panel) are gathered. The normalized correlation functions for each
subset of detunings and intensities were calculated separately and averaged in the
end. Bunching is visible only in the central frequency band, which covers the region
of the two-photon transition. (b): Bunching is also pronounced on the three-photon
resonance of parameter set (iii) for Ppump = 3.3 pW, averaged over detunings ∆c/2π
from −4 to −8 MHz. A Lorentzian fit yields a width (HWHM) of (90± 10) ns.

in the parameter set (iii) for an input power of Ppump = 3.3 pW (Fig. 6.11(b)).
The height of the peak is in qualitative agreement with the theoretical prediction
(Fig. 3.9(b)).
Due to better statistics, the signal-to-noise ratio is sufficient to determine the peak
width: By fitting a Lorentzian, a width (HWHM) of (90± 10) ns is obtained, which
is on the order of the photon decay time tc = (2κ)−1 ≈ 64 ns and much narrower
than the motion-induced bunching discussed in the previous section. Further mea-
surements are required for a more detailed study of these structural correlations.



Chapter 7

Outlook

The measurements presented here constitute the first conclusive observation of a
two-photon resonance in a single-atom-cavity spectroscopy experiment, confirming
theoretical predictions on its characteristic energy and its nonlinear dependence on
the probe laser intensity [57, 58]. Simulations based on different theory models
demonstrate that the measurements can only be explained within the framework
of quantum theory, as these resonances are a unique consequence of the quantized
interaction between matter and light. Having shown the accessibility of these reso-
nances, further experiments on their properties as well as possible applications come
into reach.

An immediate topic of attention is the analysis of the properties of the transmitted
light on a multiphoton resonance. The spectrum of the emitted photons should
contain lines of characteristic frequencies stemming from incoherent, step-wise decay
via intermediate doublets [67], as well as sets of photons identical to those used for
the excitation. Contrary to the normal modes, where anti-bunching of photons
occurs, on a two-photon transition the photons should escape the cavity preferably
in pairs, leading to strong bunching. First evidence for bunching was found here,
inviting for a thorough analysis. The atom mediates a nonlinear interaction between
two photons, extending nonlinear optics to the level of single quanta. Utilizing the
system as an input filter, it can be set up to transmit only photon pairs of appropriate
frequency, functioning as a two-photon gateway. The nonlinearity could moreover be
employed to realize a single-photon transistor [122], where the presence or absence
of a single ’gate’ photon decides over transmission or reflection of a second ’signal’
photon. Also, superposition states of transmitted or reflected photons seem possible,
which could have applications in optical communication and computation [123, 124]
or quantum information science [125, 126]. To assess the efficiency of such a process,
the photon escape rate through each of the two possible loss channels - spontaneous
emission by the atom or transmission through a mirror - needs to be characterized,
and spontaneous emission needs to be minimized by tailoring the system parameters
like relative detunings, coupling constant and cavity linewidth.

Besides, this experiment constitutes a step towards the regime of a single atom
strongly coupled to a mesoscopic number of photons. Increasing the photon number,
optical bistability on the single-atom level is predicted [79], as the system passes the
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boundary from quantum to semiclassical behavior [69, 127, 128]. This transition
will highlight the role of quantum fluctuations and their impact on the evolution
of the state, a topic closely related to the occurrence of squeezing [129, 130]. The
system offers the chance to observe this boundary, also learning about the back
action of measurements on an open quantum system [62, 131] which is conditioned
by the measurement process [132]. This has implications for the implementation of
quantum feedback protocols [12, 133, 134] as well.
Realizing experiments with mesoscopic intracavity photon numbers is hardly feasi-
ble in the present setup because the storage times of the atoms in the resonator are
strongly reduced for the necessary pump intensities. This can be remedied by im-
plementing cavity cooling in three dimensions with additional standing-wave dipole
traps in directions transverse to the cavity axis [53], which promises storage times
of several seconds. However, such a trap configuration cannot be realized at the
moment due to the mirror geometry which restricts optical access from the side.
Construction of a new cavity with improved optical access [135] has been brought
under way in the course of this work, with the aim to replace the present cavity in
the foreseeable future. The new cavity will also be suited for implementing a blue
dipole trap at a magic wavelength (see appendix B.2), which avoids differential Stark
shifts between the ground and excited state of selective Rb-transitions, helping to
improve the stability of the system. This modernization of the setup will further
increase the spectrum of possible measurements.



Appendix A

Background information

A.1 Mathematical background for numerical cal-

culations

A.1.1 Solution of the master equation

The state of the atom-cavity system is described by its density matrix

% =
∑
j,k

ζjk |bj〉 〈bk| (A.1)

which can be expressed as a linear combination of basis vectors bj from the combined
Hilbert space of the system Hs = Ha

⊗Hc = {{|g, i〉 , |e, i〉}, i ∈ N0}, where Ha =
{|g〉 , |e〉} is the two-dimensional Hilbert space of the atomic states andHc = {|i〉 , i ∈
N0} is the Hilbert space of the mode. For numerical calculations, this Hilbert space
is truncated after a certain number of Fock states N , so that the dimension of a basis
vector |bj〉 is 2N and the dimension of the density matrix is (2N)2. All operators ô
acting on states of the system can be expressed as matrices of the same dimension
as the density matrix. In this basis, the master equation 2.14 is a linear matrix
equation which has terms of the form ô1%ô2 stemming from the dissipative parts
of the Liouvillian La,Lσ. Such a matrix equation can be ’flattened’ into a vector
equation by using the identity

%̄ = ô1%ô2 ⇔ vec(%̄) = (ôT2 ⊗ ô1)vec(%) (A.2)

Here, the sign⊗ indicates the tensor product (also named Kronecker matrix product)
of two matrices.1 and vec(%) is the vectorization2 of the matrix %. The (2N)2

1The Kronecker product of two matrices A =

a11 · · · a1n

...
. . .

...
am1 · · · amn

 , B is defined as the block

matrix A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

.

2The vectorization of a matrix is a linear transformation which converts the m×n matrix A to
a column vector of dimension (mn, 1): vec(A) = (a11, · · · , am1, a12 · · · , am2, · · · , a1n, · · · , amn)T
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eigenvectors {vec(%Γ)} and eigenvalues {Γ} of the resulting linear vector equation
can be calculated by standard mathematical algorithms. The eigenstates {%Γ} of
the Liouvillian L are obtained by reshaping the eigenvectors into square matrices.

A.1.2 Steady state and time evolution

Steady state

The steady state density matrix %0 is the solution of the master equation 2.14 for
%̇ = 0:

L%0 = 0 (A.3)

This is the eigenstate of L with the eigenvalue Γ = 0.
From this, the steady state expectation value of any system operator ô is obtained:

〈ô〉0 = Tr[ô%0] (A.4)

Time evolution

The time evolution of the density matrix is given by the formal solution of the master
equation:

%(τ) = eLτ%(0) (A.5)

To calculate the time evolution, we follow ref. [64]. At first, we decompose the
density matrix into a weighted sum of the eigenstates

%(0) =
∑

Γ

c̃Γ%Γ (A.6)

for which the time evolution is easily computed:

%(τ) =
∑

Γ

eΓτ c̃Γ%Γ (A.7)

To evaluate this equation numerically, the coefficients c̃Γ are also needed. They can
be calculated from the ’dual eigenstates’ %̃Γ, which obey the duality relation

Tr[%̃Γ%Γ′ ] = δΓ,Γ′ (A.8)

With this dual basis, the coefficients c̃Γ can be calculated:

c̃Γ =
∑
Γ′

c̃ΓTr[%̃Γ′%Γ] = Tr[%̃Γ%(0)] (A.9)

Notice that the dual eigenstates %̃Γ are the eigenstates of the dual Liouvillian L̃ with
the same eigenvalues. L̃ is defined by the relation

Tr[ô(L%)] ≡ Tr[(L̃ô)%] (A.10)
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The dual basis can be considered as the set of left eigenstates of L, whereas the
normal basis consists of the right eigenstates. Explicitly, the dual operator L̃ of the
Liouvillian L from equation 2.14 acts on an operator ô as

L̃ô =
i

~
[H, ô] + κ(2a†ôa− a†aô− ôa†a) + γ(2σ†ôσ − σ†σô− ôσ†σ) (A.11)

The dual basis {%̃Γ} can be used to expand system operators similarly to equation
A.6:

ô =
∑

Γ

cΓ%̃Γ (A.12)

cΓ = Tr[ô%Γ] (A.13)

Now all necessary tools are available to calculate the expectation value of any system
operator ô(τ) at any time τ > 0. To this end, the time dependence of the operators
is noted explicitly:

〈ô(τ)〉 = Tr[ô%(τ)]

=
∑

Γ

eΓτ c̃ΓTr[ô%Γ]

=
∑

Γ

eΓτ c̃ΓcΓ

(A.14)

A.1.3 Calculation of correlation integrals

Also, expectation values of correlations of any two system operators can be calcu-
lated from the master equation by invoking the quantum regression theorem [66],
which links the time evolution of correlations to the evolution of the density matrix:

〈ô1(t+ τ)ô2(t)〉 = Tr[ô1e
Lτ (ô2%(t))] (A.15a)

〈ô1(t)ô2(t+ τ)〉 = Tr[ô2e
Lτ (%(t)ô1)] (A.15b)

With the help of this theorem, the expectation value of correlations between oper-
ators can be reformulated:

〈ô1(t+ τ)ô2(t)〉 =
∑

Γ

eΓτTr[ô1%Γ]Tr[ô2%(t)%̃Γ] (A.16a)

〈ô1(t)ô2(t+ τ)〉 =
∑

Γ

eΓτTr[ô2%Γ]Tr[%(t)ô1%̃Γ] (A.16b)

This can be used to calculate explicitly the integrals of correlations of the force
operator F = (Fx, Fy, Fz)

T (Eq. 4.8) needed for the friction (Eq. 4.14) and diffusion
(Eq. 4.19) tensors:

βij = − Im

(∑
Γ 6=0

2Tr[%ΓFi]Tr[Fj%0%̃Γ]

~Γ2

)
(A.17)
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Ddp,ij = −Re

(∑
Γ6=0

Tr[%ΓFi]Tr[Fj%0%̃Γ]

Γ

)
(A.18)
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A.2 Background information on the system

A.2.1 Experimentally relevant hyperfine levels of rubidium

Figure A.1: Relevant hyperfine levels of 85Rb. Hyperfine splitting (left) and
Zeeman sublevels (right) of the 85Rb levels 5S1/2 and 5P3/2, showing the MOT and
the intracavity transitions. Inside the cavity, the atom is optically pumped into the
cycling transition F = 3, mF = 3→ F = 4, mF = 4.

A.2.2 Birefringence of the cavity

In the theory of the atom-cavity system, the Rubidium atom is treated as a par-
ticle with two internal states. In reality, the fine- and hyperfine splitting (cp.
Fig. A.1) of the levels has to be taken into account, and the two-state approxi-
mation is only valid if the atom is optically pumped into the cycling transition
5S1/2F = 3,mF = 3 → 5P3/2F = 4′,mF = 4′ by circularly polarized light. Initially
circularly polarized light can become elliptically polarized due to birefringence of
the cavity mirrors. Birefringence occurs if a material possesses different refractive
indices for polarizations along two orthogonal main axes. Crossing the medium, or-
thogonal linear polarizations accumulate a phase shift and thus circular polarization
is not preserved. This also means that the cycling transition is no longer closed and
the atom can be pumped into other hyperfine levels. These levels would have to be
considered in the atom-cavity theory. Moreover, if the atom is pumped into other
than the outermost hyperfine levels, a decay channel into the F = 2 ground state
is opened. After such a decay, the atom would no longer couple to the cavity mode
and thus appear to be lost. Measuring the atomic loss rate in dependence of the
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polarization of the probe light is therefore a way to estimate the degree of circular
polarization (DOCP ) of the probe light inside the resonator.
The polarization of the probe light is set by a quarter wave plate (QWP) in front of
the cavity. If α is the angle between the linearly polarized input beam and the fast
optical axis of the quarter wave plate, the polarization in front of the QWP is given
by

E = E0

(
cosα
sinα

)
(A.19)

and behind the QWP it has been transformed to

E′ = E0e
iπ/4

(
cosα
i sinα

)
(A.20)

Projection on the circular polarization basis

σ̂+ =
1√
2

(
1
−i
)
, σ̂− =

1√
2

(
1
i

)
(A.21)

gives the real coefficients µ+(α), µ−(α) (µ+(α)2 + µ−(α)2 = 1)

µ+(α) ≡ 〈E′/E0, σ̂+〉 =
1√
2

(cosα− sinα) (A.22)

µ−(α) ≡ 〈E′/E0, σ̂−〉 =
1√
2

(cosα + sinα) (A.23)

The common phase factor eiπ/4 introduced by the QWP has been neglected. Ro-
tating the QWP allows to manually adjust these coefficients. Fig. A.2 shows a
measurement of the loss rate of atoms which are being excited by probe light for dif-
ferent settings of α. The loss rate increases quadratically with the coefficient µ−(α),
i.e. linearly with the intensity of left circularly polarized light. A cross-check with
the storage times in the dipole trap without illumination confirms that the enhanced
loss rate is due to the change of polarization of the probe light and not due to the
change of polarization of the dipole trap, which influences the loss rates only on a
much longer timescale.
This measurement allows to estimate the maximal contribution of σ−-polarized light
in the cavity: Fitting the loss rate with a quadratic curve yields a coefficient dlµ ≡
d(loss)/d|µ−(α)|2 = 20.5 kHz. The minimal loss rate for α = 0 is loss0 = 0.42 kHz.
This loss rate will be mostly caused by loss mechanisms which are unrelated to the
polarization of the light, like diffusion and parametric heating in the dipole trap.
However, as a worst-case scenario, let us assume that this loss is totally due to σ−-
polarized light created by birefringence of the mirrors. In this case, an upper bound
for the relative intensity in the wrong polarization mode is obtained:

|µ−|2max = loss0/dlµ = 0.02 (A.24)

The minimal DOCP is therefore

DOCP = µ2
+ − µ2

− ≥ 0.96 (A.25)
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Figure A.2: Birefringence The loss rate of atoms illuminated with probe light
(points) is a quadratic function (solid fit curve) of the polarization coefficient µ−(α).
The enhanced losses for σ−-polarized light are a consequence of atomic decay into
the hyperfine state F = 2, from which atoms are not repumped.

Going back into the basis of light polarized linearly along the two main axes of the
birefringent mirrors, one can calculate the frequency splitting between the two polar-
ization modes that would follow from this DOCP . Assuming that the birefringence
occurs only in the mirror substrate, no mode splitting can be observed since the
optical path length within the cavity is identical for both polarization modes. If the
birefringence occurs in the mirror coatings, a relative phase shift between the modes
is picked up at every reflection. The total accumulated phase shift for DOCP = 0.96
is ∆φ = 0.065π, calculated with the relation DOCP = (1 − |cos(2∆φ)|)/2. From
this, the length of the cavity and the number of reflections which depends on the
finesse of the cavity, #r = F/π, the relative difference in the optical path length
can be calculated. This leads to a splitting of 2π × 0.5 MHz for the polarization
modes for the parameters F = 490000, L = 123 µm. This splitting is smaller than
the cavity linewidth κ = 2π × 1.25 MHz.
Concluding, an upper estimate for the splitting of the polarization modes from
an independent storage time experiment confirms that the polarization modes are
degenerate well within the cavity linewidth, and that birefringence of the cavity
mirrors can be neglected in the present setup.
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Appendix B

Alternative dipole traps

The dipole trap used for the presented measurements (see section 4.1) is generated by
the excitation of a far-red detuned cavity mode, which attracts atoms in the ground
state towards a region of high intensity. This trap imposes a Stark shift of nearly
equal magnitude but opposite sign on ground and excited state and thus changes
the atomic transition frequency. Fluctuations in the trap depth lead to modulations
in the resonance frequency of the atom, parametric heating and a broadening of
the measured resonances; furthermore restrictions on the maximal size of the Stark
shift limit the trap depth and the accessible parameter regimes, as regions of cavity-
induced heating may not be crossed during the loading process. These difficulties
can be avoided by choosing different trap configurations: in a blue-detuned dipole
trap, the atom is stored at a position of vanishing light intensity, and in a ’magic
wavelength’ trap, ground state and excited state experience an identical Stark shift
and so a differential light shift is avoided. The blue trap has already been realized in
this setup [20] and is presented in the first section of this chapter; the second section
concentrates on a discussion and a possible implementation of a magic-wavelength
trap.

B.1 Blue dipole trap

A blue dipole trap consists of a potential landscape with a point of vanishing light
intensity, completely surrounded by blue-detuned light which repells the atom. Such
a landscape can be generated in the cavity by combining modes of different longitu-
dinal and transverse orders. The longitudinal confinement is provided by a TEM00

mode at 772 nm, detuned by 3 FSR from the near-resonant probe light; therefore a
node of the dipole field coincides with an antinode of the probe field in the cavity
center. Radial confinement is added by simultaneously exciting the two TEM10+01

modes of the longitudinal mode series which is two FSR blue detuned from the
probe light, at 775 nm. These modes are split by an amount of 6 MHz due to
imperfections of the cavity mirrors; by exciting both modes with two laser beams, a
standing wave with an effective transverse donought pattern is formed. In the center
of the cavity, these doughnuts are aligned with the nodal planes of the blue TEM00

mode, forming closed trap wells which overlap with regions of strong coupling to the
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probe mode. The alignment of the modes in the cavity center is a consequence of
the cavity geometry and therefore inherently guaranteed by the setup. However, the
trap wells open as the modes of different longitudinal order dephase further away
from the cavity center.
In order to load an atom into a central trap well, the radial confinement has to be
opened. A TEM10 mode with a vertically oriented nodal line is used to guide the
atoms into the trap. A mode with the required orientation is formed by exciting
both TEM10+01 modes with only one laser beam at a frequency between the two
resonances. In combination with the blue TEM00 mode, funnels are formed to guide
the atom. As the atom moves along the nodal line, it does not gain kinetic energy.
When it has been detected via its influence on the transmission of the probe field,
the trap is closed by actively switching to the doughnut pattern. Notice that in this
configuration only the intensity of the radially confining modes has to be switched,
reducing axial heating during the switching. Such heating can occur in the red
dipole trap, where it then has to be counteracted by a period of cavity cooling.
Atoms which do not manage to enter the blue funnel are rejected, as are further
atoms which arrive after the trap containing the first atom has been closed.
The storage time of an atom in the blue trap is comparable to the storage time in
the red trap, which is to be expected since the heating mechanisms are similar. In
contrast to the red trap, the atom experiences only a minimal Stark shift; from the
position of the normal-mode resonances, this residual Stark shift is measured to be
on the order of the natural linewidth of the atom. The absence of the Stark shift
enables measurements in the dispersive limit, where the presence of an atom can be
detected while it scatters only one photon on average. More details on the setup of
the blue trap and corresponding measurements can be found in [20, 98, 136].

B.2 Traps at a magic wavelength

While a blue-detuned dipole trap avoids Stark shifts at the trap center, a differ-
ential Stark shift between ground and excited state is still expected if the atom
moves. A modification of the transition frequency can only be avoided in a trap at
a ’magic wavelength’, which shifts ground and excited state by the same amount.
This behavior has its origin in the multilevel structure of the atom, as the dipole
laser connects the excited state to even higher-lying states. This can lead to an
effective negative Stark shift which in certain cases can be tuned to match the Stark
shift of the ground state. Such a trap is especially relevant in metrology experi-
ments like atomic clocks at optical frequencies, where differential Stark shifts lead
to systematic errors [137, 138, 139]. In a cavity-QED experiment with cesium, a
magic wavelength at 935 nm has been used to build a state-insensitive red-detuned
intracavity dipole trap [48]. Due to the different level structure in Rb, no red magic
wavelength is available at frequencies in the vicinity of the D2-line. However, there
are possibilities to implement a blue magic trap. The calculation of the relevant
Stark shifts is discussed in the following section.
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Figure B.1: Rubidium level structure. An overview over the most relevant Rb
levels and transitions is shown.

Neglecting the hyperfine structure and the polarization of the impinging laser, the
ac Stark shift caused by coupling the states i and j via a dipole-allowed transition
can be calculated in second order perturbation theory [106]:

Sij = ±nωlc
V

6πc2γji
ω2
ij(ω

2
ij − ω2

l )
(B.1)

where by convention the shift of the lower state is positive and the shift of the
upper state is negative. ωij is the transition frequency and γji is the polarization
decay rate from the upper state j to the lower state i, which is often given in
terms of the Einstein A coefficient (Aji = 4πγji). n is the number of intracavity
photons with the dipole laser frequency ωl; it can be converted to an intensity by
the expression I = n~ωlc/V , where V is the mode volume of the cavity. The Stark
shift is given at an antinode of the field; if required, the spatial dependence can
be included by multiplying with the square of the dipole mode function |ψdip(r)|2.
Notice that Eq. B.1 goes beyond the rotating-wave approximation, allowing for
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No. λ/ nm γ/(2π MHz) transition comment
1 794.98 2.86 5S1/2 ↔ 5P1/2 D1-line
2 780.24 2.99 5S1/2 ↔ 5P3/2 D2-line
3 1529.3 0.166 5P3/2 ↔ 4D3/2

4 1529.4 0.995 5P3/2 ↔ 4D5/2

5 776.16 0.038 5P3/2 ↔ 5D3/2

6 775.98 0.215 5P3/2 ↔ 5D5/2

7 1366.7 1.04 5P3/2 ↔ 6S1/2

8 630.10 0.0423 5P3/2 ↔ 6D3/2

9 630.01 0.251 5P3/2 ↔ 6D5/2

10 741.02 0.350 5P3/2 ↔ 7S1/2

11 572.62 0.0316 5P3/2 ↔ 7D3/2

12 572.57 0.196 5P3/2 ↔ 7D5/2

13 616.13 0.0949 5P3/2 ↔ 8S1/2

14 543.33 0.0226 5P3/2 ↔ 8D3/2

15 543.30 0.132 5P3/2 ↔ 8D5/2

16 565.53 0.0899 5P3/2 ↔ 9S1/2

Table B.1: Table of the transitions used for the calculations of the Stark shift on
the ground state 5S1/2 and the excited state 5P3/2 of the D2-line. The transmission
line data have been taken from the data collection of Kuruzc [140].

detunings between dipole laser and atomic transition on the order of the atomic
resonance frequency. In the RWA, Eq. B.1 converges to Eq. 4.2.
The hyperfine splitting and the polarization of the dipole laser impose additional
selection rules on the dipole transition and influence the transition strength. The
combination of the ground state angular momentum F and its projection mf and
the angular momentum of the absorbed photon yields a factor [141, 142]

αij = (2F ′ + 1)(2J ′ + 1)(2F + 1)

(
F 1 F ′

mf q −m′f

)2{
F ′ Ik J ′

J 1 F

}2

(B.2)

where the quantum numbers of the energetically higher-lying state are primed. q
denotes the polarization of the light in a spherical basis (q ∈ {−1, 0, 1} corresponds
to {σ−, π, σ+}-polarization). The symbols (·) and {·} denote the Wigner 3J- respec-
tively 6J-symbol. Ik is the nuclear spin, equal to 5/2 for 85Rb. The selection rules
require mf + q = m′f .
The total Stark shift of a state l is given by the sum of the Stark shifts imposed by
lower-lying and higher-lying states

Sl =
i<l∑
F,mf

Silαil +

l<j∑
F ′,m′

f

Sljαlj (B.3)

where the sum runs over the quantum numbers {F,mf} of all lower-lying levels i
respectively {F ′,m′f} of the higher-lying states j. The levels which were used for



B.2. TRAPS AT A MAGIC WAVELENGTH 95

780 785 790 795 800

-400

-200

0

200

400

λ
dip 

[nm]

σ
π
σ

+

−

T
ra

p
p

in
g

 p
o

te
n

ti
a

l 
/ 
h

 [
H

z
/p

h
o

to
n

]

Figure B.2: Trapping potential for different polarizations. The trapping
potential per trap photon Ug/n for an atom in the ground state 5S1/2F = 3,mf = 3
is displayed for different polarizations of the dipole laser. For σ−- and π-polarized
light, the potential switches sign between the resonances of the D2- and the D1-line.
For σ+-polarization, no resonance occurs at λ = 795 nm and the trapping potential
remains negative.

the calculation are listed in table B.1. From the Stark shift, the trapping potential
Ul for an atom in state l can be derived by

Ul = −~Sl (B.4)

For example, in general the ground state of Rb 5S1/2 couples to the states 5P1/2 and
5P3/2 (see Fig. B.1, the coupling to the states 6P1/2 and 6P3/2 is neglected due to
their large detuning). The ground state is shifted downwards if the wavelength of the
dipole laser is slightly larger than 780 nm, but shifted upwards as the wavelength
approaches 795 nm. This is displayed in Fig. B.2 for an atom in the outermost
hyperfine level F = 3,mf = 3 interacting with trap light of different polarizations.
Notice that if the dipole trap is σ+-polarized, the selection rules forbid any coupling
to the state 5P1/2, so the trapping potential remains negative for wavelengths near
795 nm.
The excited state 5P3/2 is repelled by its coupling to the ground state; its trapping
potential is largely inverted as compared to the ground-state potential near the
resonance of the D2-line (Fig. B.3). In addition, the excited state is Stark shifted if
it couples to a higher state. The states 4D3/2 and 4D5/2 have the largest influence on
trapping potentials for traps with wavelengths in the vicinity of the D2-line. In the
context of this experiment, the Stark shift of the Zeeman level 5P3/2F = 4, mf = 4
is most relevant, as it is the upper state of the intracavity cycling transition. For a
σ+-polarized dipole trap, as is used at the moment, this state only couples to the
state 4D5/2F

′ = 5, m′f = 5, which causes a resonance in the trapping potential at
a wavelength of 776 nm (Fig. B.3(a)). A zoom into this resonance (Fig. B.3(b))
shows that the potentials of ground and excited state cross at a wavelength of
λdip = 775.8 nm, providing a candidate for a blue magic wavelength which could
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Figure B.3: Magic wavelength for circular polarization. (a) The trapping
potential per photon for an atom in the ground state 5S1/2F = 3,mf = 3 (dotted
line) and in the excited state 5P3/2F = 4,mf = 4 (dashed line) is displayed for a
σ+-polarized dipole laser. (b) A magic wavelength occurs at 775.8 nm, where the
trapping potential is repulsive.

be used to implement longitudinal confinement in the blue trap configuration of
section B.1.

In order to realize this configuration, the magic wavelength has to coincide with a
cavity resonance. Therefore, the cavity length has to be carefully adjusted so that
the dipole laser detuning is a multiple of the FSR. Due to the requirement that
the cavity length has to be a multiple of half the wavelength of both probe light
(λ) and dipole light (λdip) while the total cavity length should remain short, only
distinct dipole wavelengths can be chosen. This might impede the implementation
of an exactly magic trap. The maximal deviation of an allowed dipole wavelength
from a desired one can be estimated: We assume that the cavity has a length of
Mλdip/2 = (M −N)λ/2, where N is a small integer number describing the desired
detuning λ − λdip in units of the FSR. Reshaping gives M = Nλ/(λ − λdip). If
M is integer, then the cavity length (M − N)λ/2 is resonant to both probe and
dipole light. In general, M will be non-integer. Then we have to choose between
cavity lengths (M ′−N)λ/2 or (M ′+1−N)λ/2, where M ′ is the integer which fulfills
M ′ < M < M ′+1, to guarantee resonance to the probe light. In this way, we enclose
λdip in an interval of the size δλdip/λ = N/M ′−N/(M ′+ 1) ≈ N/M2. For example,
implementing the blue magic trap at λdip = 775.8 nm at N = 1 FSR detuning (M =
177.3) is possible within an interval of width δλdip < 0.025 nm for a cavity length
of L = 176λ/2 ≈ 69 µm. This still leads to a relatively large maximal deviation
between the potentials of ground and excited state of (Ue − Ug)/Ug ≈ ±0.17. This
deviation can be reduced to (Ue − Ug)/Ug ≈ ±0.05 if N = 3 is combined with a
longer cavity L = 529λ/2 ≈ 206 µm. The possibility of adapting the cavity length
inside the vacuum chamber is provided in the recently developed new cavity setup
[135]: One of the mirrors can be moved with a nm-resolution via a piezo step motor
for coarse adjustment, and the second mirror is mounted on an additional piezo for
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(b) Red magic trap
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Figure B.4: Magic wavelengths for linear polarization. Trapping potential
per photon for an atom in the ground state 5S1/2F = 3,mf = 3 (dotted line) and
in the excited state 5P3/2F = 4,mf = 4 (dashed line), for a dipole laser with linear
polarization perpendicular to the quantization axis (lin⊥B). (a) Besides the crossing
points of ground and excited state potentials at 740.2 nm and 775.8 nm, another
crossing occurs at 791.6 nm, in the center between the D1 and the D2 line. The
potentials are repulsive at all of these magic wavelengths. (b) A red magic wavelength
can be found in the infrared at 1400.8 nm, arising from the coupling to the state 6S1/2.

fine-tuning. In such a blue-trap configuration, a Stark shift due to the longitudinal
confinement might be largely avoided.
The new setup will also open the possibility to insert a dipole trap by shining a laser
beam perpendicular to the cavity axis. If, in a new experiment, the closed near-
resonant transition is maintained by keeping the small offset B-field which ensures
that the quantization axis coincides with cavity axis, the purely circular dipole laser
polarizations q = ±1 cannot be realized for such a beam. Instead, a basis for possible
polarizations of a side beam is given by the two linear polarizations lin ‖ B (q = 0)
or lin ⊥ B (an equal superposition of q = ±1). The choice (lin ⊥ B) offers different
opportunities to build a magic trap (Fig. B.4): This polarization couples the state
5P3/2F = 4,mf = 4, amongst others, to sublevels of the state 4D5/2, leading to a
magic wavelength at 775.8 nm, and to 6S1/2, with a magic wavelength at 740.2 nm
(the coupling to the state 4D3/2 is too weak to be of practical interest for a magic
wavelength). Besides, the ground state now also couples to the state 5P1/2, which
causes another magic wavelength to appear at 791.6 nm. All of these wavelengths
provide repulsive potentials, hence a 3D lattice configuration is necessary in order
to set up a closed trap (see Fig. B.5). In this configuration, the scattering rate of
dipole photons is reduced as the atoms are stored at positions of low light intensity.
Therefore, the cycling transition of the probe light would be less disturbed by such a
trap as compared to a red trap. Notice that a red magic wavelength is also available,
albeit at a quite large detuning (λdip = 1400.8 nm), consequently providing only a
shallow potential depth per photon (Fig. B.4(b)).
The impact of using a magic trap on the efficiency of 3D cavity cooling is not
yet clear, since this cooling relies on a gradient in the potential difference between
ground and excited state which is largely removed in a magic trap. Applying magic
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Figure B.5: 3D magic trap. A three-dimensional blue-detuned magic lattice for
the transition 5S1/2F = 3,mf = 3 ↔ 5P3/2F = 4,mf = 4 could be implemented by
choosing trapping lasers with appropriate wavelengths and polarizations.

traps in only one of the three dimensions or tuning the gradient by adjusting the
trap wavelength with respect to the magic wavelength might provide further insight
into this issue.
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∆a(r) local probe - atom detuning ∆a,0 − 2S(r)

∆ac atom-cavity detuning ωc − ωa
∆a,0 probe - bare-atom detuning ωl − ωa,0
∆c probe - cavity detuning ωl − ωc
∆̃a complex probe-atom detuning ∆a + iγ

∆̃c complex probe-cavity detuning ∆c + iκ

∆dip detuning between dipole trap light and atom

ε0 permittivity of the vacuum

η strength of the pump field

F cavity finesse (490 000)

FSR free spectral range of the cavity (2π × 1.21 THz)

g coupling strength of the atom to the probe light
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g(r) local coupling g0 ψ(r)
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κ decay rate of the intracavity field (2π × 1.25 MHz)

k wavenumber of the probe light (2π/λ)

kdip wavenumber of the probe light (2π/λdip)

λ wavelength of the probe light (780.2 nm)

λdip wavelength of the dipole light (785.2 nm)

L cavity length (123 µm)

L Liouville superoperator

L̃ dual Liouville superoperator

m mass of 85Rb (1.42× 10−25 kg)

ns saturation photon number γ2/2g2

ν complex cooperativity g2/(∆̃a∆̃c)

Ppump power of the impinging probe light

Pdip power of the dipole trap

ψdip(r) spatial mode function of the dipole trap mode

ψ(r) spatial mode function of the near-resonant cavity mode

s0 saturation parameter of optical bistability

S Stark shift of the atomic ground state

S0 maximal Stark shift of the atomic ground state at an antinode of the trap

S(r) local Stark shift of the atomic ground state S0 |ψdip(r)|2
Ug(r) potential of the dipole trap for the ground state

Ue(r) potential of the dipole trap for the excited state

V cavity volume (πw2
0L/4)

w0 mode waist (29 µm)

ωl probe frequency

ωa,0 bare atom resonance frequency

ωa Stark-shifted atom resonance frequency ωa,0 − 2S

ωc cavity resonance frequency
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große Hilfe bei der Durchführung der recht zeitintensiven Messungen, und Andreas
Fuhrmanek für sein Engagement beim Voranbringen der Simulationen, welche einen
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den für ihre bedingungslose Unterstützung während der vergangenen Jahre und für
ihre Bemühungen, mich die Welt außerhalb der Physik nicht vergessen zu lassen.

115


	Abstract
	Introduction
	Theory of the coupled atom-cavity system
	Quantum description
	Closed quantum system
	Open quantum system

	Different cavity-QED models 
	Classical model of coupled harmonic oscillators 
	Semiclassical nonlinear optical bistability theory 
	Quantum model
	Remarks on the essential differences between the models


	Investigating the structure of the system
	Evidence of higher states in previous experiments
	Microwave experiments
	Optical correlation experiments
	Cavity-QED systems outside atomic physics

	Spectroscopy of higher levels in optical cavity QED
	Monochromatic spectroscopy
	Nonlinear intensity response
	Remarks on the photon statistics


	Motional dynamics in the system
	Dipole trap 
	Hamiltonian and force operators
	Hamiltonian including the dipole trap
	Force operator

	Forces and diffusion in the different theory models
	General assumptions on the motion
	Dipole force
	Dipole force on an atom at rest
	Velocity-dependent forces and cavity cooling 
	Momentum diffusion

	Monte-Carlo simulations
	Algorithm
	Simulation run
	Numerical methods and computational effort
	Trap depth fluctuations


	Technical realization of the experiment
	Setup
	Magneto-optical trap and atomic fountain 
	High-finesse cavity
	Laser system and length stabilization of the science cavity
	Detection of probe and trap light
	Computer control of measurement sequence

	Measurement and data evaluation
	General information
	Diagonal scan
	Vertical scan
	Photon statistics


	Observation of multiphoton transitions
	Spectroscopy of the coupled atom-cavity system
	Normal modes
	Normal modes and multiphoton transitions
	Exclusive excitation of multiphoton transitions 

	Nonlinear intensity response
	Correlation signal
	Signature of atomic motion
	Signature of photon bunching


	Outlook
	Background information
	Mathematical background
	Solution of the master equation
	Steady state and time evolution
	Calculation of correlation integrals

	Background information on the system 
	Experimentally relevant hyperfine levels of rubidium
	Birefringence of the cavity 


	Alternative dipole traps
	Blue dipole trap
	Traps at a magic wavelength 

	Bibliography
	List of Publications
	List of Symbols
	Danksagung

