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1. Introduction

At the extreme thermodynamic conditions found in inertial confinement fusion
(ICF) and related experiments, energy transport by thermal radiation plays an
important role 1,2 The radiation field is strongly coupled to the hydrodynamic
motion through emission and absorption phenomena, both essentially frequency
dependent. In order to achieve a thorough understanding of the processes going
on in such situations a numerical simulation code has been developed. This report
describes the physical model and the numerical methods used, and gives also a

detailed description of the internal functioning of the code.

The code is called MULTI (MULTIgroup radiation transport in MULTIlayer
foils) and solves the one-dimensional planar hydrodynamic equations coupled to

the radiation transfer equation.

The equations used in the code are the first terms in the expansion of the radi-
ation hydrodynamic equations in the small parameter v /¢ (characteristic velocity
/ light velocity). This means that relativistic effects as well as the time derivatives
in the transfer equation are not taken into account. Obviously, this imposes limits
on the area of applicability of the code. However, this is not a major shortcoming

because in a wide range of situations the matter velocity is really well below the

light velocity.

The frequency and angle variables in the equation of transfer are handled by
a multigroup method which amounts to a discretization of these variables 34. In

this respect, the present treatment goes beyond the usual ‘grey’ approximation
5,6

In addition, the code can use the grey description of the radiation, as a particu-
lar case in which the number of groups is one. This ability has been intensively used
to test the code. The results were compared with that of the grey-approximation

code MINIRA 7. They agree within an error of one percent.

The electronic heat conduction is treated in a rather rough way (classical
Spitzer’s conductivity without a flux limit) 8. This can be justified because this
is not the main concern of the code. However, further code development in this

direction is planned for the future.




The present version of the code includes laser absorption by anomalous mecha-
nisms and inverse Bremsstrahlung absorption ?. Other forms of energy deposition

can be easily implemented by changing the appropriate routines.

The properties of the matter are given through tabulated equations of state

(usually taken from the SESAME library 10y and tabulated opacities.

A time-splitting scheme is used; the physical phenomena are treated succes-
sively during the time step. The numerical stability is guaranteed by using a fully
implicit method in every substep 11 Although a time-splitting scheme has only a

first order accuracy, several advantages justify its use, namely

i) Since the hydrodynamic equations are solved implicitly, the Courant limit
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in the time step usually found in the explicit schemes *“ , can be exceeded.

ii) The necessary numerical work increases only linearly with the number of
photon-groups (in simultaneous resolution schemes this increase occurs quadrati-

cally).
iii) A modular design can be easily implemented.

The code is written in standard FORTRAN-77 and it consists of 33 program
units with a total of 1304 statements. LINPACK library routines '3 have been
applied to solve the linear system of equations. The vectorization capability of the
CRAY-1 computer has been intensively taken into account. The only non-standard
features are the call to the system routines DNAMEOQO and ERREXIT, these can

be easily replaced by others or simply eliminated.

2. Physical Model

2.1 RADIATION TRANSFER EQUATION

The equation of transfer, also called the transport equation, is the mathemat-
ical statement of the conservation of photons. In quite general form it is given
by

1
(Zat + . V)I(7, 7, v, t) = n(F, 7, v,t) — x(F, 7, v, t) I(F, 7, v,t) (2.1)

I(7,7,v,t) is the specific intensity of radiation of frequency v at a position T

travelling in direction 7 at time ¢, n is the total emissivity and x is the total
opacity. The term on the right hand side is the effective rate of energy emission
(emission minus absorption) by the matter per unit of volume, frequency and
solid angle. The relationship between the photon momentum p and its energy e
is given by: p' = (e/c)i. Consequently the specific rate of momentum emission
is ((n — xI)/¢)fi. The total emission rates per unit volume of energy @ and

momentum R are obtained by integrating over all frequencies and directions

Q= /0°° Ar(" — xI) dii dv (2.2)

. [e%} — I)
R / (n—xI) .
i /47r — " ndndv (2.3)

c

Under the assumptions that scattering is not important and Kirchhoff’s law is

valid the emissivity may be written as

—

n (7

Sy

Wht) = x(F, 7, v, ) Ip(T (7, ), v) (2.4)

Where T is the matter temperature and I, is the Planckian specific intensity of
radiation in LTE (Local thermodynamic equilibrium) with matter
_ 2h3  hy

(T,v) = = (ert — 1)1 (2.5)

The velocity of the matter is assumed to be small in comparison with the light ve-
locity. Consequently the opacity can be considered as isotropic (this is equivalent
to neglecting the Doppler effect ). In addition the opacity is assumed to depend
only on the frequency and the thermodynamic properties of the matter: temper-
ature T' and density p. This is obviously correct for thermodynamic equilibrium,

and is the simpler choice for more complicated situations.
x(7, 7, v,t) = x(T,p,v,N) (2.6)

N(r,t) represents the matter composition i.e. a number associated to a specific
material. The order of magnitude of the time derivative in (1) is I, /tc whereas the
convective derivative is of the order I./£;, with I, t; and €. being characteristic

values of radiation specific intensity, time and length respectively. The assumption




of small enough matter velocity (£;/tc < ¢) implies then that the time derivative
can be dropped in (1). With all those simplifications the equation of transfer, in

unidimensional planar geometry reads
pOzI(z,p,v,t) = x(T,p,v, N)(Ip(T,v) — I(z,p,v,t)) (2.7)

Where u is the cosine of the angle between the photon direction and the x axis,
and T, p and N are functions of = and t. Analogously the relations (2) and (3)
take the form

00 1
Qz,t) = /0 X(T, p, v, N)[4n Ip(T, v) — 2 /_II(z,u,u,t) dujdv  (2.8)
Ralat) = 2 [ViToo,nt) [ 1@t s v (2.9)
Ry(z,t) = Ry(z,t) = 0 (2.10)

2.2 HYDRODYNAMIC EQUATIONS

The fluid motion is governed by a set of three equations that state the conser-

vation of mass, momentum and internal energy

Dip=—-pV.W (2.11)
pD;¥=-VP—-R _ (2.12)
pDie=—-PVG—-V.7g—Q+S (2.13)

The main variables matter density p(r,t), velocity v(f,t), specific internal energy
e(7,t) and pressure P(7,t) are considered here to be functions of coordinate and
time. Dy is the time derivative in a frame moving with the fluid velocity: (D; =
o + ¥.V). R and Q@ are the radiated momentum and energy per unit volume,
respectivelly. ¢'is the thermal flux and S includes other energy sources like laser or

ion beam energy deposition. The Eulerian fluid equations for the one-dimensional

planar case can be obtained easily from the system (11-13), but instead it proves

convenient to use the Lagrangean formulation. The Lagrangean coordinate is
defined here by

z
m(z,t) = / o(' 1) dz' (2.14)
—OoC
m is in fact the total mass per unit area at the left of the considered point. The

system (11-13) becomes in planar geometry

Aep = —pBpmv (2.15)
S
Ote = —(Peq + Pyis)Omv — Opmq — % + ; (2.17)

P,;s is an artificial viscous pressure that must be included in order to achieve

numerical stability and

Peq :Peq(p,e,.N) (2-18)

is the matter pressure that is assumed to depend only on the thermodynamic
variables. Diffusive mixing of different materials is assumed to be not important,

consequently the matter composition N depends only on m.

Although the temperature does not enter explicitly in the fluid equation, it
is needed in the radiation transfer and thermal flux equations. In analogy to the

Pressure the temperature is given by
T = Teq(p,e,N) (2.19)

It must be noticed that the radiation momentum emission has been dropped
in (16). This is consistent with the terms which are also dropped in the radiation
transfer equation. The equations used in the code are, in fact, the first order
equations in a hierarchy of equations obtained by developing in powers of the

small factor v./c, where v, is the characteristic velocity (= £:/tc).



2.3 HEAT FLUX

Most of the enery transported by heat flux is carried away by the electrons.
In the quasi-equilibrium limit (small temperature gradients) the heat flux is pro-

portional to the temperature gradient according to Spitzer’s formula
g=-KT%%8,T (2.20)
where K is given by

10.16 €6 k7/2

K= 2.21
JVme et Z; log A (2.21)
with
Z; +0.24
b; = 0.95 —- 2.22
=% 1+ 0.24Z; (2:22)

being k Boltzmann’s constant, m. and e the electronic mass and charge, Z; the
effective ion number and log A Coulomb’s logarithm. The last two quantities are
assumed to be constants. This version of the thermal heat flux is rather poor.
Nevertheless the program is written in such a way that it can be easily modified
in order to include a Z; dependence on the thermodynamic variables, a maximum

value for the thermal flux (flux-limiter) and so on.

2.4 LASER DEPOSITION

The laser beam is assumed to come from the right (z — o). Electromagnetic
waves propagate in a plasma only when the density is below the critical value . If
this density is reached at some point they are reflected. Thus, in general, there
are two laser beams, one incident and one reflected whose respective intensities

Ii(z,t) and I_(z,t) are governed by the equations

9z14 = kly (2.23)

Y —y (2.24)

where & is the attenuation coefficient. If inverse Bremsstrahlung is assumed to be

the attenuation mechanism, this coefficient is given by

2
1 p 1
Kk=C—+r (—) T (2.25)
3/2 '
T / Pc /1 e

The critical density p. is determined by p, = nem; /Z;. Here m; and Z; are the ion
mass and charge number, respectively and n. the electron number density given
by the condition that the plasma frequency equals the laser frequency v,

2
m VL me
e (2.26)

Ne =

On the other hand, the constant C is given by

16w Z;n?e® logA
3c2 v (21 m, k)3/2

(2.27)

It must be noticed th'a.t the equations (23,24) become singular when p = pc.

The incident laser intensity I (o0,t) is assumed to be known and consequently
equation (23) can be integrated from z = oo to the point z. where p = p.. In this
way the value I} (zc,t) can be achieved. A given fraction ol is absorbed there

and the rest is reflected (I_(zc,t) = (1 — a)l4(zc,t)). Starting from this value
equation (24) can be integrated from z. to oo.

In the case that the density is everywhere below the critical, (23) can be
integrated from oo to —oco and (24) implies I_(z,t) = O because I_(oo0,t) = 0

(there is no laser incident on the left hand side)

Once I and I are known the deposition term is given by

The code includes also the possibility that the laser incidents from the left

hand side; the discussion is analogous.

2.5 OTHER ENERGY SOURCES

There is the possibility to modify the code to include other forms of energy
deposition. Only the routines QUELLE and QUELIN must be changed.




2.6 BOUNDARY CONDITIONS

The preceding equations must be complemented by appropriate boundary con-
ditions. In planar geometry the problem is confined between two limiting planes,
at the left and at the right sides, whose position change with time. However, their
Lagrangean mass coordinates, denoted by my, and mpg, respectively, are constant.
(my = 0 because there is no mass to the left of the left boundary, and mp ,the

total mass per unit area, is constant if the mass is conserved).

First the specific radiation intensity I(m,u,v,t) will be considered. For pos-
itive p this function represents the intensity of radiation travelling from left to
right. Consequently the natural boundary conditions must be , in this case, im-
posed on the left boundary my. Once these are known, (7) can be integrated and
the values at the right boundary determined. Conversely, the boundary conditions

for I with negative 4 must by imposed at mp. Some of the possible combinations
at the left hand side are (for x4 > 0)

No incident radiation

I(mg,pu,v,t) =0 (2.29)

Incident Planckian radiation at temperature T7,

I(mp,p,v,t) = L(Tg,v) (2.30)
Specular reflection
I(mgp,p,v,t) = I(mL,—u, v,t) (2.31)
Partial specular reflection
I(mp,p,v,t) = apI(mp, —p,v,t) (0<ap <1) (2.32)

The third condition can be used in the case of a symmetric ‘Hohlraum’, that is two
symmetric layers, each of them receiving the radiation emitted by the other. The
program actually carries out only one layer computations, the plane of symmetry
is modeled as a mirror. The fourth condition takes into account some possible

losses in the ‘Hohlraum’, i.e. non-planar effects, holes in the layer, and so on.

It must be noted that the second and third condition are particular cases of the

fourth one for a = 0 and aj, = 1, respectively. That is actually the condition
implemented in the code. The boundary conditions on the right hand side are

completely analogous. The corresponding ‘reflection factor’ is denoted by ap.

The boundary conditions for the hydrodynamics take the usual form. At a free
surface the pressure must be zero, while the density, specific internal energy and
velocity can take in principle arbitrary values (In the case of a gas this condition
implies also zero density). At a rigid wall the velocity must be zero whereas all the
other variables can take arbitrary values. The input variable IFLAG2 controls
these conditions. It must be set to 1 to have free left and right surfaces and O for

rigid walls.

In addition a condition for the thermal flux is needed. It is assumed always to

have isolated boundaries ¢(mp,t) = g(mpg,t) = 0.

Although the program manages composed layers there are no explicit boundary
conditions at the interfaces. Instead a matter composition function N(m) (usually
taking integer values) is given, which enters as a parameter in the opacity and

equation of state.

3. Multigroup Radiation Model

3.1 INTRODUCTION

The radiation transfer equation can be rewritten as
pOmI(m,u,v,t) = &(T,p,v, N)(Ip(T,v) — I(m, u,v,t)) (3.1)

Now the radiation intensity is considered to depend on the Lagrangean coordinate.
The quantity k& (= x/p) is the opacity expressed in units of surface per mass. The
above equation is obviously very complicated; the specific intensity depends on
four variables. Careless discretization can easily lead to an enormous amount
of computational work or a substantial loss of accuracy. The approach adopted
here carries out the discretization in two steps. In the first the equation (1) is
replaced by its integrals over the variables v and u in a finite number of domains

called ‘groups’. This procedure leads to a finite number of differential equations

10




involving a finite number of variables depending only on m and ¢. In the second
step, discussed in the next sections, this set of equations together with the fluid,
thermal flux and laser equations is discretized in a computational mesh in the m,

t space, generating finite difference equations.

3.2 GROUP DEFINITION

Let us consider the set of possible pairs of values (v, 1) of frequency and cosine
(0 < v < o00,-1 < p < 1). This set can be partitioned in a finite number NG
of subsets that will be called here ‘groups’ (although properly speaking a ‘group’
is formed by the photons whose frequency and cosine belong to such a subset).
The groups considered here are defined by two boundary frequencies (V!f < Vé“)
and two boundary cosines (0 < u§ < u{f), where the superindex k stands for the
number of the group. The group k is thus the set of photons whose frequency
verifies 1/(’,c <v< VI{C and whose cosine verifies ué’ <p< u{f (photons travelling
to the right) or —uf <u< —uﬁ (travelling to the left). It is assumed, of course,
that the groups do not overlap and that they cover the whole v, 4 space.

3.3 GROUP EQUATIONS

It proves convenient to introduce first a few definitions. If f is an arbitrary
function of the variables m, v, u and t, it can be transformed into a function of m

and t only through the use of the integral operators Lk , Lk and L* defined by

k #f Vf
h(n =2, /Vk f(m, v, u,t) dv du (3.2)
k _l‘g Vf .
L (f) = 2r /_#k / S f(m,vyu,t) dv ds (3.3)
b “Va
LE(f) =15 () +LE () (3.4)

The last of these operators is the integration over all the frequencies and angles in
the the group k. The density of energy Uy, and the energy flux Sy of the photons

belonging to the group k can be expressed as

Up = %Lk(I) (3.5)

11

S = L*(u) (3.6)

Analogously the rate of energy emission per volume by the photons of this group

is given by

Qr = L (x(I, - 1) (3.7)

and consequently the total rate is computed adding all the groups

Q= > (3.8)
1<k<NG

This expression coincides with the equation (2.8). The following properties of
these operators will be needed below: if g is some function of m, v and ¢t but not

dependent on p, it is verified that

Lk (5) = Lk (g) = L (o) (39)
L (ug) = —L¥ (ug) = § (4% + wP)L* (o) (3.10)
L% (u2g) = LE (u?g) = %(uﬁz + ukuf + b )Lk (g) (3.11)

In order to obtain the group-k equations, equation (1) is integrated separately over
the photons travelling to the rigth and over the photons travelling to the left. This
is done by applying the operators L’j_ and L% | respectively

OmLE (uI) = LX (k1) — LX (x1) (3.12)

OmLE (uI) = LF (kI,) — LX (k1) (3.13)

In order to make these equations useful, it is necessary to make some reasonable
assumptions about the form of the function I. Between the wide range of possible
choices, I is selected such that one is able, with a reduced number of groups,

to manage situations near the thermodynamical equilibrium with a reasonable

12




accuracy. In these situations I ~ I, and applying perturbation methods to (1)
results in

II
I=Ip—u;”amT+--- (3.14)

Where I, and I,', (= 0I,/8T) are functions of v and T only. This equation suggests

to assume for the group k the following form of I

L(T,v)

L a,8) = ey, (T, ) + b, ) 2o

(3.15)

ay and By being the functions that describe completely the group. If there is local
quasi-equilibrium they take the values 1 and —0mT, respectively; this makes it
possible to manage correctly situations with one group only. On the other hand,
when the system is far away from the equilibrium, the present assumption is not
worse as any other;in this case the accuracy can be reached only by taking a

large number of groups. Using the properties (9-11) the energy density and flux
expressions take now the form

Uy, = %akLk(Ip) (3.16)
Br ;. k2 2
Se =Gk + ubuf + uf YL* (1 k) (3.17)

Whereas the equations (12,13) can be rewritten as

ko,  k k2 | k. k., k2
Mg + 1 Hg + pgpy + 4
Om (:l:aTbakLk(IP) +i== 06 t : ’BkLk(IL/K’))
Ly Qp .k uk 4+ Mf k¢t
= ;L (klp) - > L (klp) F 7 PRL(p) (3.18)

Now these equations are linearly combined adding and substracting each other;

after some straightforward algebra this results in

BmSk(m,t) = e rb(o, T, N)(Upp () - T(m, ) (3.19)
g,zccamUk(m,t) = —m%(p,T, N)Si(m,t) (3.20)
13

Where Uy is the energy density that would occur if the specific intensity was

given by a Planckian function at the matter temperature
k_ kY Ak
U,(T) = 4m(ug — #a) / b (T, v) dv (3.21)
pk c vk

The values fc’}% and rc’fz are usually named Planck and Rosseland mean opacities

and are defined by

ko [4 “ 3.22

,cp=/y!lc nIpdu/ﬁg I, dv (3.22)
k kII

k_ (% /"b Py 3.23)

nR_/Vg hpav/ [} (

The constant g,zc plays the role of the Eddington factor for the group and is given
by

(3.24)

2 2
uE” + pkuf + pf
9k = 3

Finally, equation (7) can be rewritten as

Qk(m,t) = ep(m,t) ’CII‘:’(/”T, N) (Upk (T) — Ug(m,1)) (3.25)

3.4 BOUNDARY CONDITIONS

As had been pointed out, every group is composed of photons traveling in two
directions. Let us consider the partial energy densities U ]':' and U~ of the photons
traveling to the right and to the left, respectively, and also the corresponding

energy fluxes S,:' and S .They are given by

ko ok
1 1 Ua + Ky
+ _ 1k =-U,+=8""bg (3.26)
Uk cLi(I) g 4cg? k
+_ 1k 1 we+ uy 3.27
St =LE(D) = o8+~ el (3.27)
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The boundary conditions (2.32)

can be written in terms of energy fl .
ific i uxe
of specific intensities. gy s Instead

, : . Multiplying by x and carrying out the integration over
requencies between v and V,f and cosines between u{: and u,’f results in

+ =
Slc (mL’t) = _aLSIc (mL’t)

(3.28)
Taking into account the previous expressions it becomes
Sk(mpg,t) = —M (1 —2L) .y
> T QL) k(mR,t) (3.29)
Analogously, the corresponding condition at the right boundary is
kb o(1_
Sk(mp,t) = e = (i+::) ¢ Uy(mp, 1) (3.30)

3.5 ALTERNATIVE MoDEL

Besi 3 e
esides the above outlined model, it is Interesting to consider other possible

assumptions for the specific intensit One si ice i
- Y. One simple choice is, for the group k, given

Tg(m, p,0,t) = off (m, ) I,(T, v), (>0) - (3.31)

I (m, p,v,t) = ap (m,t) Ip(T,v), (u< 0) (3.32)
Proceeding analogously as in the Previous sections the e

. quations for the groups

— k
OmSg(m,t) = ¢ «p(p,T,N) (Upk (T) = Ug(m, t)) (3.33)
12
— k
9k ¢OmUi(m,t) = —£}h(p, T, N)Sj(m,t) (3.34)
where the Eddington factor g;cz is given now by
g;c - ,uﬁ + lu'k
- (3.35)

On the other hand, the boundary conditions are the same, provided that g;c is used
instead gg. These equations can be compared with the system (19,20). There are
two differences, namely: the appearance of the Planck opacity instead of the Rosse-
land opacity and the different expression for the factor g;c in (34). Nevertheless,
both descriptions are equivalent. In fact, they coincide when the size of the groups
is made arbitrarily small. That is: "IICZ — K,’}", and g} — gy when vk - uf and
y,ﬁ — u{f. The advantage of the previous model had been already pointed out. On
the other hand, the alternative model has an interesting property: the equations

(33-34) can be linearly combined giving
/ k ""’1cJ /
Om(Sk + greUx) = cxpUpg — E(Sk + 9k cUk) (3.36)

while the boundary condition in m, implies Sg+gjcU) > 0 there, because o must
be less than unity. The above equation implies that (S, + gj,cUy) > O everywhere
(otherwise, starting from positive values of Si +g;ccUk at the left hand side implies
that as soon as this quantity changes sign the slope needs to be negative, in
contradiction to the above equation). Consequently Sy < g;ccU k- Analogously the
condition S > —gj.cUj is obtained. Thus the alternative model supplies a natural
flux-limit’ without the need of ad-hoc assumptions. The program is written in
such a way that both models can be easily used; instead of computing g, the
program reads it as a basic parameter of the group, whereas both Planck and

Rosseland opacities can be forced to be equal loading the same tables.

3.6 SPECIFIC INTENSITY

Although the equations actually solved by the code have been already given
in the previous sections, it is interesting to write down expressions for the specific
intensity of the radiation that could be used to display the results. This is done
assuming two constant intensities (I;) and (I;;) for the photons traveling in two
directions in every group. They are defined by the condition that by integrating
over their respective half-groups the energy densities U,'c" and U are obtained.
This gives

cUi:
m(uf — uk)(vf - vk)

(1) = 2 (3.37)

16




Obviously, these expressions make only sense when the number of groups is large
enough.

4. Spatial Discretization

4.1 INTRODUCTION

Once the radiation transfer equation has been replaced by a finite set of group
equations, the only independent variables are the mass coordinate m and the time
t. The discretization of the system is carried out in two steps. First the spatial
operators are replaced by finite-difference operators; the equations thus become a
system of ordinary differential equations with the time as independent variable. In

the second step this system is again discretized in time; a set of algebraic equations
are obtained. This section is devoted to the first step.

In terms of the Lagrangean variable m, the matter (and thus the problem) is
confined between the boundaries m L and mp. Let us divide this interval in N
subintervals, called ‘cells’, not necessarily equal. Each of them will be referenced
by the index ¢, that increases from left to right; ¢ = 1 corresponds to the leftmost
cell and 7 = N to the rightmost. The thickness of the subinterval itself is denoted
by Am;. The cut points will be called ‘interfaces’. Obviously there are N + 1
interfaces; their index ¢ varies from 1 (left boundary) to N + 1 (right boundary)
With this notation the cell 7 lies between the interfaces ¢ and ¢ 4+ 1 while the
interface 7 (2 <1< N ) lies between the cells ¢ — 1 and 3. The advantage of this

notation is that it corresponds directly to the index on the storage arrays used by

the program.

Here, as customary, the quantities that imply a flux (velocity, laser intensity,
heat flux and radiation flux) are assumed to be known on the interfaces whereas
all the others are assumed to be known in the cells. They are usually named
interface-centered and cell-centered quantities, respectively. The finite diference

equations are obtained in a rather straightforward way; only special refinements
are needed for the laser deposition.

Although the equations are coupled, they are presented separately.
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4.2 FLUID EQUATIONS

The equations for mass, momentum and internal energy conservation take the

form

doi _ _2%t1”% iy N) (4.1)
dt v Am;

dv;  F—-P,

_ , (i=2,...,N) (4.2)
dt %(Am,’ + Am;_q)

de; __p Y1 7Y% h+1— % (Q) + (E) , (@E=1,...,N) (4.3)
dt ) Amy Am, PJ; :

In addition, two equations are needed for the velocities at the boundaries. For free

surfaces they read

dvy _ 2P dun4: _ 2PN4 (4.4)
dt Amy’ dt AmN41
On the contrary, for rigid walls
dvy _ dvNw1 _ (4.5)
dt dt

The pressure is given by the static term plus the artificial viscosity term
P;= Ppg;+ a2 p; min(0,v;41 — %)%, (i=1,...,N) (4.6)

Where a,, is a dimensionless parameter that represents the number of cells needed
to describe numerically the shock waves; typically ay = 2. The thermal flux ¢,
specific radiated power (Q/p); and specific laser power deposition (S/p); are given

in the following sections.

4.3 THERMAL FLUX

It takes the form

/2 _ mi/2
-——gI_{(--i-p- ) % Tic1 , (1=2,...,N) (4.7)
q; = 7 Py i—1 Am; + Ami_y
While the boundary conditions read
g1 =gN+1 =0 (4.8)
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4.4 GROUP EQUATIONS E
4.5 LASER KEQUATION

The specific ener i
gy radiated by th s o . .
Y the matter is given by The specific laser energy deposition in the cell 1 must be computed cautiously;

(9) - Z ( &) (i=1 N) the laser equations are strongly nonlinear. The procedure adopted here computes
] . s e
P/i 1<k<Ne \ P /i Y (4.9) the energy deposited in one cell integrating the equation (2.28) between cell bound-
Where the contribution of the group k is aries; the specific deposition is given by this quantity divided by the thickness of
Qs . the cell
(7)1 =c 'cP,i (Upk,i — Uk,i)’ (z = ]_, - ,N) (4.10) (E) _ 1 /‘-’h’+1 Sdr = I+,‘i+1 . I—h_‘i A4l + I—,i (417)
. . p). piAz;Jz; Am,
Being U ; = Uyt (T;) given by (3.21). On the other hand the equati '. ¢ PBTiI | |
for the group k take the form quations (3.19,3.20) 1 The laser intensities I, ; and I_; are computed in the interfaces between cells as
S g follows. I 41 is the known incident laser intensity while the other values I ;
kg+1~ Sk ’ : :
i 1V3® k )
Am, =cKp; (Upk,i - Uk,i), =ik, .» ,N) (4.11) are computed applying successively the formula
C %+ (p/pc)t dz
.. ; , 3/2 J,. —
cg? Zk,z Uri-1  _ ( 9 ) | 72?5 \J1-p/pe
2(Am; + Am;_,) 1/ “‘ﬁ,,‘ +1/ K—ﬁ i—1 ki (1=2,...,N ) (4.12) Where the temperature T} is assumed constant througth the cell. If p is assumed

and the boundary conditions (3.2 to vary linearly between the values at the interfaces, the integral can be carried
| 9,3.30)

can be written as
out analytically. The needed interface-centered values of p are assumed to be the

k. .k
+ . .
Sk,1 = Ha . Hp ( i« o L) g (4.13) mean between cell centered-values, except the first and the last ones that are taken
+ o . . .
L equal to zero. This method can be applied only if the density at z; is higher than
% k critical. Otherwise the incident intensity at the critical point can be determined
+upy (11—
Sk Ni1 = Haq b ap bv the simil .
JN+1 5 [T an cUrp (4.14) y the similar expression |
The values of . ' :
o . of Ugs, and Upp at the boundaries must be computed extrapolating I =14, 41€xp __2’72_ /'l'tcr+1 _(_p_/p_c)_df (4.19)
e values in the adjoint cells (Uy is a cell centered quantity) T‘. Ter 11— P/Pc
Upp = (1 n Amy A m'1 being iy the cell where the critical density is located. Once IS is known the
Amg + Amy k1 <_ Amy + Amg) k,2 (4.15) reflected intensity is given by I°" = (1 — @)I{". Then, observing that (2.23,2.24)
implies I+ I- = Constant, the values of the reflected intensity are easilly computed
Urp = (1 4 — BN ) ( Am by
A Urn+ = i
: mN + Ampn_y Ampy + Amy_q Uk,N_1 (4.16) Ic"2(1 o)
t must 3 _ 44 —
thus . be noted that in (12) the Rosseland opacity in the interfaces is obtained ¢ = Iy (4.20)
as the inverse of the average of the in i . '
verses in the adjoint cells. This procedure Finally the energy deposition corresponding to icr is divided between this cell and

gives smaller values than the direct average, especially with large gradients. Thus

i ) its neighbours. This smoothing is needed in order to prevent strong numerical
allowing for large fluxes makes it possible to smooth such gradients

noise when the critical point jumps from one cell to another.
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4.6 MATTER EQUATIONS

The above equations must be completed by the equation of state and opacities

of the matter given by the relations

Pegi = Peg(pireinN;), (=1,...,N) (4.21)

T, = T(p;,€;, N;), (1=1,...,N) (4.22)

kb= kb0 T Ny),  (i=1,....,Nk=1,...,NG) (4.23)
kh i =cb(o0 T M), (=1,...,N,k=1,...,NG) (4.24)

Where the composition N is fixed. These relations are implemented in the stan-
dard version of the code interpolating between tabulated values. Nevertheless it

is possible, by changing the appropriate routines, to use analytic expressions.

5. Temporal Discretization

5.1 TIME SPLITTING

Once the equations have been discretized in space, the physical system is
represented by a finite set of variables which are continuous in time but defined
only on a finite number of points (computational mesh). From the mathematical
point of view, the equations consist of the rate equations for the variables p;, v;
and ¢; joined to a set of algebraic equations for ¢; (Thermal flux equation), (Qx/p);
,Sk,; and Uy ; (Group equations), (8/p);, I+ ; and I_; (Laser equations) and P, ;,
T;, K)’;)’i and m’fi,i (Matter properties). The system can be thought of as a set of
ordinary differential equations depending on the main variables p;, v; and e; whose
right hand side depend only on these variables, since all the other variables can
be written in terms of the main variables solving the algebraic equations. Thus,
denoting by X the vector whose 3N + 1 components are the functions p;, v; and

e;, the system can be represented schematically by

dX
o T f(X) (5.1)
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This system would be solved, in principle, by standard methods. For example,
denoting by X™ the representation of X at time t" (= nAt), it is clear that the

recurrence relation

Xn+1 - X"

i n
supplies the required solution, provided that At is small enough. In general, this
explicit scheme needs a prohibitively small value for the time step At in order to

be numerically stable. This makes it useless in practice. The numerically stable

implicit scheme

Xn+1 _wyn
T = - fXM H(x™Y), G <o<n) (59)

is unfortunately very complicated, it involves the simultaneous solution of a set of

3N + 1 non-linear equations.

Thus it becomes necessary to use a different approach which is able to achieve
the necessary stability with a reasonable amount of computational work. The pro-
cedure adopted here is the so-called ‘time-splitting’. Before continuing, it proves

convenient to explain briefly the basis of this method. Let us consider the equation

%:fl(X)+f2(X) (5.4)

and the two substeps integration method given by

X* _ Xn

= (X (5.5)
xntl_ x+
= f2(x™1y (5.6)

Where X* is some intermediate value. If the functions f; and f, have some

reasonable mathematical properties (continous derivatives) , it is straighforward
(but rather cumbersome), applying Taylor’s series, to show that
Xn+1 - Xn

o = A(XT) + H(X™) +0(a) (5.7

The notation O(At) stands for terms that verify |O(At)| < Constant x At for
At < Atp. This expression implies the so-called ‘consitency’ of the method. If, in
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addition, the method is stable, this leads to the appropriate solutions. If both (5-6)
are stable, it is reasonable to think that the two substeps method is also stable;
this occurs in practice. The global method has only a first order accuracy (the
error is of order O(At)), but this is scarcely a trouble; the main (and unavoidable)
sources of error had been made in the modelization of the physics. The extension

to more than two terms on the right of (4) is straightforward.

Now coming back to the physical equations, it is clear that the different terms

can be grouped in the following way

fm I oo ANC g
(Hydrodynamics) (Thermal flux) (Group-1) (group-NG) (Laser)

dp = —p20mv +0 40 4t +0 +0

810 = —0m(Peg + Py;,) +0 +0 4+ 40 +0
Ote = —(Peg + Py;s)0mv —Omg -@Q1/p —++— -Qneg/p +S/p

And thus equation (1) can be written as

ax

o =Tat ot fh+fh+ o+ RS+ fp (58)

Before applying the time-splitting method to this equation, two points must be

taken into account:

i) The laser energy deposition has usually a very sharp profile. This fact
would produce strong oscillations in the temperature through the time step; first
the deposition of energy produces a very hot spot that is cooled immediately by
the heat and radiation transport terms. This phenomena can be the source of
important errors. It can be avoided by splitting the energy deposition in NG + 1
pieces, each of them will be solved together with one of the transport terms. This

is made using weight factors n; (k = 1,2,...,NG) for the radiation transport,
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and ng for the heat flux transport. The appropriate values for these factors will

be discussed at the end of this section.

ii) Often the structures related to the hydrodynamics (i.e. shock waves) move
faster than the structures related to the heat or radiation transport (i.e. thermal
waves). Consequently, the maximum bound for the time step would be related to
the fluid motion, usually leading to quite strong restrictions. This can be overcome
using ‘subcycling’ for the hydrodynamics; i.e. the fluid equations are advanced
NS times during one time step. This is implemented in the code by dividing the
term fg into NS pieces and placing them between the radiation transport terms.

Although not strictly necessary, the same is done with the thermal heating.

The equation(8) now takes the form

dx _
E=9H+911Q+9}I§S+1+9%2NS+1+"'+.‘IRNG NS+l o
top + b +gNStE 4 gBNSH2 4 NG-NS+2
o+ oS + g8 4 3N 4 1 NG g (5.9)
Where
TH
== 5.10
IH = Ng (5.10)
o = FE+mfi (5.11)
fr+nofL
=4~ 0L 5.12
a7 NS (5.12)

Now the time-splitting method can be directly applied to this equation; the NG +
2NS terms are added in succesive substeps, in the order given above. However
it proves convenient to introduce still some minor approximations that, without

spoiling the accuracy, reduce the computational work:




i) The laser deposition profile is rather insensitive to the exact temperature and
density profiles; thus the fr, term will be computed only after every hydrodynamic
substep and used without changes until the next hydrodynamic substep (It will
be computed only NS times instead of NG + NS).

ii) The equations of state will be evaluated only before every hydrodynamic

substep and approximated by the linearized formulas

Peg(p, €) = Peq(po, €0) + 3pPeqo(p0s €0) (P — Po) + BePeqo(po, €0)(e — €0)  (5.13)

T(p, ) = T(po, eo) + 3pTo(po, €0) (P — Po) + 8eTo(po, €0) (e — €o) (5.14)

oy

until the next hydrodynamic substep.

iii) Although the substeps involved by the time-splitting are given fully im-
plicitly (the operators at the right hand sides of (5,6) are evaluated at the new
values of the solution), in order to guarantee numerical stability, the values of the
transport coeficients IC_,;_; and n’}“z are computed with the old values of the termo-

dynamical variables. This does not affect stability.

Details on every of the substeps are given in the following sections.

5.2 HYDRODYNAMICAL SUBSTEP

As had been pointed out, the fluid state is advanced NS times every time
step. The fluid variables before and after the advancing will be denoted by the
superindexes O and N, respectively. The substep is then given by

xN — x© Ny _ fa(xXM)

22 _gpxMy =) (5.15)
At _ NS

This equation is nonlinear and in principle it would be necessary to use some
iteration procedure. However, this is not actually carried out; instead the equation

is linearized expanding the right hand side into Taylor’s series
N 0]
XX = a(x0) + S (x0).(x™ - xO) (5.16)
Where At' = At/NS. This equation is now linear in the unknown value X e
dfy/8X being a T-diagonal matrix. Standard library routines are employed to
solve this system. The dropped terms in the Taylor series are of the order O(At?)
and thus do not spoil the overall accuracy of the method (of order O(At)).
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5.3 HEAT FLUX SUBSTEP

All that is said for the hydrodynamics can be directly applied to the heat flux.
However, in this case, the density and velocity are not advanced (its derivatives
in fr are zero), consequently the resulting system is only tridiagonal.
5.4 GROUP SUBSTEP

The equation for a group can be written as
= gh(x™) (5.17)

On the right hand side there is only one nonlinear term, namely Upk(TiN ). This

term will be linearized in the following way
N #y 1 OUpk iy (o N _
Upk(T) = Upn(TY) + SEE@) TN - 1) (5.19)

being T a reference value. The resulting equation is a tridiagonal system that
can be easily solved once T is given. The code uses an iterative procedure; for
the first iteration it takes T = TP and a provisional TiN result, for the second
iteration it takes T = Tt-N and so on. The number of iterations is given by the
input variable NITER. Usually the results are reasonable good with one iteration

only.

5.5 LASER DEPOSITION PARTITION

In this section the algorithm used by the program to avoid strong oscillations
in the temperature during one time step will be explained. This problem can be

especially serious in the cell {y,4; Where the laser deposition is at its maximum.

Let us consider first the thermal flux substep. It is given by

de\ TN - TP S |
-] ——= - Tr tt 5.19
( 3 T)i Y. 10 ’). + Transpor errps (5.19)

If the time step is small enough, the transport terms are not affected by the

deposition. Thus the temperature increment in #ygz can be rewritten as

ATy =nga+ by (5.20)
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Where a = (5/p);,.., (0T /9¢); ., At, while by does not depend on ng. Analogous

relations can be obtained for the group substeps
ATk=nka+bk, (IC= 1,2,...,NG) (5.21)

the value a being common to all the transport processes. The global increment of

the temperature at tymqz is obviously

ArT = Y, ATy (5.22)
0<k<NG

The factors 7 can be freely chosen. If the values

1/ AT )
_1 S— 5.23
=74 (NG +1 Ok (5.23)

are selected, the temperature increments in all the transport processes are the
same, supplying the desired smoothing through the step.

The program initializes first the values of the factors to

=0, (k=0 (5:24

ne =1/NG, (k=1,2,...,NG) (5.25)

These values are applied in the first time step. During this step the values of
AT}, are stored and the values of b computed by (21). Finally, the formula (23)
provides the most appropriate values that will be used in the next time step. This
process is carried out in successive time steps. If the input parameter IWCTRL

(normally set to 1) is set to O, the initial values of 7y, are always used.
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6. Program Description

6.1 GENERAL

The program is written (as much as possible) in a modular way; only four
routines have more than 56 source lines. Some parts of the program (modules) are
completely interchangeable. For example, the routines QUELIN, QUELLE and
LASERS3, that compute the laser power deposition, can be substituted by other
routines with the same name and arguments, but with completely different physics,

without the need of additional changes in other program units. The modules are

the following:
QUELIN-QUELLE-LASER3
FLUID-HYDRO

EOSM-EOSIN1-EOSIN2-EOSBIN-EOSBIN
WFIN-WFLUSS
OPA-OPAIN-OPABIN

All the common blocks and parameters used in one of these modules are not

referenced in other program units.

The program input is done through FORTRAN units 12 to 19. Every unit
has assigned a conceptually different sort of data (i.e. on 16 are given the laser

characteristics). In some units the read process is carried out until the ‘end-of-file’

is reached.

Matrices are used at different places of the program. In general they have a
banded structure and thus can be stored in condensed format. Every diagonal
of the ‘mathematical’ matrix is stored in one row of the ‘FORTRAN’ matrix.

This format is required by the library routines that perform operations over these

matrices.

The program uses the c.g.s. system of units, with the exception of the tem-
perature which is given in electron volts. However, for compatibility with other

programs, the equation of state tables must be supplied in SESAME units.
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6.2 MAIN BoDy

In this section the main program (MULTI) and some auxiliary routines for
input and initialization (INITVR,RDGDT,WCTRL,ZONING) will be de-

scribed. The different tasks carried out are the following

i) The program reads from the FORTRAN unit 12 a series of parameters
that control the subsequent operations. These parameters must be given in a
NAMELIST block with the name INPUT as follows

PARAMETER DESCRIPTION

IFLAG1 =1 Allows hydrodynamic motion.
=0 Inhibits motion.
IFLAG2 =1 Free surfaces for hydrodynamics.
=0 Rigid walls.
IFLAG3 =1 Energy deposition by laser allowed.
=0 Laser off.
IFLAG4 =1 Thermal flux allowed.
=0 No energy transported by thermal conduction.
IFLAGS =1 Radiation transport enabled.
=0 No radiation transport.
NITER Number of iterations in the group equations.
NSPLIT (N'S) Number of hydrodynamic substeps in a
time step (> 1).
ALPHAR (ap) Fraction of the radiation reflected at the

right boundary; ap = 1 for a Hohlraum and
ap = 0 for a foil.

ALPHAL (af) The same for the left boundary.
TIMEX Total simulated time (in seconds).
DT (At) Integration time step.
DTO Time interval between

output dumps on disk.
IABORT The job ends after this time step number.
TOUT(1) If different from zero the program generates a

29

------ complete output at these selected times.

TOUT(5)

ISOUT(1) If different from zero the program generates a
------ complete output at these selected time step
ISOUT(5) numbers.

IWCTRL =1 Allows automatic adjustment of the partition

of the laser deposition between the different
transport mechanisms.

=0 This energy partition is fixed.

Then the program prints out its version number (the actual is 1.4) followed by

an echo of all the above parameters.

ii) The initialization routines for the equation of state (EOSIN1,EOSIN2),
opacity (OPAIN), energy deposition (QUELIN) and thermal flux (WFIN) are
called. They are appropriately described in the corresponding sections of this

chapter.

iii) The routine INITVR reads its input data from FORTRAN unit 14, ini-
tializates Am, and the main variables p;, v; and ¢;, and stores in the common
block COMLDT (Layer Definition Table) the composition of the foil N;.

The program manages multilayer foils; for every individual layer an input line

with the following format is read.

FORMAT VARIABLE DESCRIPTION

Al - A blank character.
E8.0 11 First computational cell of the layer.
E8.0 12 Last computational cell of the layer.
E8.0 MAT Number of the layer material (1,2,3 or 4).
E8.0 THICK Thickness (in ¢m).
E8.0 RO Initial density (in g em™3).
E8.0 EO Initial specific internal energy (in em? s72) .
E8.0 ZONPAR Parameter for zoning (see below).
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If the first field is not a blank character, the line is interpreted as a comment.

For every layer the values of Am; are obtained through the use of the routine
ZONING. The parameter ZONPAR allows different sizes of the cells, namely

Amg, 1 = ZONPAR x Am;

Thus, if its value is unity the mesh is uniform; if it is greater /less than one, a finer
zoning occurs at the left/right. In addition, negative values give finer zoning at

both sides (|ZONPAR| > 1) or in the center (ZONPAR| < 1). Finally, the

echo of the read data and the initial values are printed out.

iv) The routine RDGDT reads the group descriptions from the FORTRAN
unit 17, and stores this information in the common COMGDT (Groups Definition

Table). For every group an input line with the following format is read

FORMAT VARIABLE DESCRIPTION

Al - A blank character.

E8.0 VL‘ Frequency interval for the group

E8.0 vf (0 < vk < uf < o0).

E8.0 9k Factor for the group.

E8.0 u’j Cosine interval for the group

E8.0 uk (0 < uk < uk <)

E4.0 P1 Numbers of the Planck opacity tables
E4.0 P2 that must be used for this group on
E4.0 P3 the material numbers 1,2,3 or 4,

E4.0 P4 respectively.

E4.0 R1 Numbers of the Rosseland opacity tables
E4.0 R2 that must be used for this group on
E4.0 R3 the material numbers 1,2,3 or 4,

E4.0 R4 respectively.

If the first field is not a blank character, the line is interpreted as a comment.

The routine prints out an echo of the data read.

v) The routine SOUTIN reads from FORTRAN unit 18 information about
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what variables must be dumped on disk for later post-processing. A detailed

description of the output format will be given in the following section.

vi) In the following, the program performs a series of initialization tasks. The
initial partition of the deposition of energy n; as well as the mass coordinates m;
are computed, the job sequence name is obtained through a call to the system
routine DNAMEQO, and the first records of the output file are written on disk

(see next section).

vii) Now the integration step is prepared. The internal flags IPRT1, IPRT?2,
IPRT3, and IPRT4, used as print control in the integration routine, are ap-
propriately set. If the time step number exceeds IABORT the system routine
ERREXIT is called, thus stopping both the program and the whole run. Finally

the time step is set to its nominal value.

viii) The integration routine SCHRITT is called at this point. The main
variables are passed through the set TIME1,R1,V1 and E1, and the advanced

variables obtained in the set TIME2,R2,V2 and E2 together with the completion
flag ICOMP.

If the integration step has not been successfull (ICOMP # 1) a message is

issued, the time step is halved an a new attempt is done. This will be repeated if

necessary.

Otherwise, if the time step has been successful, the main variables are updated

with the new ones.

ix) If the flag IWCTRL is set to one, the routine WCTRL adjusts the
partition of the deposition of energy 7} to the most appropriate values in order to
avoid strong oscillations in the temperature through the integration step. It must
be warned that if one of the transport mechanisms is missing (the corresponding

flag is zero), this adjustment is a bit different as described in the previous chapter.
x) At selected times the variables are output on disk.

xi) If the actual time is less than the total simulation time a new step begins.

xii) Otherwise the program stops after printing a final message with the num-
ber of time steps carried out (ISTEP) and the number of calls to the time step
routine (ITRY). Obviously the difference between both quantities is the number




of time steps which failed.

6.3 OUTPUT ON DISK/TAPE

The present program produces a very large amount of data. A complete print-
out becomes unconvenient for the user and unpractical. Although the program
can produce, at selected times, a rather complete printout, this is intended to use
mainly for test purposes. The main output takes place on disk or tape, and from
there can be read by other specialized programs that generate partial printout or

graphics.

It must be noted that the radiation variables constitute the largest part of the
mentioned data. Thus a previous selection must be done. The energy flux Sk
energy density Uy, and the ‘representative’ specific intensities (I,':),‘- and (I);
are given, in a specific instant, for the group numbers from 1 to NG and for the
interface numbers from 1 to N + 1 (although U} is a cell centered quantity, the
program supplies an interface centered version by interpolation and extrapolation).

The user can make two different types of selection between these variables:

i) Selected output at specified coordinate (SOC). One of the above
variables is selected at a specified interface tg. The NG values are stored in the
array SOC.

ii) Selected output at specified frequency (SOF). One of the variables
is selected for the groups from k,; to k;o and added for all groups in this range.
The N + 1 values are stored in the array SOF.

More than one selection of every type (to a maximum of 10) is possible; the
results are stored successively in the corresponding array (i.e. in the first case, the
first selection is stored between elements 1 and NG of the array SOC, the second
between elements NG + 1 and 2NG and so on).

The subroutine SOUTIN reads from FORTRAN unit 18 a line for every

selection, the format is
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FORMAT VALUE(S) DESCRIPTION
Al ‘A’ A blank character.
A4 ‘UAAN Uy, selected.
‘SAAA’ S}, selected.
‘FPLS’ (It) selected.
‘FMNS’ (I;) selected.
5X ‘AFORA’ Unused.
A5 ‘POINT’ Selected output at specified coordinate.
‘GROUP’ Selected output at specified frequency.
1X ‘A’ Unused.
I3 11 15 Or kg
4X ‘ATOA’ Unused.
I3 12 ks2 or unused.

If the first field is not a blank character, the line is interpreted as a comment.
The auxiliary arrays CMI and CMC contain the mass coordinates at the inter-
faces and in the center of the cells, respectively, while FREC contains the medium
frequencies of the groups. In addition the arrays SOCFRE and SOFCMI con-
tain the frequencies and mass coordinates corresponding to the values stored in
SOC and SOF, respectively (There is a one to one correspondence between these

arrays).

The structure of the output file had been designed in order to make easy a
posterior search of the required data. Therefore, besides the numerical data, suit-
able information over the contents are stored (directory). The file is composed of
‘sections’, and these are composed of binary records (not formated). The contents

of a section is:

1st record: the length in computer words (integer value) of the subsequent

records.

2nd record: a list of names (character values) corresponding, one to one,

with the variables stored in the data records. These names are ten character long
(one word in the Cray-1 computer), and can be different from the FORTRAN




symbolic names used in:the program. If the associate data is an array, the name

appears as many times as elements of the array are stored.

3rd record: a list of integer values that specifies whether the associated
variables are scalars (value zero) or an array (index of the correspondig elements).
Nevertheless these values are scarcely used by the post-processor programs and

thus can be taken to store other informations.
4th record: a list with the data (real values).
Successive records: equal to the 4th but at different times.

The first three records are called the heading of the section. The specific

implementation of this structure in the program is done using files composed by

two sections:

1st section: contains the quantities that do not depend on time: CMC,
CMI, SOCFRE, SOFCMI and, in addition, the program name .PROGRAM,
version number .VERSION and job sequence name .NAME. There is only one
data record.

2nd section: contains, for every stored time step, a set of values of TIME,
R (density), T (temperature), P (pressure), SOC and SOF.

This configuration can be easily changed. New variables can be included with-
out the need of carrying out changes in the post-processors; they read their data

only after a search in the headings (if some requested data are not found, a message

is issued).

6.4 INTEGRATION STEP

In this section the integration step routine SCHRITT and the auxiliary rou-
tine DUMPE will be described. Instead of giving a sequential description of the

steps carried out, it proves convenient to describe separately every functional task.

Obviously the most important task is to integrate the equations. As said in
the previous chapters, this is done through a time-splitting method. The physical
phenomena are applied in successive substeps in the order given in (5.9). For every
main variable there are three FORTRAN variables (i.e. for the density p; they are
R1, R2 and R3). The first is used as input and is not modified by the routine.
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The second is initially set equal to the first, it is advanced in every substep and

finally contains the results. The third is only used as intermediate storage.

The subroutine contains two DO loops. The external one (DO 23) goes over
NS times (one for every hydrodynamic substep). The internal one (DO 11) goes
over NG /NS times for every time in the external loop; hence a total of NG times

(once for each group). The tasks carried out in the external loop are:

i) The equation of state, in the form (5.13,5.14), is computed through a call
to the routine EOS.

ii) The hydrodynamic substep is carried out by the routine HYDRO.
iii) The power deposition profile is computed by the routine QUELLE.

iv) The loop for the groups is done. The variables are advanced by the routine
GROUP.

v) The heat flux substep is carried out by the routine WFLUSS.

With the appropriate flags one or more of these processes can be switched
off. In the case that neither group transport nor heat conduction are present, an

additional step is needed:
vi) The power deposition is directly dumped on the matter.

The index of the cell where the power deposition is maximum (ICTRL) is
determined after iii. The temperature increments in this cell through the heat
flux substep, and the group substeps are stored in WBW (scalar) and WB(array),
respectively, for posterior use in the control of the partition of the power deposition
(see section 5.5). The other quantities related to this process a,nqg and 7y, are passed
through the variables WC,WAW and WA, respectively.

The validity of the intermediate results is often checked; if a negative temper-
ature or density is found the complexion variable ICOMP takes a negative value
and a return occurs. The error origin is coded in ICOMP in the format: -ggssee,
where ee is the error type, s8 the number of the subcycle where occurred and gg

the group (if any) concerned.

There are many points where the variables and intermediate results are printed.
The flags IPRT1 and IPRT?2 enable this printout in the ranges of the external




loop and internal loop, respectively. In addition the flags IPRT3 and IPRT4 are
passed to the equation of state and opacity routines, respectively, enabling the
printout of their results (for test purposes). Most of this output is generated by
the auxiliary routine DUMPE.

The routine GROUP delivers the radiation variables in the array SPECTR,
and from there they are selected and put into the arrays SOC and SOF as de-
scribed in the previous section. This process take place in the inner loop. The
requested options are described in the tables KSOC and KSOF.

6.5 HYDRODYNAMICS

The hydrodynamic substep is carried out by the routines HYDRO called by
SCHRITT, and FLUID called by HYDRO. The fluid variables are mixed in a

unique vector with 3N + 1 elements

{X} . {vla P1,€1,02,02,€2,V3,.--3UN,PN> CN,UN+1}

in terms of which the substep equation (5.15) takes the form
1
At

The superindices N and O refer to the values after and before the substep, re-

{x¥ - x°} = {B} + [4{x" - X°} (6.1)

spectively. The vector B and the matrix A are only functions on X O and are
computed by the routine FLUID. The vector is stored in the array X (that, for
computational needs, will also contain later the results), while the diagonals of
A are stored in the last seven rows of the array A (the three first are required
for storage of intermediate results). Once the system (1) is written in standard
format, the library routines SGBFA (factorization of a general banded matrix)
and SGBSL (solve a general banded linear system) are called and the value of
{X N _ X0} stored in X. Between both calls a check is made for the singularity
of the system. In the case of rigid wall boundary conditions, the system (1) is
truncated excluding the first and the last equations. These are substituted by
vy = 0 and vN4+1 = 0. Finally the new values of the variables are obtained adding

the increments to the original values.

Concerning FLUID, it must be noticed that it was written as a general

subprogram. Thus, instead of a unique matrix A, it manages the submatrices
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Al1,A2,B1,..., that, mixed togethe , give this matrix. Such matrices have a
sparse structure; the passed parameters N1 and and N2 are the distance, in
computer storage units, between consecutive elements on the same diagonal and

consecutive elements on the same column, respectively.

6.6 HEAT FLUX

The routine WFIN, called by the main program, reads its input from FOR-
TRAN unit 19, from a NAMELIST block with name THERM, and computes
the conduction coefficient. The only variable to be read is the effective ion charge
number Z. The value of Coulomb’s logarithm is taken equal to 10. Finally, the

values of Z and the conductivity coefficient are printed out.

The heat flux substep is carried out by the routine WFLUSS. The implicit sys-
tem of equations is first written in form of a matrix and then solved by the library
routines SGBFA and SGBSL. The conductivity coefficient is passed through a

common block.

6.7 GROUP SUBSTEP

The group substep is controlled by the routine GROUP that performs some
trivial computations and calls the auxiliary routines OPACIT, RFE, REE,
MEE, SOLVE3, MAT1 and PLANCK. In addition, the last one calls the
routine PDSTRB.

First the routine OPACIT supplies both Planck (OP), and Rosseland (OR)

opacities from the values of density and temperature at the beginning of the sub-

step.

The equation (5.15) together with the boundary conditions (4.13-4.16) can be

written in the form

{Sk} = [AS|{Uy} + {BS} (6-2)

The non-squared matrix AS is stored in usual format (the diagonals stored in
rows), while the the first and last elements of BS are BS1 and BS2, respectively

(all the others are zero). These values are evaluated through a call to the routine
RFE.




As follows, the routine PLANCK delivers the energy density corresponding
to a Planck distribution as well as their temporal derivative, computed at some
temperature T', in the arrays UP and UPD, respectively. For a different tem-

perature, the energy density is approximated by
{Upk} = {UP} + [UPD{T; - T}} (6.3)
The temperature T;* (= TTRY) is initially set to the temperature Tz-o.

Now the equation for radiation energy (4.11) can be written, using the relations
(2-3), in the form

[A11){U} + [A12{TY — T°} = {B1} (6.4)

The tridiagonal matrix A11 and the diagonal one A12 as well as the vector B1
are computed by the routine REE.

Analogously, the routine MEE supplies the matter energy equation (5.17) in

the form

[A21){U.} + [A22{TY — T} = {B2} (6.5)

Here, both A21 and A 22 are diagonal matrices. This coupled system of equations
is solved by the routine SOLVES3. It reduces first the number of equations by
substituting in (4) TiN - Tt-o from (5), and then calls the library routines SGBFA
and SGBSL to solve the system.

At this point a new iteration can be required; TTRY will be set to the newly
computed temperature Tz-N and the process is carried out again. The number of

such iterations is given by the input parameter NITER.

Once Ui is known, the values of S; are computed using (2). The routine
MAT1 performs such a matrix-vector product. Finally, the values of U at the

interfaces as well as (I;") and (I, ) are computed.

The PLANCK routine uses the function

15 (=
flz)=—5 |,

which is supplied by the routine PDSTRB by interpolation in a table. This table

is computed by the same routine when it is called the first time.

' (e“' —1)"tde!
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6.8 LASER DEPOSITION

The main program calls first the routine QUELIN which reads from FOR-
TRAN unit 16 the laser characteristics. These data must be given in a NAMELIST
block with the name PULSE, of the following contents

PARAMETER DESCRIPTION

IDIR =1 Laser incidents from right.
=-1 Laser incidents from left.

PIMAX Maximum laser intensity (g s~3).

PITIME Pulse duration FWHM (seconds).

WL Laser wavelength (¢m).

DELTA Fraction of the incident power dumped at the
critical density.

Z Effective ion charge.

ZMOL Atomic number.

The laser pulse is assumed to have a sine square shape. All these data are

echoed in the printer.

The routine QUELLE supplies correct arguments to the routine LASER3
which really computes the deposition. The procedure described in (4.5) is exactly

followed, thus it is not worthwhile to give more details here.

6.9 EQUATION OF STATE

The routine EOSIN1 is called from the main program. It reads, from FOR-
TRAN unit 13, a series of equation of state tables. The format of one of these
tables consists of a string of real numbers, four numbers packed in one line in fields
of 15 characters (format 4E15.0). In case that the total number is not an even

multiple of four, the last line is left partially empty. The meaning of every item is

given by




ITEM DESCRIPTION

MID Material identification.

RO Normal density (unused).

NR Number of tabulated densities.

NE Number of tabulated energies.

R(I),I=1,NR Tabulated densities (g em™3).

DE(J),J=1,NE Tabulated energies (difference to the cold
energy values) (Mbar x c¢m® g™1).

E0(I),I=1,NR _ Values of the cold energy corresponding to

the tabulated densities (Mbar x cm3 g~1).
(P(1,),I=1,NR),J=1,NE  Pressure at density R(I) and at specific

internal energy DE(J) + EO(I) (Mbar).
(T(1,J),I=1,NR),J=1,NE  Temperature at density R(I) and at specific

internal energy DE(J) + EO(I) (Kelvin).

If more than one material is required, the corresponding tables are loaded
successively up to a maximum of four. The materials will be referenced everywhere
by their order in this loading. The routine prints out the identification and number

of memory words needed for every material and the total number of materials
loaded.

Afterwards, the routine EOSIN2, called by the main program, converts these

tables to the system of units of the program. In addition, the negative pressures

are set to zero.

The routine EOS, called by the routine SCHRITT, supplies the values of
the pressure P, temperature T and its derivatives with respect to density and
energy DPDR, DPDE, DTDR and DTDE. The values in all computational
cells are requested at the same time. This routine uses the information stored
in the ‘Layer Description Table’ (COMLDT) in order to generate a call to the
routine EOSM for every layer present. This routine performs really the interpola-
tion using the auxiliary routines EOSLIN and EOSBIN for linear interpolation

in a 1-dimensional array and for bilinear interpolation in a 2-dimensional array,
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respectively.

Seting the flag IPRT to one, the routine EOS generates a listing with all the
interpolated values. This is intended to be a diagnostic test of the integrity of the

tables.

6.10 OPACITIES

The routine OPAIN is called from the main program. It reads, from the
FORTRAN unit 15, a series of opacity tables. The format of one of these tables
consist of a string of real numbers, four numbers packed in one line in fields of
15 characters (format 4E15.0). In the case that the total number is not an even

multiple of four, the last line is left partially empty. The meaning of every item is

given by

ITEM DESCRIPTION

MID Material identification.

TYP Data type (unused).

NR Number of tabulated densities.

NT Number of tabulated temperatures.

LR(I),I=1,NR Decimal logarithm of the tabulated
densities (g em™3).

LT(J),J=1,NT Decimal logarithm of the tabulated

temperatures (eV).
(LO(1,J),I=1,NR),J=1,NT Decimal logarithm of the opacity corresponding
to LR(I) and LT(J) (cm? gr—1).

If more than one opacity is required, the corresponding tables are loaded suc-
cessively up to a maximum of 100. The opacities will be referenced everywhere by
their order in this loading. The routine prints out the identification and number

of memory words needed for every table and the total number of tables loaded.

The routine OPACIT, called by the routine GROUP, supplies the values of
the Planck (OP) and Rosseland (OR) opacities. The values in all computational

cells are requested at the same time. This routine uses the information stored in
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the ‘Layer Description Table’ (COMLDT) and in the ‘Groups Description Table’
(COMGDT) in order to generate two calls to the routine OPA for every layer
present. This routine really performs the interpolation using the auxiliary routine
OPABIN for bilinear interpolation in a 2-dimensional array. In the case that
both Planck and Rosseland opacities are the same, only one call is needed for

every layer.

Setting the flag IPRT to one, the routine OPACIT generates a listing with
all the interpolated values. This is intended to be a diagnostic test of the integrity
of the tables.
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7. Output of a typical run

The output consists of the repetition of the input parameters, a printout of the
variables at selected times or step numbers, a series of diagnostic messages and a

binary output on disk.

A composed target is considered: an aluminium layer of 1um thickness covered
by 0.05 um of gold. A laser pulse of 1013 W /em? intensity, 300 ps (FWHM)

duration, and 1.3 um wavelength is incident from the right.

SESAME EOS, Planck and Rosseland opacities are used for the aluminium.
For gold , SESAME EOS together with the following opacities are used:

Frenquecies Opacity (cm?/g)

< 200eV 2.500 x 108 x 71
200eV —400eV  1.250 x 108 x 71
400eV —600eV  0.625 x 10% x 71
600eV —800eV  2.500 x 10% x 71
800eV —1200eV  0.625 x 108 x 71
> 1200 eV 0.250 x 108 x 71

where T is given in eV. The number of groups is 8. The total CPU time
needed by the CRAY-1 computer is 16.2 seconds. This value can be considerably

reduced using subcycling. The output file has been post-processed by the program
P3D, and a series of plots are included: T(m,t), p(m,t), P(m,t), (If) (at the
right boundary, as a function of time and frequency), >i<x<NG Uk(m,t), and
X1<k<NG Sk(m,1).
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