1. About Bose-Einstein Condensation (BEC)

2. BEC Production

3. Evaporative Cooling

4. Absorption Imaging

5. Interference Between Two Bose Condensates

6. Summary
1. About Bose-Einstein Condensation (BEC)

2. BEC Production

3. Evaporative Cooling

4. Absorption Imaging

5. Interference Between Two Bose Condensates

6. Summary
BEC: state of matter in which all atoms occupy lowest quantum state (ground state)
BEC: state of matter in which all atoms occupy lowest quantum state (ground state)

S.N. Bose (1924) quantum statistical treatment of photons
BEC: state of matter in which all atoms occupy lowest quantum state (ground state)

S.N. Bose (1924)
quantum statistical treatment of photons

A. Einstein (1924/25)
extended Bose’s idea to material particles
predicted BEC in an ideal quantum gas
History of BEC

- BEC: state of matter in which all atoms occupy lowest quantum state (ground state)
- S.N. Bose (1924) quantum statistical treatment of photons
- A. Einstein (1924/25) extended Bose’s idea to material particles predicted BEC in an ideal quantum gas
What is a BEC

- High temperature T: weak interacting gas
 Describe with thermal velocity v, number density n, distance between atoms d
What is a BEC

High temperature T: weak interacting gas
Describe with thermal velocity v, number density n, distance between atoms d

Low temperature T: quantum mechanical description

\[
\lambda_{DB} = \sqrt{\frac{h^2}{2\pi mk_B T}}
\]

De-Broglie Wavelength

with Planck constant h, Boltzmann constant k_B and mass of atoms m
What is a BEC

- **High temperature** T: weak interacting gas
 - Describe with thermal velocity v, number density n, distance between atoms d

- **Low temperature** T: quantum mechanical description

 $$\lambda_{DB} = \sqrt{\frac{h^2}{2\pi mk_B T}}$$
 - De-Broglie Wavelength
 - with Planck constant h, Boltzmann constant k_B and mass of atoms m

- $T = T_C$: wavepackets start to overlap and form a BEC
What is a BEC

- High temperature T: weak interacting gas
 Describe with thermal velocity v, number density n, distance between atoms d

- Low temperature T: quantum mechanical description

\[\lambda_{DB} = \sqrt{\frac{h^2}{2\pi mk_B T}} \]

De-Broglie Wavelength

with Planck constant h, Boltzmann constant k_B and mass of atoms m

- $T = T_C$: wavepackets start to overlap and form a BEC

- $T = 0$ K: pure BEC, described by one single wavefunction
Prerequisites

- Ultracold bosonic gases, Ultra-high vacuum
- Ultracold bosonic gases, Ultra-high vacuum
- Bosons: integer spin
 Fermions: half integer spin and governed by Pauli-Principle
Prerequisites

- Ultracold bosonic gases, Ultra-high vacuum
- Bosons: integer spin
 Fermions: half integer spin and governed by Pauli-Principle
- Ultralow temperatures

\[\lambda_{DB} \approx d = n^{-1/3} \Rightarrow T_C(n) = \frac{\hbar^2}{2\pi mk_B} \cdot n^{2/3} \]

with critical temperature \(T_C(n) \)
I.e. \(T_C(n) \approx 100 \) nK for dilute gases at densities of \(10^{14} \) cm\(^{-3}\)
Prerequisites

- Ultracold bosonic gases, Ultra-high vacuum
- Bosons: integer spin
 Fermions: half integer spin and governed by Pauli-Principle
- Ultralow temperatures

\[\lambda_{DB} \approx d = n^{-1/3} \Rightarrow T_c(n) = \frac{\hbar^2}{2\pi mk_B} \cdot n^{2/3} \]

with critical temperature \(T_c(n) \)
I.e. \(T_c(n) \approx 100 \text{ nK} \) for dilute gases at densities of \(10^{14} \text{ cm}^{-3} \)

- Phase-space density \(D \) crucial for BEC

\[D = n \cdot \lambda_{DB}^3 \quad D \geq 2.612 \]
Many-body ground state

\[\psi(\vec{r}, t) = \psi(\vec{r}) e^{-i\mu t} \]

with ground state energy / chemical potential \(\mu \)
Many-body ground state

\[\psi(\vec{r}, t) = \psi(\vec{r}) e^{-i\mu t} \]

with ground state energy / chemical potential \(\mu \)

Dynamic: Gross-Pitaevski equation

\[i\hbar \frac{\partial}{\partial t} \psi(\vec{r}, t) = \left[-\frac{\hbar^2}{2m} \cdot \nabla^2 + U(\vec{r}) + \tilde{U} |\psi(\vec{r}, t)|^2 \right] \psi(\vec{r}, t) \]

with harmonic potential \(U(\vec{r}) = \frac{1}{2} m(\omega_x^2 x^2 + \omega_y^2 y^2 + \omega_z^2 z^2) \) and \(\tilde{U} = 4\pi\hbar^2 a/m \)

describing two body collisions

Thomas-Fermi limit \((n \tilde{U} \gg \hbar \omega_x, \omega_y, \omega_z)\): neglect term for kinetic energy

\[n_c(\vec{r}) = |\psi(\vec{r}, t)|^2 = \max\{\mu - U(\vec{r}), 0\} \]
- Many-body ground state
 \[\psi(\vec{r}, t) = \psi(\vec{r}) e^{-i\mu t} \]
 with ground state energy / chemical potential \(\mu \)

- Dynamic: Gross-Pitaevski equation
 \[
 i\hbar \frac{\partial}{\partial t} \psi(\vec{r}, t) = \left[-\frac{\hbar^2}{2m} \cdot \nabla^2 + U(\vec{r}) + \tilde{U}|\psi(\vec{r}, t)|^2 \right] \psi(\vec{r}, t)
 \]
 with harmonic potential \(U(\vec{r}) = \frac{1}{2} m(\omega_x^2 x^2 + \omega_y^2 y^2 + \omega_z^2 z^2) \) and \(\tilde{U} = 4\pi\hbar^2 a / m \)
describing two body collisions

- Thomas-Fermi limit \((n\tilde{U} \gg \hbar\omega_{x,y,z}) \): neglect term for kinetic energy \(\Rightarrow \) density of condensate
 \[
 n_c(\vec{r}) = |\psi(\vec{r}, t)|^2 = \max\left\{ \frac{\mu - U(\vec{r})}{\tilde{U}}, 0 \right\}
 \]
1. About Bose-Einstein Condensation (BEC)

2. BEC Production

3. Evaporative Cooling

4. Absorption Imaging

5. Interference Between Two Bose Condensates

6. Summary
Zeeman-Slowing reduces velocity & temperature by Laser-cooling.
- reduces velocity & temperature by Laser-cooling
- provides high flux \((10^{12} \text{ slow atoms per second})\) which enables more than \(10^{10}\) atoms to be loaded into the MOT in one or two seconds
Zeeman-Slowing

- reduces velocity & temperature by Laser-cooling
- provides high flux (10^{12} slow atoms per second) which enables more than 10^{10} atoms to be loaded into the MOT in one or two seconds
- Zeeman-slowed Sodium beam has velocity of 30 m/s corresponding to kinetic energy of 1 K
Magneto-Optical-Trap (MOT)

- S. Chu, C. Cohen-Tannoudji & W. D. Phillips received the Nobel Prize of Physics for development of methods to cool and trap atoms with laser light in 1997
- Cooling in optical molasses

- Cooling in optical molasses
- Reduces temperature to 1 mK or below

- Cooling in optical molasses
- Reduces temperature to 1 mK or below
- Zeeman slowed atoms are confined and compressed to higher densities \(10^{10} - 10^{12} \text{ cm}^{-3}\)

- Cooling in optical molasses
- Reduces temperature to 1 mK or below
- Zeeman slowed atoms are confined and compressed to higher densities ($10^{10} - 10^{12} \text{ cm}^{-3}$)
- Provides phase-space density $D \approx 10^{-7}$: still too low for phase transitions
Technique already present in the center of the MOT
- Technique already present in the center of the MOT
- Colder temperatures reached by switching off the MOT's magnetic coils and adding short cycle (few ms) of optimized Polarization-Gradient Cooling
Technique already present in the center of the MOT

Colder temperatures reached by switching off the MOT's magnetic coils and adding short cycle (few ms) of optimized Polarization-Gradient Cooling

I.e. for sodium temperatures between 50 µK and 100 µK
- Technique already present in the center of the MOT
- Colder temperatures reached by switching off the MOT’s magnetic coils and adding short cycle (few ms) of optimized Polarization-Gradient Cooling
- I.e. for sodium temperatures between 50 µK and 100 µK
- Provides phase-space density $D \approx 10^{-6}$: still too low for phase transitions
Magnetic Trapping

- Magnetic Trapping of neutral atoms first observed in 1985
Magnetic Trapping of neutral atoms first observed in 1985

- Major role: Accomodate pre-cooled atoms and compress them \(\Rightarrow\) high collision rates and evaporative cooling
Magnetic Trapping of neutral atoms first observed in 1985

- Major role: Accomodate pre-cooled atoms and compress them ⇒ high collision rates and evaporative cooling

- Atoms trapped by interactions of magnetic dipole with external magnetic field

 Energy levels in a magnetic field $E(m_F) = g \mu_B m_F B$
Magnetic Trapping of neutral atoms first observed in 1985

- Major role: Accomodate pre-cooled atoms and compress them ⇒ high collision rates and evaporative cooling
- Atoms trapped by interactions of magnetic dipole with external magnetic field
 Energy levels in a magnetic field \(E(m_F) = g\mu_B m_F B \)
- Maxwell ⇒ only confines weak-field seeker
Magnetic Trapping of neutral atoms first observed in 1985

Major role: Accommodate pre-cooled atoms and compress them ⇒ high collision rates and evaporative cooling

Atoms trapped by interactions of magnetic dipole with external magnetic field

Energy levels in a magnetic field $E(m_F) = g \mu_B m_F B$

Maxwell ⇒ only confines weak-field seeker

Excellent tool for evaporative cooling
1 About Bose-Einstein Condensation (BEC)

2 BEC Production

3 Evaporative Cooling

4 Absorption Imaging

5 Interference Between Two Bose Condensates

6 Summary
Continuously removing trapped high-energy atoms to reach T_C
Continuous removing trapped high-energy atoms to reach T_C

Evaporated atoms carry away more than average energy \Rightarrow temperature decreases
Continuously removing trapped high-energy atoms to reach T_C

- Evaporated atoms carry away more than average energy \Rightarrow temperature decreases

- Suggested by H. Hess in 1985 with trapped atomic hydrogen
- Continuously removing trapped high-energy atoms to reach T_C
- Evaporated atoms carry away more than average energy \Rightarrow temperature decreases
- Suggested by H. Hess in 1985 with trapped atomic hydrogen
- Technique was extended to alkali atoms in 1994 by combining Evaporative Cooling with Laser Cooling
Radio frequented (RF) radiation flips atomic spin \Rightarrow attractive trapping force turns into repulsive force and expels atoms from trap.
Radio frequented (RF) radiation flips atomic spin ⇒ attractive trapping force turns into repulsive force and expels atoms from trap.

Energy selective ⇒ only atoms with
\[E > \hbar |m_F| (\omega_{RF} - \omega_0) \]
with rf frequency \(\omega_0 \) which induces spinflips at the bottom of the trap.
- Radio frequented (RF) radiation flips atomic spin ⇒ attractive trapping force turns into repulsive force and expels atoms from trap
- Energy selective ⇒ only atoms with \(E > \hbar |m_F| (\omega_{RF} - \omega_0) \) with rf frequency \(\omega_0 \) which induces spinflips at the bottom of the trap
- Other atoms rethermalyze
Radio frequented (RF) radiation flips atomic spin ⇒ attractive trapping force turns into repulsive force and expels atoms from trap

Energy selective ⇒ only atoms with $E > \hbar |m_F|(\omega_{RF} - \omega_0)$ with rf frequency ω_0 which induces spinflips at the bottom of the trap

Other atoms rethermalyze

Advantage: No need to weaken trapping potential in order to lower depth. Atoms evaporate from whole surface where RF resonance condition is fullfilled ⇒ 3D in velocity space
Rethermalization: Scattering processes lead to new distribution.
Rethermalization: Scattering processes lead to new distribution

Favorable ratio between elastic collision rate (provides Evaporative Cooling) and inelastic collision rate (leads to trap loss and heating) required
RF Induced Evaporation

- Rethermalization: Scattering processes lead to new distribution
- Favorable ratio between elastic collision rate (provides Evaporative Cooling) and inelastic collision rate (leads to trap loss and heating) required
- Provides phase-space density \(D \geq 2.612 \)
Horizontal sections taken through center of velocity distribution
- Horizontal sections taken through center of velocity distribution
- Lower values show appearance of condensate fraction
- Horizontal sections taken through center of velocity distribution
- Lower values show appearance of condensate fraction
- Above 4.23 MHz: single Gaussian-like distribution
- Horizontal sections taken through center of velocity distribution
- Lower values show appearance of condensate fraction
- Above 4.23 MHz: single Gaussian-like distribution
- At 4.23 MHz: sharp central peak appears
- Horizontal sections taken through center of velocity distribution
- Lower values show appearance of condensate fraction
- Above 4.23 MHz: single Gaussian-like distribution
- At 4.23 MHz: sharp central peak appears
- Below 4.23 MHz: broad curve & narrow central peak; the noncondensate & condensate fraction
- Horizontal sections taken through center of velocity distribution
- Lower values show appearance of condensate fraction
- Above 4.23 MHz: single Gaussian-like distribution
- At 4.23 MHz: sharp central peak appears
- Below 4.23 MHz: broad curve & narrow central peak; the noncondensate & condensate fraction
- At 4.1 MHz: just little remains of noncondensate fraction
1 About Bose-Einstein Condensation (BEC)

2 BEC Production

3 Evaporative Cooling

4 Absorption Imaging

5 Interference Between Two Bose Condensates

6 Summary
Switching off trap ⇒ condensate falling down (gravity) and ballistically expands
Switching off trap ⇒ condensate falling down (gravity) and ballistically expands

Illuminating atoms with nearly resonant laser beam and imaging shadow cast on charge-coupled device camera (CCD-camera)
Switching off trap ⇒ condensate falling down (gravity) and ballistically expands

Illuminating atoms with nearly resonant laser beam and imaging shadow cast on charge-coupled device camera (CCD-camera)

Cloud heats up by absorbing photons (about one recoil energy per photon)
Absorption Imaging

- Switching off trap ⇒ condensate falling down (gravity) and ballistically expands
- Illuminating atoms with nearly resonant laser beam and imaging shadow cast on charge-coupled device camera (CCD-camera)
- Cloud heats up by absorbing photons (about one recoil energy per photon)
- Single destructive image
Switching off trap ⇒ condensate falling down (gravity) and ballistically expands
Illuminating atoms with nearly resonant laser beam and imaging shadow cast on charge-coupled device camera (CCD-camera)
Cloud heats up by absorbing photons (about one recoil energy per photon)
Single destructive image
Provides reliable density distributions of which properties of condensates and thermal clouds can be inferred
2D probe absorption images after 6 ms time of flight
Width of images is 870 µm
2D probe absorption images after 6 ms time of flight
Width of images is 870 µm
Velocity distribution of cloud just above transition point
Absorption Imaging

- 2D probe absorption images after 6 ms time of flight
 Width of images is 870 µm
- Velocity distribution of cloud just above transition point
- Shows difference between isotropic thermal distribution and elliptical core attributed to expansion of dense condensate
- 2D probe absorption images after 6 ms time of flight
 Width of images is 870 µm
- Velocity distribution of cloud just above transition point
- Shows difference between isotropic thermal distribution and elliptical core attributed to expansion of dense condensate
- Almost pure condensate (after further evaporative cooling)
Produced in vapor of 87Rb atoms
- Produced in vapor of 87Rb atoms
- Fraction of condensed atoms first appear near $T = 170$ nK & $n = 2.5 \cdot 10^{12}$ cm$^{-3}$
 Could be preserved for more than 15 seconds
Produced in vapor of 87Rb atoms

Fraction of condensed atoms first appear near $T = 170$ nK & $n = 2.5 \cdot 10^{12}$ cm$^{-3}$
Could be preserved for more than 15 seconds

BEC on top of broad thermal velocity
Produced in vapor of 87Rb atoms

Fraction of condensed atoms first appear near $T = 170$ nK & $n = 2.5 \cdot 10^{12}$ cm$^{-3}$

Could be preserved for more than 15 seconds

BEC on top of broad thermal velocity

Fraction of atoms that were in this low-velocity peak increases abruptly
Produced in vapor of 87Rb atoms

Fraction of condensed atoms first appear near $T = 170 \text{ nK}$ & $n = 2.5 \cdot 10^{12} \text{ cm}^{-3}$
Could be preserved for more than 15 seconds

BEC on top of broad thermal velocity

Fraction of atoms that were in this low-velocity peak increases abruptly

Nonthermal, anisotropic velocity distribution expected of minimum-energy quantum state of magnetic trap
Evidence for coherence of BEC’s
Evidence for coherence of BEC’s

Cut atom trap in half (double-well potential) by focusing far-off-resonant laser light into center of magnetic trap
Evidence for coherence of BEC's

Cut atom trap in half (double-well potential) by focusing far-off-resonant laser light into center of magnetic trap

Cool atoms in these two halves to form two independent condensates
- Evidence for coherence of BEC’s
- Cut atom trap in half (double-well potential) by focusing far-off-resonant laser light into center of magnetic trap
- Cool atoms in these two halves to form two independent condensates
- Quickly turn off laser and magnetic fields, allowing atoms to fall and expand freely
Evidence for coherence of BEC’s

Cut atom trap in half (double-well potential) by focusing far-off-resonant laser light into center of magnetic trap

Cool atoms in these two halves to form two independent condensates

Quickly turn off laser and magnetic fields, allowing atoms to fall and expand freely

Both condensates start to overlap and interfere with each other
Interference pattern of two expanding condensates after 40 ms time of flight for 2 different powers of Argon-ion laser light (3 & 5 mW)
Interference pattern of two expanding condensates after 40 ms time of flight for 2 different powers of Argon-ion laser light (3 & 5 mW)

- Fringe periods 20 & 15 µm
Interference pattern of two expanding condensates after 40 ms time of flight for 2 different powers of Argon-ion laser light (3 & 5 mW)

- Fringe periods 20 & 15 µm
- Fields of view: horizontally: 1.1 mm
 vertically: 0.5 mm
Recent experiment: drop tower (Center of Applied Space Technology and Microgravity 'ZARM' Bremen)
Recent experiment: drop tower (Center of Applied Space Technology and Microgravity 'ZARM' Bremen)

- Height: 146 m (outside); 120 m (inside)
- Delivers 4.74 s of near weightlessness
Recent experiment: drop tower (Center of Applied Space Technology and Microgravity 'ZARM' Bremen)
- Height: 146 m (outside); 120 m (inside)
 Delivers 4.74 s of near weightlessness
- Capturing cold atoms in magneto-optical trap (MOT)
Recent experiment: drop tower (Center of Applied Space Technology and Microgravity ’ZARM’ Bremen)

- Height: 146 m (outside); 120 m (inside)
 Delivers 4.74 s of near weightlessness
- Capturing cold atoms in magneto-optical trap (MOT)
- Loading Ioffe-Pritchard trap, creating BEC consisting of $10^4 \ ^{87}\text{Rb}$ atoms
Evolution of BEC and asymmetric Mach-Zehnder interferometer (AMZI) visualized by series of absorption images of atomic densities separated by 1 ms.
Evolution of BEC and asymmetric Mach-Zehnder interferometer (AMZI) visualized by series of absorption images of atomic densities separated by 1 ms

Interferometer starts at time t_0 after release of BEC
Evolution of BEC and asymmetric Mach-Zehnder interferometer (AMZI) visualized by series of absorption images of atomic densities separated by 1 ms

Interferometer starts at time t_0 after release of BEC

Two counter-propagating light beams of frequencies ω and $\omega + \delta$ creates coherent superposition of two wave packets that drift apart, redirects and partially recombines them
BEC is a state of matter in which all atoms occupy the ground state.
BEC is a state of matter in which all atoms occupy the ground state.

Phase transitions for $D \geq 2.612$.
BEC is a state of matter in which all atoms occupy the ground state.

- Phase transitions for $D \geq 2.612$
- Condensate has anisotropic density distribution
BEC is a state of matter in which all atoms occupy the ground state

Phase transitions for $D \geq 2.612$

Condensate has anisotropic density distribution

Interference between two condensates is evidence for coherence of BEC’s
http://www.sciencemag.org/content/275/5300/637.abstract

http://www.sciencemag.org/content/269/5221/198.abstract

http://prl.aps.org/abstract/PRL/v75/i22/p3969_1

http://prl.aps.org/abstract/PRL/v110/i9/e093602