Two-Photon Interference

Markus Perner

Technische Universität München

08. Mai 2013

Motivation

Why is two-photon interference so important?

- Show quantum nature of light
- Measurement of the length of a photon
- Characterization of single-photon sources
- Linear quantum information processing (QIP)

1 Theory

2 Hong-Ou-Mandel Interference [Hong, Ou & Mandel (1987)]

3 Quantum Beat of Two Single Photons [Legero et al. (2004)]

1 Theory

2 Hong-Ou-Mandel Interference [Hong, Ou & Mandel (1987)]

3 Quantum Beat of Two Single Photons [Legero et al. (2004)]

Physical Description

When a photon enters a beam splitter (BS), there are two possibilities: it will either be transmitted or reflected

Consider two photons, one in each input mode of a 50:50 BS. There are four possibilities for the photons to behave:

The state of the system after interference is given by a superposition of all possibilities for the photons to pass through the BS:

Where does the minus sign come from?

Reflection off bottom side \implies relative phase shift of π (i.e. reflection off the higher index medium)

Reflection off top side \implies no phase shift (i.e. reflection off the lower index medium).

Now let's assume that the two photons are identical in their physical properties (i.e., polarization, spatio-temporal mode structure, and frequency):

The photons will always exit the same (but random) output port!

- Consider two identical photons input ports A and B of 50:50 BS
- Quantum state given by applying photon-creation operators $\hat{a}_{A,B}^{\dagger}$ on vacuum state $|0\rangle$

$$|\Psi_i
angle=|1_A1_B
angle=\hat{a}_A^\dagger\hat{a}_B^\dagger\,|0
angle$$

- Detection of photon in output port *C* or *D* evaluated by applying photon-annihilation operators $\hat{a}_{C,D}$ to $|\Psi_i\rangle$
- Effect of 50:50 BS described by unitary transformation

$$egin{pmatrix} \hat{a}_A \ \hat{a}_B \end{pmatrix} \ o \ rac{1}{\sqrt{2}} egin{pmatrix} 1 & 1 \ 1 & -1 \end{pmatrix} egin{pmatrix} \hat{a}_C \ \hat{a}_D \end{pmatrix}$$

Initial state in terms of photons created in output ports:

$$\begin{aligned} \mathbf{1}_{A}\mathbf{1}_{B}\rangle &= \hat{a}_{A}^{\dagger}\hat{a}_{B}^{\dagger}|0\rangle \\ &= \frac{1}{2}(\hat{a}_{C}^{\dagger}+\hat{a}_{D}^{\dagger})(\hat{a}_{C}^{\dagger}-\hat{a}_{D}^{\dagger})|0\rangle \\ &= \frac{1}{2}(\hat{a}_{C}^{\dagger2}-\hat{a}_{D}^{\dagger2})|0\rangle \\ &= \frac{1}{\sqrt{2}}(|2_{C}\mathbf{0}_{D}\rangle-|\mathbf{0}_{C}2_{D}\rangle) \end{aligned}$$

Remark: Since the operators $\hat{a}^{\dagger}_{C,D}$ act on different output ports their commutator vanishes: $[\hat{a}^{\dagger}_{C}, \hat{a}^{\dagger}_{D}] = 0$

The photons will always exit the same (but random) output port!

1 Theory

2 Hong-Ou-Mandel Interference [Hong, Ou & Mandel (1987)]

3 Quantum Beat of Two Single Photons [Legero et al. (2004)]

Hong-Ou-Mandel Interference

Aim: Measurement of photon wave packet length δt

Problem: Time resolution \gg wave packet length

Experimental setup

Photon source: Parametric down-conversion Type I ($\omega_0=\omega_1+\omega_2)$

Indistinguishability of photons:

- Photon source ensures same polarization
- Pass bands of interference filters (IF) ensure (at most) same frequency
- BS is displaced (by $\pm c\delta\tau$) from symmetry position to ensure same time of arrival

Measurement of simultaneous detections N depending on BS displacement $\delta \tau$

Results

Hong-Ou-Mandel-Dip

- Overlap controlled by BS displacement: no coincidences for perfect overlap
- Photon length from FWHM = 16 μ m = $c \cdot 50$ fs
- Width of dip connected to IF-bandwidth due to Fourier-limited photons

1 Theory

2 Hong-Ou-Mandel Interference [Hong, Ou & Mandel (1987)]

3 Quantum Beat of Two Single Photons [Legero et al. (2004)]

Quantum Beat of Two Single Photons

Now: Time resolution \ll wave packet length Photons impinge simultaneous on BS Detection-time delay τ measured

Experimental Setup

Photon source: Atom-cavity system

- Atom-cavity system emits unpolarized single photons with well determined frequency
- Polarizing beam splitter (PBS) randomly directs them along two paths
- Photon travelling along path A gets delayed through fiber

- Subsequent photon travelling along path B impinges on the BS simultaneously with delayed photon from path A
- A HWP along path B guarantees that both photons have the same polarization

Results 1

- Indistinguishable photons for parallel polarization: Correlation drops to minimum with width of 460 ns
- \blacksquare Width corresponds to inhomogenous broadening of photon spectrum of $\delta \omega/2\pi=690~\text{kHz}$
- In general depth and width of minimum indicate initial purity of photon state, i.e. broadening of photon spectrum, frequency and emission-time jitter

Jitters

No perfect single-photon source \implies Consider more realistic scenario, in which stream of Fourier-limited photons shows a jitter in its parameters:

Frequency jitter:

Emission-time jitter:

Results 2

- Introducing a frequency difference of $\Delta \omega/2\pi = 3$ MHz: Quantum beat visible
- No coincidences for simultaneous detection
- Fringes with a visibility of almost 100% (classical: 50%)

Theoretical Prediction of Quantum Beat

• Initial state: $|\Psi_i\rangle = |\mathbf{1}_A \mathbf{1}_B\rangle$

• Detection of photon at time t_0 in output C:

$$|\Psi_{\mathcal{C}}(t_0)\rangle = \hat{a}_{\mathcal{C}}|1_{\mathcal{A}}1_{\mathcal{B}}\rangle = \frac{1}{\sqrt{2}}(|1_{\mathcal{A}}0_{\mathcal{B}}\rangle + |0_{\mathcal{A}}1_{\mathcal{B}}\rangle)$$

Introduce frequency difference $\Delta = \omega_2 - \omega_1$. After time τ new state reads:

$$\left|\Psi_{C}(t_{0}+\tau)\right\rangle = \frac{1}{\sqrt{2}} \left(e^{i\omega_{1}\tau}\left|\mathbf{1}_{A}\mathbf{0}_{B}\right\rangle + e^{i\omega_{2}\tau}\left|\mathbf{0}_{A}\mathbf{1}_{B}\right\rangle\right)$$

 $\blacksquare \text{ Introduce global phase } |\Psi_C\rangle \implies e^{-i\omega_1\tau} |\Psi_C\rangle:$

$$\implies |\Psi_{C}(t_{0}+\tau)\rangle = \frac{1}{\sqrt{2}}(|\mathbf{1}_{A}\mathbf{0}_{B}\rangle + \mathrm{e}^{\mathrm{i}\Delta\cdot\tau} |\mathbf{0}_{A}\mathbf{1}_{B}\rangle)$$

Probability of detecting the second photon with either *C* or *D*:

$$P_{CC} = \langle \Psi_C | \, \hat{a}_C^{\dagger} \hat{a}_C | \Psi_C \rangle = \frac{1}{2} [1 + \cos(\Delta \cdot \tau)]$$
$$P_{CD} = \langle \Psi_C | \, \hat{a}_D^{\dagger} \hat{a}_C | \Psi_C \rangle = \frac{1}{2} [1 - \cos(\Delta \cdot \tau)]$$

A frequency difference results in a quantum-beat signal

perpendicular polarization: no interference parallel polarization: interference interference of photons with different frequencies

no simultaneous detections $(\tau = 0)$ for $\delta \tau = 0$

even for distinguishable photons no simultaneous detections ($\tau = 0$)

 $\begin{array}{l} \mbox{oscillation of coincidence} \\ \mbox{probability for } \delta \tau \simeq 0 \end{array}$

Comparison to HOM-Experiment:

No time resolved measurement \implies Integrate over detection-time difference τ : No difference between cases 1 and 3

Visibility

QM two-photon intereference: 100% visibility

Inhomogenous broadened photons

1 Theory

2 Hong-Ou-Mandel Interference [Hong, Ou & Mandel (1987)]

3 Quantum Beat of Two Single Photons [Legero et al. (2004)]

Summary

- No time-resolved measurement possible
- Width of dip connected to length of photon wave packet

Two-Photon Interference Photon source: Single Photon Emitter

Quantum Beat

- Time-resolved measurement possible
- Photon source can be characterized from width and depth of dip (i.e. broadening of photon spectrum, frequency and emission-time jitter)
- Frequency difference between photons induces quantum-beat with visibility of 100%

Thank you for your attention

and I look forward for your questions on this topic!

References

- C.K. Hong, Z.Y. Ou, L. Mandel: Phys. Rev. Lett. 59, 2044 (1987) http://prl.aps.org/abstract/PRL/v59/i18/p2044_1
- T. Legero, T. Wilk, M. Hennrich, G. Rempe, A. Kuhn: Phys. Rev. Lett. 93, 070503 (2004) http://prl.aps.org/abstract/PRL/v93/i7/e070503
- T. Legero, T. Wilk, A. Kuhn, G. Rempe: Appl. Phys. B 77, 797-802 (2003) http://link.springer.com/article/10.1007%2Fs00340-003-1337-x
- T. Legero, T. Wilk, A. Kuhn, G. Rempe: Adv. At. Mol. Opt. Phys. 53, 253 (2006) http://arxiv.org/abs/quant-ph/0512023
 - T. Legero: Ph.D. Thesis, Technical University Munich (2005) http://mediatum2.ub.tum.de/node?id=603072
- H.P. Specht, J. Bochmann, M. Mücke, B.Weber, E. Figuerora, D.L. Moehring, G. Rempe: Nat. Photon. 3 Iss. 8, 469-472 (2009) http: //www.nature.com/nphoton/journal/v3/n8/full/nphoton.2009.115.html