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1. Introduction

Highly exited neutral atoms.

Rydberg blockade

Strong long-range dipolar forces.



  

1. Introduction

Rydberg blockade

Highly excited neutral atoms.

ΔE > ħΩ  →  blockade.

Strong long-range dipolar forces.

Energy shift ΔE.
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Motivation

- scalable to more atoms

Application

- quantum gates

Advantages

- large distance (μm)

- can be turned on/off
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2. Blockade & collective excitation

Experimental setup



  

2. Blockade & collective excitation

Dipole traps catch single atoms 
from an optical molasses.

Magnetic field B  defines quanti-
zation axis.



  

2. Blockade & collective excitation

Pumping-lasers prepare “ground 
state“      .

APDs detect atoms.



  

2. Blockade & collective excitation

Traps turned off.

s → d, two-photon transition.

Detuning δ.



  

2. Blockade & collective excitation

Loss of atom  →  Rydberg atom.

Rydberg atom cannot be recap-
tured.



  

2. Blockade & collective excitation

Blockade detection

Red, green: Single atom excitation (2. trap empty).

Blue: Product of red and green. Black: Simultaneous excitation.



  

2. Blockade & collective excitation

Blockade detection

Rabi frequency Ω.

Rydberg blockade at 3.6 μm.

No interaction at 18 μm.



  

2. Blockade & collective excitation

Red: Single atom excitation (2. trap empty).

Blue: Singel atom excitation (2. atom present).



  

2. Blockade & collective excitation

Indication for entanglement.



  

2. Blockade & collective excitation

Collective excitation

Atoms excited by same pulses.
→  Entanglement.

Effective Rabi frequency          .

          not coupled (wrong parity).

                                                   .



  

3. Entanglement

Problems measuring entanglement

Phase    varies randomly over 2π.
→  Effecitve decoherence.

                        wave vectors of the lasers,
                           position of the atoms.

Movement during excitation negligible.



  

3. Entanglement

Solution

Mapping the Rydberg state to another groundstate      .

                              →  Phase     rewindet during emission.
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3. Entanglement

Global Raman rotations analyze state.

Push-out laser ejects      states.

→  lost,
→  lost,
→  recaptured.



  

3. Entanglement

Measuring entanglement

Density matrix elements given by global Raman rotations.

Probability to recapture two atoms: p = 0.62(3).

Fidelity: F = 0.75(7) (theoretical maximum F = 0.97).



  

4. CNOT gate

H-Cz CNOT gate

Atoms controlled separately.



  

4. CNOT gate

H-Cz CNOT gate

Atoms controlled separately.

2π  pulse gives a π phase shift to  the 
target atom.
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