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1.4.1  SUMMARY OF SCIENTIFIC ACTIVITIES 
 
Three years after moving to the Max-Planck Institute, 
all experiments in the Quantum Dynamics division are 
operational. Our research now focuses on 
 
• Bose-Einstein condensation, 
• Cavity Quantum Electrodynamics, 
• Quantum Information, and 
• Slow Molecules. 
 
The following pages briefly summarize the main results 
achieved during the last 2 years. A selection of reprints 
is presented at the end.  
 
 
1.4.1.1  BOSE-EINSTEIN CONDENSATION 
 
The realization of Bose-Einstein condensation in dilute 
gases in 1995 [1] was a milestone in the rapidly devel-
oping field of cooling and trapping of atoms. One im-
portant aspect of Bose-Einstein condensation in atomic 
gases is the role of interactions among the atoms. 
Under typical experimental conditions, this interaction 
is weak and, hence, can be treated in terms of a mean-
field approach. For high density, however, this ap-
proximation breaks down. In this collisional (hydro-
dynamic) regime, a rich variety of interesting effects 
beyond the mean-field approximation emerges. This 
collisional regime can be approached in two different 
ways. One is to increase the density. However, our ex-
periment revealed density-limiting avalanche losses, as 
discussed below [2]. Besides increasing the density, 
another possible approach is to increase the interaction 
among the atoms by means of a Feshbach resonance 
[3]. A large number of Feshbach resonances in rubid-
ium 87 have very recently been observed in our ex-
periment and are still under investigation. 
 
 
AVALANCHES IN A BOSE-EINSTEIN CONDENSATE 
 
Last year we focused our activities on the study of sur-
prisingly fast losses observed in a rubidium 87 conden-
sate with a high density. Losses due to inelastic colli-
sions are unavoidable in dilute-gas BEC experiments 
since the thermodynamic ground state of the system at 
low temperatures is usually a solid. As a first step to-
wards a solid, molecules are formed in inelastic colli-
sions. These molecules are typically in a highly excited 
vibrational state, and the binding energy is released as 
kinetic energy of the involved particles. At low density, 
these particles have a sufficiently large energy to leave 
the trap. Such a particle loss is observed in any BEC 
experiment. At high density, however, the particles 

resulting from the recombination process can undergo 
secondary collisions with other atoms. The reason for 
this is the large collisional cross section at the low ve-
locities involved. Before leaving the condensate, the 
moving particles can therefore transfer energy to con-
densate atoms. This, in turn, leads to additional atom 
loss. For very high density, even atoms involved in sec-
ondary collisions will undergo further collisions before 
leaving the trap. In this regime, a single inelastic colli-
sion can trigger a collisional avalanche leading to dra-
matically enhanced loss (Fig. 1). 
 
For example, in our experiment this results in an 8-fold 
increase of the initial loss rate. We developed a model 
accounting for avalanche losses, which is in good 
agreement with the observed decay of the condensate. 
This analysis reveals that the so-called collisional opac-
ity of an ultra-cold and dense gas exhibits a critical 
value. When the critical opacity is exceeded, losses in-
duced by inelastic collisions are substantially enhanced. 
 
 
1.4.1.2 CAVITY QUANTUM ELECTRODYNAMICS 
 
In 2000 we achieved trapping of a single cold atom in 
a high-finesse cavity containing about one photon on 
average [4]. We have continued to study this textbook 
example of matter-light interaction. For example, to 
track the motion of the atom, we proposed a novel 
detection technique, “the atomic kaleidoscope” [5]. 
This activity was done in cooperation with Peter Horak 
and Helmut Ritsch from the University of Innsbruck, 
Austria. Simultaneously, the description of the motion 

Fig. 1: Sketch of a collisional avalanche in a Bose-
Einstein condensate. If the mean free path for 
inelastic decay products is small compared to the 
size of the condensate, further collisions lead to a 
significantly enhanced loss rate. 
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of a single atom in a single-mode cavity was general-
ized to describe the motion of many atoms in many 
modes [6]. Besides these theoretical activities, we have 
successfully extended the storage time of the atom in 
the cavity by employing feedback techniques [7]. 
 
 
THE ATOMIC KALEIDOSCOPE 
 
The phase shift and loss induced by a single atom can 
significantly influence the light intensity inside a high-
finesse cavity. These effects depend on the electric field 
strength at the position of the atom and, hence, on 
the spatial dependence of the cavity mode function. 
The transmission of the cavity can therefore be used to 
deduce information on the position of the atom. In the 
case of an axial symmetric fundamental Gaussian 
beam, only the radial distance to the cavity axis can be 
measured. Nevertheless, if angular momentum is con-
served, it is possible to reconstruct the trajectory of the 
atom by modelling the potential for the atom [8]. A 
reconstruction that does not rely on modelling is pos-
sible if frequency-degenerate higher-order transverse 
modes are used. It exploits the fact that an atom redis-
tributes photons between near-degenerated modes, 

and changes their relative phases such that the trans-
mitted spatial intensity pattern will show a local maxi-
mum or minimum near the transversal position of the 
atom. By analogy with the beautiful symmetric pat-
terns of a toy kaleidoscope, we call this method the 
atomic kaleidoscope. We have demonstrated the po-
tential of the method by reconstruction of a computer-
generated trajectory of an atom in a cavity sustaining a 
set of Laguerre-Gaussian modes [5]. Calculating the 
cavity field patterns, and hence, estimating the position 
of the atom given some output pattern is simplified by 
the introduction of the “effective mode” [9]. From the 
estimated positions of the atom, a trajectory could be 
reconstructed without relying on knowledge about the 
forces acting on the atom (Fig. 2). 
 
 
FEEDBACK ON THE MOTION OF A SINGLE ATOM 
 
The principle of feedback is a common and very gen-
eral technique to stabilize a system against perturba-
tions. Feedback can also provide a way to control the 
motion of a single neutral atom. It requires a position 
measurement with high spatial and temporal resolu-
tion and a large feedback bandwidth. All these re-
quirements can be fulfilled using a high-finesse cavity. 
 
In detail, the presence and the motion of the atom is 
monitored by observing the cavity transmittance. First, 
the light intensity is suddenly switched to a higher 
value when an atom is detected in the cavity. In this 
way, the atom can be trapped in a potential well that 
is deeper than the one it fell into [4]. Second, continu-
ous feedback is applied while the stored atom moves 
inside the cavity (Fig. 3). Different feedback strategies 

Fig. 2: Reconstruction of a simulated trajectory. 
Photon clicks in 16 segments of a detector were de-
termined during a computer-simulated atomic tra-
jectory (black curve). The detector clicks were used 
to estimate the atomic position (crosses). The green 
curve was obtained by a spline interpolation of the 
crosses. The picture measures (90 µm)2, the empty-
cavity mode is indicated in red. 

Fig. 3: A continuous feedback loop uses the infor-
mation in the light transmitted by the cavity to in-
fluence the motion of the atom by altering the 
power of the injected laser light. In this way, the 
time an atom can be kept in the cavity can be pro-
longed. 
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are employed, depending on a position or velocity 
measurement. While moving in the cavity light field, 
the atom experiences random momentum kicks from 
spontaneous emission events. Eventually, this leads to 
the escape of the atom. By decreasing the light inten-
sity when the atom resides near the trap center, heat-
ing of the atom is suppressed. Despite severe limita-
tions from detection noise, the random character of 
the atomic motion and the shallow optical potential, 
the feedback considerably extends the time the atom 
spends in the cavity [7]. 
 
 
 
1.4.1.3  QUANTUM INFORMATION 
 
Our projects in quantum information processing are 
aiming at the realization of basic building blocks for 
future quantum computers and quantum networks 
using ultra-cold trapped neutral atoms. Most of these 
activities rely on strongly coupled atom-cavity systems 
and employ a controlled energy exchange between the 
atom and the quantized light field of a cavity. This is 
done in form of an adiabatic passage [10] driving a Ra-
man transition in a three-level atom. The two lower 
lying atomic levels are non-decaying ground states of 
the atom. One of them is coupled to the third, elec-
tronically excited atomic level by a laser pulse, while 
the cavity couples the excited level to the other atomic 
ground state. The Raman transition 
from one ground state to the other goes 
hand-in-hand with a change of the 
photon number in the cavity. This proc-
ess is unitary and therefore reversible, so 
that it should allow one to map the 
state of an atom to a photon and vice 
versa, which is the starting point for 
distributed quantum networking [11]. 
Moreover, the system can operate as a 
deterministic source of indistinguishable 
single photons, which are an essential 
prerequisite for all-optical quantum in-
formation processing [12]. 
 
 
 
VACUUM-STIMULATED RAMAN SCAT-
TERING 
 
Three years ago, we have proposed to 
drive a Raman transition in a single 
atom coupled to a cavity to produce 
single photons [13]. Along this line, we 
have demonstrated that this process is 
physically feasible [14]: Single Rubidium 

atoms released from a magneto-optical trap pass 
through an empty high-finesse cavity, resonant with 
one branch of the Raman transition of the atom. A 
laser beam that excites the other branch of the Raman 
transition crosses the cavity slightly downstream with 
respect to the atomic motion. This assures that every 
single falling atom experiences a so-called counter-in-
tuitive interaction sequence, where it first sees the cav-
ity and then the laser beam. As a result, the quantum 
state of the atom-cavity system adiabatically follows an 
evolution that, in the end, leads to the emission of a 
photon from the cavity for every atom falling through 
[15]. Although this process is not controlled and only 
maps the random atom statistics to the photons, it 
allows a spectroscopic investigation of the underlying 
Raman process. 
 
As expected, we found that photons are emitted only if 
the Raman-resonance condition is fulfilled, i.e. with 
cavity and laser beam detuned by the same amount 
from the respective atomic transition. Moreover, the 
observed spectral lines are of subnatural width, which 
underpins the Raman nature of the photon generation 
process, and excludes effects such as enhanced spon-
taneous emission, where an atom would be first elec-
tronically excited, and then would emit into the cavity 
with an enhanced probability. In such a case, much 
broader lines would be found on the atomic reso-
nance. 

Fig. 4: Experimental setup of the single-photon source. (a) Atoms 
collected and released from a magneto-optical trap fall through a 
high-finesse optical cavity, where they are exposed to a sequence 
of laser pulses that trigger single-photon emissions. The photon 
emissions (b) are recorded as a function of time. Solitary photons 
(s), pairs (2) and bursts of five (5) are observed. The intensity-
correlation of the photons (c) shows that the pulses trigger photon 
emissions, and that photons are emitted one-by-one. 
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We have also investigated the photon emission prob-
ability as a function of the laser beam displacement 
from the cavity axis. As a clear signature of adiabatic 
following, the peak of the emission probability is found 
in case of a counter-intuitive interaction sequence. The 
number of observed emissions drops significantly if the 
atoms are first excited by the laser and stimulated by 
the cavity at a later moment. 
 
 
 
SINGLE PHOTONS ON DEMAND 
 
Recently, we extended our scheme to produce se-
quences of single photons on demand. We therefore 
realized a pulsed excitation scheme where an atom is 
exposed to an alternating sequence of pump laser 
pulses, triggering single-photon emissions, and recy-
cling laser pulses, resonant with the cavity-branch of 
the Raman transition. By means of optical pumping, 
these recycling pulses re-establish the initial atomic 
state, so that successive photon emissions are possible. 
Indeed, sequences of up to seven single photons on 
demand are observed while a single atom interacts 
with the cavity [16]. The duration of these sequences is 
only limited by the finite atom-cavity interaction time. 
 
 
 
QUANTUM GATES AND NETWORKS 
 
Quantum networking in a distributed network of cou-
pled atom-cavity systems [11] requires single atoms 
permanently interacting with a single mode of the sur-
rounding cavity, so that the quantum state of an atom 
can be mapped onto the state of a photon and then to 
another atom in a controlled way. Moreover, the pho-
tons which are emitted from such a permanently cou-
pled atom-cavity system are expected to be indistin-
guishable, so that they can also be used for all-optical 
quantum information processing with linear compo-
nents [12]. 
 
 
With these promising perspectives in view, we started 
to implement an improved version of the above ex-
periment. The new setup will allow triggering many 
successive single-photon emissions in a controlled way, 
while a single atom is held at rest in the cavity. There-
fore, a magneto-optical surface trap has been realized, 
which is used to fill a red-detuned dipole trap with a 
small number of Rubidium atoms. This latter trap will 
allow guiding and holding an atom between the cavity 
mirrors. 
 

ENTANGLEMENT IN CAVITIES 
 
Quantum gate operations in optical cavities are based 
on the entanglement of single atoms, carrying qubits, 
and the photon-number state of the cavity. To investi-
gate the entanglement of a single atom with the light 
field in a future experiment, we have installed a Mach-
Zehnder interferometer that makes use of a cavity in 
place of its first beam splitter. This cavity should be 
able to entangle all photons impinging on one of its 
mirrors with a single atom located in the cavity. So far, 
the interferometer has been characterized without at-
oms: We observe that the relative phase between the 
two interferometer paths changes when the detuning 
of the light changes from red to blue with respect to 
the cavity resonance, and we obtain a fringe visibility of 
about 80% at both output ports of the interferometer. 
An atom in the cavity can lead to comparable de-
tunings, so that the phase difference observed with the 
interferometer is expected to correlate with the atomic 
state (Fig. 5). 
 
 
1.4.1.4 SLOW MOLECULES 
 
Recent advances in physics with dilute, cold atoms has 
generated great interest in the cooling and trapping of 
molecules [17]. As compared to atoms, molecules have 
a complex internal structure, giving rise to rotational  
 

Fig. 5: Mach-Zehnder Interferometer using an opti-
cal high-finesse cavity in place of a first beam split-
ter. The phase difference between the two paths is 
expected to be so sensitive to the presence of a sin-
gle atom in the cavity, that correlations between the 
observed fringes and the atomic state will reveal 
atom-photon entanglement. 
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and vibrational motion about their centre of mass and 
can in addition exhibit a permanent dipole moment. 
Trapping cold molecules will potentially lead to new 
physics due to the internal molecular dynamics and the 
long range and anisotropy of the dipole-dipole interac-
tions. The objective of the cold molecule project is to 
explore this new field and to develop paths for achiev-
ing cold molecular samples. Since molecules cannot be 
laser cooled for want of closed optical transitions, the 
creation of a population of cold molecules requires 
new techniques (Fig. 6). 
 
Our source relies on the fact that enough slow mole-
cules are present in any thermally distributed gas, even 
at room temperature. They only need to be filtered out. 
We exploit the Stark interaction of polar molecules 
with an inhomogeneous, electrostatic field to select 
slow molecules from a room-temperature effusive 
source. In contrast to other techniques for the produc-
tion of cold molecules, our method produces a con-
tinuous flux of slow molecules, which is conveniently 
delivered into an ultra-high vacuum. Its main advan-
tage, however, is its simplicity and versatility. 
 
The project started with an empty lab in spring of 
2001. At the moment of writing, a first version of the 
source has successfully been set up that produces a 
beam of slow formaldehyde (H2CO) molecules. 
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1.4.2  SURVEY OF THE RESEARCH ACTIVITIES 
 

PROJECT  OBJECTIVE STAFF 
    

Bose-Einstein Condensation 
    
Collisional avalanches  Investigation of fast losses from a dense Bose-

Einstein condensate due to collisional avalanches 
S. Amtage, 
A. Marte, 
B. Sang, 
J. Schuster, 
S. Wößner 

    
Feshbach resonances  Control of atomic collision properties S. Dürr, 

S. Ernst, 
A. Marte, 
J. Schuster, 
T. Volz 

    
Cavity Quantum Electrodynamics 

    
Feedback control  Controlling the motion of a single atom in a high 

finesse cavity by means of feedback 
T. Fischer, 
P. Maunz, 
P.W.H. Pinkse 
T. Puppe, 
 I. Schuster 

    
Optical kaleidoscope  Development of a new observation technique for 

single atoms with high spatial resolution employing 
higher-order modes of a high-finesse cavity 

T. Fischer, 
P. Maunz, 
P.W.H. Pinkse 
T. Puppe, 

    
Quantum Information 

    
Vacuum-stimulated 
Raman scattering 

 Stimulated Raman adiabatic passage with the 
vacuum field of a cavity acting in place of a 
stimulating laser 

M. Hennrich, 
A. Kuhn, 
T. Legero 

    
Single photons on 
demand 

 Controlled emission of indistinguishable single-
photon pulses from a single atom strongly coupled 
to a high-finesse optical cavity 

M. Hennrich, 
P. Krok, 
A. Kuhn, 
T. Legero, 
T. Wilk 

    
Quantum gates and  
networks 

 All-optical quantum gates acting on 
indistinguishable single photons travelling from 
node to node in a distributed quantum network of 
atom-cavity systems 

M. Hijlkema, 
A. Kuhn, 
S. Nußmann, 
F. Rohde, 
B. Weber 

    
Entanglement in cavities  Entanglement of a single atom with the photon 

number state in an optical cavity 
S. Kudera, 
A. Kuhn, 
T. Legero 

    
Slow Molecules 

    
Stark guide  Creation of a high-flux beam of slow molecules 

exploiting the Stark effect in polar molecules 
T. Junglen, 
P.W.H. Pinkse, 
S. Rangwala, 
T. Rieger 
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Can wave–particle duality be based on the uncertainty relation?
Stephan Dürr and Gerhard Rempea)

Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching, Germany

�Received 28 July 1999; accepted 27 January 2000�

Wave and particle properties of a quantum object cannot be observed simultaneously. In particular,
the fringe visibility in an interferometer is limited by the amount of which-way information which
can be obtained. This limit is set by the recently discovered duality relation. So far, all derivations
of the duality relation are independent of Heisenberg’s uncertainty relation. Here we demonstrate
that it is alternatively possible to derive the duality relation in the form of an uncertainty relation for
some suitably chosen observables. © 2000 American Association of Physics Teachers.

I. INTRODUCTION

Wave–particle duality refers to the fact that a quantum
object can exhibit either wave or particle properties, depend-
ing on the experimental situation. In a double-slit experi-
ment, for example, the object must pass through both slits
simultaneously in order to create an interference pattern.
This testifies to the object’s wave nature. On the other hand,
performing a which-way experiment reveals which of the
slits each object passes through, manifesting its particle na-
ture. However, performing a which-way experiment un-
avoidably destroys the interference pattern.

This was illustrated in various gedanken experiments,
such as Einstein’s recoiling slit1 or Feynman’s light
microscope.2 In order to explain the loss of interference in
which-way experiments, one usually invokes Heisenberg’s
position–momentum uncertainty relation. This has been ana-
lyzed in great detail by, e.g., Wiseman et al.3 However,
Scully, Englert, and Walther4 pointed out that such an expla-
nation need not always be possible, but that the entanglement
between the which-way marker and the interfering quantum
object can always explain the loss of interference. Several
experiments support this point of view.5–11

This entanglement need not always be perfect. In general,
a measurement performed on the which-way marker yields
only incomplete which-way knowledge. In order to quantify
how much which-way information is available from such a
measurement, one typically uses the ‘‘distinguishability,’’ D.
With incomplete which-way information stored, one obtains
interference fringes with a reduced visibility, V , which is
limited by the so-called duality relation

D2�V2�1. �1�

This fundamental limit was recently discovered by Jaeger,
Shimony, and Vaidman,12 and independently by Englert.13 It
can be regarded as a quantitative statement about wave–
particle duality. In the special case, where full which-way
information is stored, D�1, it implies that the interference
fringes are lost completely, V�0. The first experimental tests
of the duality relation have been performed recently.14,15

Incomplete which-way information can alternatively be
obtained without a which-way marker by setting up the in-
terferometer such that the particle fluxes along the two ways
differ. In this case, the which-way knowledge is expressed in
the form of the so-called ‘‘predictability,’’ P, which is lim-
ited by12,13,16–20

P2�V2�1. �2�

This result was confirmed experimentally in Refs. 21 and 22.
None of the derivations of Eqs. �1� and �2� cited above

involves any form of the uncertainty relation. It therefore
seems that ‘‘the duality relation is logically independent of
the uncertainty relation.’’ 13 In this article, we will show,
however, that for arbitrary which-way schemes, Eqs. �1� and
�2� can always be derived in the form of a Heisenberg–
Robertson uncertainty relation for some suitably chosen ob-
servables �which will turn out to be different from position
and momentum�.

II. PREDICTABILITY

In this section, we consider a two-beam interferometer
without a which-way marker, as shown in Fig. 1. Let ���
and ��� denote the state vectors corresponding to the two
ways along which the object can pass through the interfer-
ometer. After passing the first beam splitter, the density ma-
trix in a representation with respect to the basis ����,����
reads

��� w� ��

��* w�
� . �3�

The probabilities w� and w� that the object moves along
one way or the other, respectively, fulfill Tr����w��w�

�1. The magnitude of the difference between these prob-
abilities is the predictability

P��w��w��, �4�

which is obviously determined by the reflectivity of the first
beam splitter. P quantifies how much which-way knowledge
we have. For P�0, corresponding to a 50:50 beam splitter,
we have no which-way knowledge, whereas for P�1, we
know precisely which way the object takes.

Without loss of generality, we assume that the second
beam splitter is a 50:50 beam splitter. Taking into account
the phase shift � between the two interferometer arms, the
upper output beam corresponds to the state vector �u��
�(����ei����)/& . The intensity in this beam is

Iu���	
u����u��� 1
2�1�2����cos����0�� �5�

with �������ei�0. The visibility of this interference pattern
is

V�
Imax�Imin

Imax�Imin
�2����, �6�

1021 1021Am. J. Phys. 68 �11�, November 2000 http://ojps.aip.org/ajp/ © 2000 American Association of Physics Teachers
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where Imax and Imin denote the maximum and minimum in-
tensities. The relation, Eq. �2�, limiting visibility and predict-
ability can easily be derived from Tr��2��w�

2 �w�
2

�2����2��1�P2�V2�/2�1.
We will now show that this inequality can alternatively be

obtained in the form of a Heisenberg–Robertson uncertainty
relation23,24

�A�B� 1
2�
A ,B���, �7�

which applies to each pair of Hermitian operators A and B,
with the expectation values and standard deviations of opera-
tors defined as 
A��Tr��A� and �A��
A2��
A�2, re-
spectively.

In order to find suitable operators A and B, we investigate
the Pauli spin-matrices

�x�� 0 1

1 0 � , �y�� 0 �i

i 0 � , �z�� 1 0

0 �1 � . �8�

Their expectation values are 
�x��2 Re����, 
�y�
��2 Im����, and 
�z��w��w� . Obviously, 
�z� reflects
our which-way knowledge, whereas 
�x� and 
�y� are re-
lated to the interference pattern via

Iu���	 1
2�1�cos �
�x��sin �
�y��. �9�

Without loss of generality, we choose the relative phase be-
tween states ��� and ��� such that �� is real, i.e., �0�0.
Thus we obtain

�
�x���V , 
�y��0, �
�z���P . �10�

With this choice of the phases, 
�x� and 
�z� represent the
wave character and particle character of the ensemble, re-
spectively. The standard deviations of these observables,

��x��1�V2, ��y�1, ��z��1�P2, �11�

are easily obtained, because �x
2��y

2��z
2�1. Using the

commutator � j ,�k��2i� l� jkl� l , we can now evaluate the
uncertainty relation, Eq. �7�, for all possible pairs of the
above standard deviations, yielding

�1�V2���x��y��
�z���P , �12�

�1�P2���y��z��
�x���V , �13�

��z��x��
�y���0. �14�

Equation �14� yields a trivial result, because standard devia-
tions are non-negative by definition. However, Eqs. �12� and
�13� are equivalent to the desired relation, Eq. �2�. Hence, for
the case without a which-way marker, Eq. �2� can be derived
in the form of an uncertainty relation for the components of
an abstract pseudospin.

III. DUALITY RELATION

Let us now add a second quantum system �called which-
way marker� to the interferometer. When an object is passing
through the interferometer, a suitable interaction shall
change the quantum state of the which-way marker depend-
ing on the way the object took. This creates an entanglement
between the which-way marker and the way of the object. A
later measurement on the which-way marker can then reveal
which way the object took. In other words, which-way infor-
mation is now stored in the which-way marker. For simplic-
ity, we assume that the which-way marker does not suffer
from decoherence25 �at least as long as we do not couple the
marker to a macroscopic ‘‘needle’’�.

Let � tot denote the density matrix of the total system �ob-
ject plus which-way marker� after the interaction �but before
the phase shifter and the second beam splitter�. Again, we
denote the pseudospin corresponding to the ways by �x , �y ,
and �z . And again, we choose the relative phase between
states ��� and ��� such that 
��TrM�� tot���� is real, where
TrM denotes the trace over the which-way marker. Thus we
reproduce the above results, in particular,

�
�x���V , ��x��1�V2. �15�

In order to read out the which-way information, we mea-
sure an observable W of the which-way marker with eigen-
values �w1 ,w2 ,. . .� and an orthonormal basis of eigenstates
��w1�,�w2�, . . .�. Let p(� ,wi) denote the joint probability
that wi is found and that the object moves along way ���. If
wi is found, the best guess one can make about the way is to
opt for way ��� if p(� ,wi)�p(� ,wi), and for way ���
otherwise. This yields the ‘‘likelihood for guessing the way
right,’’ 13

LW��
i

max�p�� ,wi�,p�� ,wi��. �16�

Since LW can vary between 1/2 and 1, it is natural to scale
this quantity by defining the ‘‘which-way knowledge’’ 26

KW�2LW�1��
i

�p�� ,wi��p�� ,wi�� �17�

so that 0�KW�1. Obviously, KW depends on the choice of
the measured observable W. In order to quantify how much
which-way information is actually stored, the arbitrariness of
the read-out process can be eliminated by defining the
‘‘distinguishability’’ 12,13,26

D�max
W

�KW�, �18�

which is the maximum value of KW that is obtained for the
best choice of W. The distinguishability is limited by the
duality relation, Eq. �1�, which has been derived in Refs. 12
and 13 without using the uncertainty relation.

We will now show that the duality relation—just as Eq.
�2�—can alternatively be derived in the form of a
Heisenberg–Robertson uncertainty relation for some suitably
chosen observables. For that purpose, let

� i�� �1 if p�� ,wi��p�� ,wi�

�1 otherwise
�19�

denote which way to bet on if the eigenstate �wi� is found.
Using p(� ,wi)�
wi��� tot�wi��, we thus find

Fig. 1. Scheme of a typical two-beam interferometer. The incoming beam
�left� is split into two beams, denoted ��� and ���. After reflection from
mirrors, the phase of one of the beams is shifted by �. Next, the two beams
are recombined on a second beam splitter. Due to interference, the intensi-
ties of the two outgoing beams vary as a function of the phase shift �.
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KW��
i

� i�
wi��� tot�wi���
wi��� tot�wi��� �20�

��
i

� iTr�� tot� �wi�
wi� � �z��, �21�

where we used �z����
������
�� and where Tr denotes
the trace over the total system. Let us define the observable

W���
i

� i�wi�
wi�. �22�

In passing, we note that W�
2�1 and �x ,W����y ,W��

��z ,W���0. Inserting W� into Eq. �21�, we obtain

KW�
�zW��. �23�

Note that we are considering a joint observable of the total
system �object plus which-way marker� here, which is
clearly necessary to explore the correlations between the
which-way marker and the way taken by the object.

Let us now choose an observable Wmax , such that KW is
maximized. For simplicity, we will denote the corresponding
observable defined by Eq. �22� by W0 �instead of Wmax,��.
Hence, we obtain

D�
�zW0�. �24�

It is easy to see that �zW0 is Hermitian and that (�zW0)2

�1, so that its standard deviation is

���zW0���1�D2. �25�

Additionally, let us consider the observable �yW0 which also
fulfills (�yW0)2�1. As it is also Hermitian, its expectation
value is real, so that

���yW0���1�
�yW0�
2�1. �26�

Using the commutator (�yW0),(�zW0)��2i�x , we can
now write down the corresponding uncertainty relation. In
combination with Eqs. �15�, �25�, and �26�, we obtain

�1�D2����yW0����zW0���
�x���V . �27�

This directly yields the duality relation, Eq. �1�. Alterna-
tively, the commutator �x ,(�yW0)��2i�zW0 can be used
to obtain the uncertainty relation

�1�V2���x���yW0���
�zW0���D , �28�

which again yields the duality relation.
To summarize, we have demonstrated here that in an ar-

bitrary which-way scheme, the duality relation can be ex-
pressed in the form of a Heisenberg–Robertson uncertainty
relation for some suitably chosen observables.

IV. DISCUSSION

The above calculation reveals a new aspect of the connec-
tion between wave–particle duality and the uncertainty rela-
tion. We would like to add a few comments concerning the
interpretation of this result.

Let us first point out that the uncertainty relation used in
our calculation is not the position–momentum uncertainty
relation. This is obvious, because, for example, the observ-
ables considered here have only two eigenvalues, namely
�1, whereas position and momentum have a continuous
spectrum of eigenvalues.

Second, we note that for the case without a which-way
marker, Eq. �2� is equivalent to the uncertainty relations for
��x��y and ��y��z , Eqs. �12� and �13�. This equivalence
can be read in both directions: In one direction, as discussed
above, the uncertainty relation implies Eq. �2�. In the other
direction, Eq. �2� implies the uncertainty relation for these
specific observables.

Third, we would like to draw attention to the fact that the
uncertainty relation for ��z��x , Eq. �14�, yields a trivial
result. This is somewhat surprising, because from Eq. �10�
we concluded that �x represents the wave character, whereas
�z represents the particle character. Since we are investigat-
ing the limit for the simultaneous presence of wave character
and particle character, one might have guessed that the un-
certainty relation for ��z��x could yield this limit. How-
ever, this is not the case. Instead, ��y is employed in our
calculation. An intuitive interpretation of �y in terms of a
wave picture or a particle picture is not obvious.

Next, we would like to mention that the observables
whose uncertainty relations we evaluate in Eqs. �12� and �13�
depend on the density matrix, �. In the presentation in Sec.
II, this fact is somewhat hidden in our choice of the relative
phase of states ��� and ���, i.e., �0�0. The dependence on
� becomes more obvious, if we consider arbitrary values of
�0 . In this case, we can define the observables

�x��x cos �0��y sin �0 , �29�

�y��x sin �0��y cos �0 , �30�

�z��z , �31�

which take the role of �x , �y , and �z in our above presen-
tation. Obviously, these observables depend on � via �0 . As
the commutation relations of the �’s and �’s are the same,
Eq. �2� can be derived analogously. The situation is similar
in Sec. III.

Finally, we will discuss whether either correlations �i.e.,
entanglement� or uncertainty relations are more closely con-
nected to wave–particle duality. For that purpose, we will
investigate all the explanations for the loss of interference
fringes, referenced in Sec. I. We will sort these explanations
into three categories, depending on whether they employ

�1� some uncertainty relation,
�2� correlations,
�3� correlations and some uncertainty relation.

The textbook explanations for Einstein’s recoiling slit in Ref.
1 and Feynman’s light microscope in Ref. 2 are based on the
position–momentum uncertainty relation. The Scully–
Englert–Walther explanation4 as well as the derivations of
the duality relation in Refs. 12 and 13 are based on the cor-
relations. Our derivation as well as the discussion of Wise-
man et al.3 make use of both the correlations and some un-
certainty relation. This is because these calculations involve
the density matrix for the total system, consisting of the ob-
ject plus the which-way marker. Consequently, the full quan-
tum correlations between these subsystems are embodied in
these formalisms.

The above categorization reveals a crucial point: The ex-
planations for the loss of interference fringes involving only
the uncertainty relation are �so far� limited to a few special
schemes. In other words: There are several other schemes for
which no such explanation is known, see, e.g., Refs. 4 and
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11. In the language of Ref. 3, the loss of interference in these
schemes cannot be explained in terms of ‘‘classical momen-
tum transfer.’’ On the other hand, explanations involving
only correlations apply to all which-way schemes known so
far. This leads us to the conclusion that wave–particle dual-
ity is connected to correlations more closely than to the un-
certainty relation.
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14S. Dürr, T. Nonn, and G. Rempe, ‘‘Fringe visibility and which-way infor-
mation in an atom interferometer,’’ Phys. Rev. Lett. 81, 5705–5709
�1998�.

15P. D. D. Schwindt, P. G. Kwiat, and B.-G. Englert, ‘‘Quantitative wave–
particle duality and nonerasing quantum erasure,’’ Phys. Rev. A 60, 4285–
4290 �1999�.

16W. K. Wootters and W. H. Zurek, ‘‘Complementarity in the double-slit
experiment: Quantum nonseparability and a quantitative statement of
Bohr’s principle,’’ Phys. Rev. D 19, 473–484 �1979�.

17L. S. Bartell, ‘‘Complementarity in the double-slit experiment: On simple
realizable systems for observing intermediate particle–wave behavior,’’
Phys. Rev. D 21, 1698–1699 �1980�.

18R. J. Glauber, ‘‘Amplifiers, attenuators, and Schrödinger’s cat,’’ Ann.
�N.Y.� Acad. Sci. 480, 336–372 �1986�.

19D. M. Greenberger and A. Yasin, ‘‘Simultaneous wave and particle
knowledge in a neutron interferometer,’’ Phys. Lett. A 128, 391–394
�1988�.

20L. Mandel, ‘‘Coherence and indistinguishability,’’ Opt. Lett. 16, 1882–
1883 �1991�.

21J. Summhammer, H. Rauch, and D. Tuppinger, ‘‘Stochastic and determin-
istic absorption in neutron-interference experiments,’’ Phys. Rev. A 36,
4447–4455 �1987�.

22P. Mittelstaedt, A. Prieur, and R. Schieder, ‘‘Unsharp particle–wave du-
ality in a photon split-beam experiment,’’ Found. Phys. 17, 891–903
�1987�.
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Vacuum-Stimulated Raman Scattering Based on Adiabatic Passage
in a High-Finesse Optical Cavity
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We report on the first observation of stimulated Raman scattering from a L-type three-level atom,
where the stimulation is realized by the vacuum field of a high-finesse optical cavity. The scheme
produces one intracavity photon by means of an adiabatic passage technique based on a counterintuitive
interaction sequence between pump laser and cavity field. This photon leaves the cavity through the
less-reflecting mirror. The emission rate shows a characteristic dependence on the cavity and pump
detuning, and the observed spectra have a subnatural linewidth. The results are in excellent agreement
with numerical simulations.

PACS numbers: 32.80.Qk, 03.67.–a, 42.50.Ct, 42.65.Dr

In the past few years, interesting proposals on the
generation of nonclassical states of light in optical cavities
[1,2] and on the controlled generation of single photons
from such cavities [3,4] were made. All of these schemes
are based on a technique known as STIRAP (stimulated
Raman scattering involving adiabatic passage) [5,6] or
a variant thereof, and incorporate the time dependent
interaction of an atom with the field mode of an optical
cavity. The operation principle is related to that of a
Raman laser [7], with the difference that now a single atom
interacts with an empty cavity mode. Other schemes for
the preparation of Fock states are based on vacuum Rabi
oscillations or, more generally, p pulses in a two-level
atom. In these cases, the need for a long-lived excited
atomic state restricts experiments to the microwave regime
[8,9], where the photon remains stored in a high-Q cavity.

Here, we report on the experimental realization of an
excitation scheme that allows one to emit a visible photon
into a well-defined mode of an empty cavity. This photon
then leaves the cavity in a known direction. Our method
is based on the single-photon generation scheme discussed
in [4]. It relies on STIRAP [5,6], but, instead of using two
delayed laser pulses, we have only one exciting pump laser,
combined with a strong coupling of a single atom to a
single cavity mode [10,11]. This strong coupling induces
the anti-Stokes transition of the Raman process.

Figure 1 depicts the excitation scheme for the
85Rb-atoms used in our experiment. A L-type three-level
scheme is realized by the two 5S1�2 hyperfine ground
states F � 3 and F � 2, which we label ju� and jg�, re-
spectively. The F � 3 hyperfine level of the electronically
excited state, 5P3�2, forms the intermediate state, je�. The
atom interacts with a single-mode of an optical cavity,
with states j0� and j1� denoting zero and one photon in
the mode, respectively. The cavity resonance frequency,
vC , is close to the atomic transition frequency between
states je� and jg�, but far off resonance from the je� to ju�
transition. Hence, only the product states je, 0� and jg, 1�
are coupled by the cavity. For this transition, the vacuum

Rabi frequency,

2g�t� � 2g0 exp

"
2

µ
ty
wC

∂2
#

, (1)

is time dependent since the atom moves with velocity y
across the waist wC of the Gaussian cavity mode. Its peak
amplitude is given by the atom-cavity coupling coefficient
at an antinode, g0.

In addition to the interaction with the cavity mode, the
atom is exposed to a pump laser beam which crosses the
cavity axis at right angle. This beam is placed slightly
downstream in the path of the atoms (by dx with respect
to the cavity axis) and has a waist wP , therefore causing a
time dependent Rabi frequency

VP�t� � V0 exp

"
2

µ
ty 2 dx

wP

∂2
#

. (2)

The pump frequency is near resonant with the transition
between ju, 0� and je, 0�, thereby coupling these states.

In a frame rotating with the cavity frequency and the
pump laser frequency, the Hamiltonian is given by

5P3/2

5S1/2

F
4

3 = |e>

2
1

3 = |u>

2 = |g>

atom-cavity
coupling 2g(t)

pump
laser
ΩP(t)

∆HFS = 3 GHz

∆P ∆C

λ
= 

78
0 

nm

FIG. 1. Scheme of the relevant levels, transitions, and detun-
ings of the 85Rb atom coupled to the pump laser and the cavity.
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H�t� � h̄	DPju� 
uj 1 DCjg� 
gj
1 g�t� �je� 
gja 1 ayjg� 
ej�
1

1
2 VP�t� �je� 
uj 1 ju� 
ej�� . (3)

Here, DC and DP denote the detunings of the cavity and
the pump beam from their respective atomic resonances,
and a and ay are the annihilation and creation operators
of the cavity field. The pump beam is treated semiclassi-
cally. On Raman resonance, i.e., for DC � DP , one of the
eigenstates of this interaction Hamiltonian reads

ja0�t�� �
2g�t� ju, 0� 2 VP�t� jg, 1�q

4g2�t� 1 V2
P�t�

. (4)

This is a dark state without any contribution from the
electronically excited level je, 0�. Therefore losses due
to spontaneous emission cannot occur, provided the state
vector of the system, jC�, follows ja0� throughout the
Raman excitation.

The atom is prepared in state ju� before it enters the
empty cavity, i.e., atom and field start in state ju, 0�. Since
the pump beam is displaced by dx with respect to the
cavity axis, the atom is subject to a counterintuitive delayed
pulse sequence, i.e., due to the initial condition 2g ¿ VP ,
the evolution starts with 
C ja0� � 1. The subsequent
interaction with the pump beam leads to VP ¿ 2g, which
implies the evolution of ja0� into state jg, 1�. Provided the
state vector jC� is able to follow, the system is transferred
to jg, 1�, and a photon is placed in the cavity mode. Since
this photon is emitted with the cavity energy decay rate,
2k, the empty cavity state, jg, 0�, is finally reached and the
atom-cavity system decouples from any further interaction.

This simple excitation scheme relies on three conditions.
First, the detunings of the cavity, DC , and of the pump
pulse, DP , must allow a Raman transition, i.e.,

jDC 2 DPj , 2k . (5)

Second, the condition for jC� adiabatically following ja0�
must be met [4,5],

�2g0wC�y, V0wP�y� ¿ 1 . (6)

Third, either the interaction time must be significantly
longer than �2k�21 to allow the emission of the photon
before it is reabsorbed by the atom due to coherent popu-
lation return [4,6] or, alternatively, the interaction with the
pump beam must be strong when the atom leaves the cav-
ity to avoid this reverse process.

A numerical simulation for a single atom crossing the
cavity is shown in Fig. 2. To include the cavity-field
decay rate, k, and the spontaneous emission rate of the
atom, G, we have employed the density-matrix formalism
described in [4]. For the resonant situation, DP � DC �
0, shown here, the total emission probability, Pemit, is ex-
pected to reach 90%. For the considered waists and ampli-
tudes, Fig. 2(c) shows that Pemit reaches its maximum for
dx�y � 45 ms. Note also that Pemit is vanishingly small if
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FIG. 2. Simulation of a resonant atom-cavity interaction se-
quence for a cavity decay constant, 2k � 2p 3 2.5 MHz, an
atomic decay constant of G � 2p 3 6 MHz, and atoms trav-
eling at y � 2 m�s. (a) VP�t� and 2g�t� shown for experi-
mental amplitudes and waists, wC � 35 mm and wP � 50 mm.
(b) Photon emission rate for a delay of dx�y � 45 ms. The inte-
gral of the rate yields a total photon emission probability, Pemit,
of 90%. (c) Pemit as a function of the delay, dx�y, between cav-
ity and pump interaction. (d) Pemit as a function of the atomic
position on the cavity axis for a delay of dx�y � 35 ms.

the interaction with the pump beam coincides or precedes
the interaction with the cavity mode. Figure 2(d) shows
Pemit as a function of the atom’s position on the cavity
axis for the delay realized in the experiment. Because of
the standing wave mode structure, the emission probability
is zero at the nodes, and shows maxima at the antinodes.
Since the dependence of Pemit on the position dependent
coupling constant, g, is highly nonlinear and saturates for
large g, the gaps around the nodes are much narrower than
the plateaus surrounding the antinodes.

Figure 3 depicts the case where DP fi DC . It is obvious
that Pemit is close to unity if the excitation is Raman reso-
nant �DP � DC�. However, for the delay dx�y � 35 ms
chosen here, a smaller signal is expected for DP � DC �
0, since the waist of the pump, wP , is larger than wC , and
resonant excitation of the atom prior to the interaction with
the cavity mode cannot be neglected.

To realize the proposed scheme, we have chosen the
setup sketched in Fig. 4. A cloud of 85Rb atoms is prepared
in the 5S1�2, F � 3 state and released from a magneto-
optical trap (MOT) at a temperature of �10 mK. A small
fraction (up to 100 atoms) falls through a stack of apertures
and enters the mode volume of an optical cavity at a speed
of 2 m�s. The cavity is composed of two mirrors with a
curvature of 50 mm and a distance of 1 mm. The waist
of the TEM00 mode is wC � 35 mm, and in the antinodes
the coupling coefficient is g0 � 2p 3 4.5 MHz. The fi-
nesse of 61 000 corresponds to a linewidth 2k � 2p 3
2.5 MHz (FWHM), which is significantly smaller than the
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FIG. 3. Photon emission probability as a function of cavity and
pump detuning, calculated for a pulse delay of dx�y � 35 ms
and the parameters of Fig. 2. The chosen delay gives the best
fit with the experimental data shown in Fig. 5.

natural linewidth of the 85Rb atoms. While one cavity mir-
ror is highly reflective �1 2 R � 4 3 1026�, the transmis-
sion of the other is 253 higher to emit the photons in one
direction only. A single-photon counting module (SPCM)
with a quantum efficiency of 50% is used to detect them.

A reference laser is used to stabilize the cavity close to
resonance with the 5S1�2, F � 2 $ 5P3�2, F � 3 transi-
tion with a lock-in technique. However, since an empty
cavity is needed for the experiment, this laser is blocked
3.7 ms before the atoms enter the cavity.

The pump beam is close to resonance with the
5S1�2, F � 3 $ 5P3�2, F � 3 transition and crosses the
cavity transverse to its axis. This laser is focused to a waist
of 50 mm and has a power of 5.5 mW, which corresponds
to a peak Rabi frequency V0 � 2p 3 30 MHz.

The desired counterintuitive pulse sequence for STIRAP

is realized by time of flight. The atoms first enter the
cavity mode and therefore experience a strong coupling on
the anti-Stokes transition, whereas the interaction with the
pump beam is delayed, since it crosses the cavity mode
slightly downstream. This delay has been optimized to
achieve a high flux of photons leaving the cavity.

FIG. 4. Sketch of the experimental setup. The pump beam is
displaced with respect to the cavity mode.

Figure 5(a) shows the number of counted photons
emerging from the cavity as a function of the pump pulse
detuning, DP , in case of a resonant cavity, DC � 0. The
detunings of the cavity and the pump laser are both ad-
justed by means of acousto-optic modulators. To register
the data, the MOT has been loaded and dropped across the
cavity 50 times. The atom cloud needs 6.5 ms (FWHM)
to cross the cavity mode, and, within this interval, the
photons emerging from the cavity are measured by the
SPCM and recorded by a transient digitizer during 2.6 ms
with a time resolution of 25 MHz. Therefore, the signal
is observed for a total time of 130 ms. Because of the
dark count rate of 390 Hz of the SPCM, the total number
of dark counts in the interval is limited to 51 6 7.

In the resonant case, one expects a small probability
for atomic excitation. This could lead to a small but
cavity enhanced spontaneous emission into the cavity
mode, as has been shown previously [12]. Our numerical
simulation shows that an excited atom at the antinode
emits into the resonant cavity mode with a probability
that can be as high as 26%, indicating that even in this
case most of the spontaneously emitted photons are lost
in a random direction. This loss explains the smaller
peak emission rate with respect to the off-resonant cases
discussed below. Note that the cavity mode covers only
a small solid angle of �4p 3 2.6 3 1025 sr, therefore
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FIG. 5. Number of photons from the cavity as a function of the
pump laser detuning, DP , for three different cavity detunings.
The solid lines are Lorentzian fits to the data.
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the calculated spontaneous emission rate into the cavity
is enhanced by a factor of 104. However, the linewidth is
subnatural, and therefore the observed signal cannot be
attributed to an excitation by the pump beam followed by
enhanced spontaneous emission.

This is even more evident if the cavity is detuned
[Figs. 5(b) and 5(c)]. The emission peak is pulled away
from the atomic resonance following the Raman resonance
condition, DP � DC . Such a displacement proves that the
light emission is not the result of a pump transition fol-
lowed by enhanced spontaneous emission into the cavity.
Moreover, DP is too high for an electronic excitation of the
atoms. Therefore, the far out-reaching wings of the pump
beam no longer excite the atoms prior to their interaction
with the cavity mode. The losses vanish, and the peak
photon emission probability is higher than for the resonant
case. Note also that the observed linewidth is much smaller
than the natural linewidth, G � 2p 3 6 MHz, of the
atom. For DC � 22p 3 15 MHz, the line is only 3 MHz
wide and approaches the linewidth 2k � 2p 3 2.5 MHz
of the cavity, which also limits the width of the Raman
transition, since 2k is the decay rate of the final
state, jg, 1�.

In our discussion, we have assumed that the atoms in-
teract with the cavity one-by-one. This is justified ac-
cording to the following estimation: A mechanical slit
restricts the atom’s maximum distance from the cavity axis
to 650 mm. The spatial variation of g along [Fig. 2(d)]
and perpendicular to the cavity axis reduces the average
emission probability to 37% per atom crossing the slit and
the pump beam. Because of the low quantum efficiency
of the SPCM and unavoidable cavity losses, only about
40% of the generated photons are detected. Therefore
the maximum measured rate of 230 events�130 ms cor-
responds to a generation rate of 4.4 photons�ms, and at
least 12 atoms�ms are needed to explain this signal. Since
the photon generation takes 12 ms [FWHM, Fig. 2(b)], the
probability that a second atom interacts with the cavity si-
multaneously is 14%. This is small and, hence, negligible.

All observed features are in excellent agreement with
our simulation, and we therefore conclude that the photon
emission is caused by a vacuum-stimulated Raman tran-
sition, i.e., the coupling to the cavity, g�t�, and the Rabi
frequency of the pump laser, VP�t�, are both high enough
to ensure an adiabatic evolution of the system, thus forcing
the state vector jC� to follow the dark state ja0� through-
out the interaction. Loss due to spontaneous emission
is suppressed, and the photons are emitted into a single
mode of the radiation field with well-determined frequency
and direction.

The scheme can be used to generate single, well-
characterized photons on demand, provided the Raman
excitation is performed in a controlled, triggered way.
In contrast to other single-photon sources [13], these
photons will have a narrow bandwidth and a directed

emission. Finally, we state that the photon generation
process depends on the initial state of the atom interacting
with the cavity. If the atom is prepared in a superposition
of states jg, 0� and ju, 0�, prior to the interaction, this state
will be mapped onto the emitted photon. A second atom
placed in another cavity could act as a receiver, and, with
the suitable pump pulse sequence applied to the emitting
and the receiving atom, a quantum teleportation of the
atom’s internal state could be realized [14].

This work was partially supported by the focused re-
search program, “Quantum Information Processing,” of
the Deutsche Forschungsgemeinschaft and the QUBITS
project of the IST program of the European Union.
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Collisional avalanches are identified to be responsible for an 8-fold increase of the initial loss rate of a
large 87Rb condensate. We show that the collisional opacity of an ultracold gas exhibits a critical value.
When exceeded, losses due to inelastic collisions are substantially enhanced. Under these circumstances,
reaching the hydrodynamic regime in conventional Bose-Einstein condensation experiments is highly
questionable.

DOI: 10.1103/PhysRevLett.87.170404 PACS numbers: 03.75.Fi, 32.80.Pj, 34.50.–s, 82.20.Pm

One of the current goals in the field of Bose-Einstein
condensation (BEC) is the production of a condensate in
the collisionally opaque or hydrodynamic regime, where
the mean free path of an atom is much less than the size
of the sample. This would offer the opportunity to study
striking phenomena such as quantum depletion or dynami-
cal local thermal equilibrium. In this context, one possible
approach is to increase the interaction among the atoms by
means of Feshbach resonances [1]. It has been observed,
however, that in their vicinity the large cross section for
elastic collisions is accompanied by a dramatic increase of
atom losses [2,3]. Hence, it seems advantageous to follow
a different route by producing large and dense condensates.

In this Letter, we conclude that the collisionally opaque
regime can hardly be reached in alkali BEC experiments.
We identify an intrinsic decay process that severely limits
the average column density 
nl� of condensates at values
achieved in present BEC experiments. It is based on colli-
sional avalanches that are triggered by inelastic collisions
between condensate atoms. A considerable part of the en-
ergy released in these initiatory collisions is distributed
among trapped atoms resulting in a dramatic enhance-
ment of the total loss from the condensate. In analogy
to the critical mass needed for a nuclear explosion, we de-
fine a critical value of the collisional opacity 
nl�ss, with
ss � 8pa2 the s-wave cross section for like atoms and
a the scattering length. The critical opacity equals 0.693,
corresponding to a collision probability of 0.5. Related
scenarios have been discussed in Refs. [4,5], but were as-
sumed to play a minor role in the experimentally relevant
region. However, we present strong experimental evidence
that the anomalous decay of our 87Rb condensate is caused
by collisional avalanches. This is supported by the good
agreement of a simple model with the data.

The crucial point for the occurrence of an avalanche is
whether the products of a one-, two-, or three-body decay
process have a substantial probability

p�E� � 1 2 exp	2
nl�s�E�� (1)

of undergoing secondary collisions before leaving the trap
[6], with s�E� the total cross section at kinetic energy E.
The collision probability varies significantly with tempera-
ture and is usually highest in the s-wave scattering regime.

Here, the differential cross section is isotropic in the
center-of-mass system; in the laboratory system the two
atoms fly apart at an angle of p�2 on average. The energy
of the projectile is on average equally distributed among
the two colliding atoms. This implies that each collision
results in two new atoms that both can continue their col-
lisional havoc in the trap until they leave the condensate
(Fig. 1). If the probability for collisions is higher than
0.5, the average number of colliding atoms increases with
every step of the collisional chain which now becomes
self-sustaining.

To calculate the total loss from the condensate, we start
from the well-known loss rates �Ni � 2KiN
ni21�, with
i � 1, 2, 3 associated with one-, two-, and three-body de-
cay processes with rate constant Ki, respectively. Here, N
is the number of atoms in the gas with the density distribu-
tion n��r�. Depending on the energy of the decay products,
typically a few or even no further collisions are needed to
generate an atom with an energy Ei,s whose next collision

thermal cloud

condensatedriving
collision

/2

FIG. 1. Sketch of a collisional avalanche in a homogeneous
condensate with a radius equal to twice the mean free path
�nss�21, illustrating the enhancement of the loss rate.
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would be in the s-wave regime. The probability for
this collisional chain is pi,1 ? pi,2 · · · � p̃i with pi,n �
p�Ei,n�. During this process, on average g̃i atoms are lost
from the condensate without undergoing secondary colli-
sions. Next, an atom with energy Ei,s induces an avalanche
with a collision probability ps � 1 2 exp	2
nl�ss� that
now is independent of energy. Consequently, atoms
with an energy Ei,s�2k in the kth step of an avalanche
are generated with a probability of p̃ipk

s . Since every
collision now results in two projectiles in the next step,
the degeneracy of step k is 2k. The rate at which atoms
are lost from this avalanche step is p̃i

�Ni2kpk
s �1 2 ps�

and the total loss rate from the condensate becomes

�Ni,aval � �Ni

∑
g̃i 1 p̃i�1 2 ps�

kmax
iX

k�0

2kpk
s

∏
, (2)

where the sum extends over all relevant avalanche steps.
To determine the cutoff kmax

i , note that avalanche-
enhanced losses can occur up to a step with an energy on
the order of the chemical potential. However, when the en-
ergy falls short of the trap depth, Etrap, the atoms lost from
the cold sample are still trapped. They will repeatedly
penetrate the cloud and thus give rise to heating. This will
either be compensated by an evaporation of atoms from the
trap or will reduce the condensed fraction by increasing
the temperature. Both possibilities are not described by
Eq. (2). Therefore, we use kmax

i # log2�Ei,s�Etrap� as a
cutoff and, hence, account only for immediate trap losses.

The additional heat-induced depletion caused by trapped
avalanche atoms can easily be estimated for the case that
the temperature is fixed by the trap depth. Each atom par-
ticipating in step �kmax

i 1 1� of the avalanche will finally
dump about the energy Etrap�2 into the system. Since any
evaporated atom takes the energy Etrap with it, about half
as many atoms as are produced in the step �kmax

i 1 1� of
the avalanche have to be evaporated to keep the tempera-
ture constant. Hence, the evaporation rate is

�Ni,heat  �1�2�p̃i
�Ni2

�kmax
i 11�p�kmax

i 11�
s . (3)

Equation (2) predicts substantially enhanced losses as
soon as the critical opacity is exceeded. However, for a
given kmax

i there is a second critical value of the opacity
above which the loss rate �Ni,aval decreases again. Now,
with increasing opacity the limited trap depth continuously
looses its shielding effect against the products of inelas-
tic collisions, since most avalanches generate trapped par-
ticles. In the collisional regime with ps  1, the energy
released in an inelastic process will be entirely dissipated
in the system. This results in an explosionlike particle loss
according to Eq. (3).

To apply our model, the column density must be evalu-
ated according to


nl� �
Z

	n��r��N�
Z

	n��r 1 �R��4pR2� d3R d3r (4)

� cnpW�

Z `

0
dx�1 1 x2�21�1 1 ´2x2�21�2, (5)

where the second line is the result for the case of a har-
monic potential with cylindrical symmetry. Here, ´ �
vk�v� is the ratio of the trap frequencies and np is the
peak density of the cold sample. For the parabolic den-
sity distribution of the condensate, W� is the half radial
width and c � 5�12. Because of the scaling np ~ N2�5

and W� ~ N1�5 the column density of a condensate scales
as N3�5, so that the effect of multiple collisions is quite
persistent. For a Gaussian distribution we find W� � s�,
c �

p
p�8, and a scaling according to 
nl� ~ N . In a

harmonic potential, the ideal Bose distribution can be rep-
resented as a sum of Gaussian distributions and the lat-
ter result can thus be used to evaluate the column density
close to degeneracy. For a Bose distribution, the opac-
ity scales disproportionate to N , resulting in a faster de-
cline of the avalanche enhancement than in the case of a
Thomas-Fermi distribution.

The next step is to identify the energies of the initial de-
cay products. For a background gas collision, E1,1 depends
on the mass of the impinging particle that is assumed to
be Rb in our system. In the case of spin relaxation, E2,1
equals either the Zeeman energy or the hyperfine splitting
energy. For three-body recombination E3,1 has to be de-
rived from the binding energy of the most weakly bound
level in which the dimer is predominantly formed. Clearly,
the molecule is likely to be deactivated in a subsequent in-
elastic collision with a condensate atom [7,8]. Deactivat-
ing collisions will be a serious problem in highly opaque
clouds where atoms with higher energies still have high
collision probabilities. In our experiment, however, the
collision probability is significantly smaller at typical de-
activation energies of 0.1 K than at the binding energy of
the molecules in the last bound level. In our analysis we
therefore do not account for avalanches triggered by de-
activating collisions. The values of all parameters used to
calculate the effective losses are listed in Table I. Note
that in order to account for the avalanches triggered by
the two-body decay, the partial rates associated with the
various exit channels are needed since they correspond to
different energies released in the process.

Finally, the presence of a diffuse atom cloud in the trap-
ping volume can cause additional losses (see, e.g., [4]).
In a steep magnetic trap with a depth of a few mK, such
an “Oort” cloud is mainly a consequence of incomplete
evaporation at high magnetic fields [9] or low radio fre-
quency (rf) power. In our experiment, the temperature of
the diffuse cloud will probably be on the order of 400 mK,
corresponding to the measured initial temperature of the
magnetically trapped cloud. Even in a rf-shielded trap
these atoms will penetrate the condensate giving rise to
an additional decay rate according to 1�t � nOortssyOort,
with nOort and yOort the density and the thermal velocity of
the penetrating atoms, respectively. Collisions with Oort
atoms will also trigger avalanches, because the collision
energy is close to the s-wave regime.

To compare our data with the predictions of the model,
the differential and the total scattering cross sections are

170404-2 170404-2
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TABLE I. Rate constants for the initiatory processes and energies of the subsequent collisions
that are necessary to generate the first avalanche atom with energy Es .

Rate constant DE1, . . . , DEn � Es

i Type Ki 	�3�2�kB�

1 Background 1��39 s�a 4 K, 100, 5, 0.5 mK

2 Zeemanb 1.4 3 10218 cm3�s 0.022 mK
2 3 Zeemanc 3.7 3 10217 cm3�s 0.045 mK

Hyperfined 2.2 3 10216 cm3�s 109, 5, 0.5 mK
2 3 Hyperfinee 1.3 3 10216 cm3�s 219, 8, 0.5 mK

3 Recombinationf 1.8 3 10229 cm6�s 0.54 mKg

a[17]; b,c,d,e[11,18]; f[15,19]; g[20].

needed. Above a kinetic energy E�kB of 60 mK we
calculate the energy transfer by collisions using a model
function for the small-angle differential cross section [10].
For collisions below 60 mK we use the numerical results
from a full quantum treatment [11]. For 87Rb in the j2, 2�
state, the large contribution of a d-wave scattering reso-
nance to the total cross section leads to s�E�  4 3 ss

at an energy of E�kB � 580 mK in the lab system. This
almost coincides with the energy transferred to the third
atom in a recombination event (Table I). Hence, a sec-
ondary collision of this atom will occur with a proba-
bility of 0.99 already when the probability for s-wave
collisions among condensate atoms is 0.7. For kinetic
energies E�kB # 1.5 mK, the total cross section obeys
s�E� * ss. For simplicity, we use ss for calculating
avalanches in this energy range. Our model therefore
yields a lower bound for the total loss.

The apparatus used to study the condensates has been
described previously [12,13]. The experiment is performed
with 87Rb atoms in the j2, 2� state. A Ioffe-Pritchard mag-
netic trap with a bias field of 2 G and oscillation frequen-
cies of v��2p � 227 Hz and vk�2p � 24.5 Hz is used.
The atoms are cooled by rf evaporation and then held in
the trap for a variable time interval. During the storage
time, the trap depth is set to Etrap�kB � 4.4 mK by means
of the rf shield. From the width of the density distribu-
tion after expansion the atom number NC in the conden-
sate is determined. At minimum storage time, we find
NC � 1.1 3 106 atoms and np � 6.4 3 1014 cm23 and
no discernible noncondensed fraction.

The decay curve of the condensate is shown in Fig. 2,
revealing that about half the initial number of atoms is lost
within the first 100 ms. The dotted line shows the theo-
retical prediction assuming that losses occur solely due to
background gas collisions, spin relaxation and recombina-
tion (Table I). The observed loss is 8 times faster than
predicted. Moreover, the additional decay is clearly non-
exponential and can therefore not result from primary col-
lisions with Oort atoms. Hence, multiple collisions have
to be taken into account.

Indeed, with 
nl�ss � 1.4 the critical opacity is con-
siderably exceeded. To the best of our knowledge, the
corresponding s-wave collision probability of ps � 0.76

has not been reached in published work on Rb conden-
sates in the off-resonant scattering regime. This explains
why our observations differ from those made in other
experiments [14–16]. The dashed line displayed in Fig. 2
has been obtained by numerically integrating the rate
equation �N �

P3
i�1� �Ni,aval 1 �Ni,heat� that describes

avalanche-enhanced losses according to Eqs. (2) and
(3), without any adjustable parameter and neglecting the
contribution of an Oort cloud. We find good agreement
between theory and experiment within the first 200 ms,
showing that collisional avalanches triggered by recombi-
nation events are responsible for the fast initial decay.

To investigate the role of an Oort cloud, we have per-
formed a similar experiment with an atom cloud at a lower
density. Figure 2 shows the decay of a noncondensed cloud
with 1 3 107 atoms at a temperature of 1 mK and a peak
density of 3.5 3 1014 cm23. The number of atoms is de-
termined from the total absorption of near-resonant laser
light. The trap depth is limited to 10 mK, according to
the higher temperature of the sample. Again, the decay
is nonexponential and initially about two times faster than

FIG. 2. Decay of the condensate and the thermal cloud. The
horizontal line corresponds to the critical opacity. For com-
parison, the calculated decay due to the initial one-, two-, and
three-body loss rates without (dotted line) and with avalanche
enhancement (dashed line) are shown. The full line includes the
effect of an Oort cloud with avalanche enhancement.
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predicted by the primary loss rates (dotted line). At an
opacity of 0.9, obtained by assuming an ideal Bose dis-
tribution, we already expect a weak avalanche enhance-
ment. This allows us to test our model in a different
regime since in a thermal cloud avalanches are less persis-
tent than in a condensate. In addition, the intrinsic two- and
three-body decay rates will die out during the observation
time whereas the effect of an Oort cloud as a one-body de-
cay will persist. The solid line in Fig. 2 is the prediction of
our model where we have included an avalanche-enhanced
decay rate caused by an Oort cloud. Good agreement with
the data is obtained for 1�t � 1�7.8 s, corresponding to
nOort � 5 3 108 cm23 at 400 mK. Such a density is pro-
duced by only a few times 105 atoms and appears realis-
tic in view of the more than 109 atoms that were loaded
into the magnetic trap. It is also consistent with the fact
that we have no direct experimental evidence for an Oort
cloud and that the initial decay is correctly predicted by
the model even if the contribution of the Oort cloud is ne-
glected (dashed line).

We can now calculate the extra loss rate of the con-
densate due to an Oort cloud. Since the two experiments
described above are performed under identical conditions,
the density of the Oort cloud is essentially unchanged in
the two measurements. As can be seen from the solid line
in Fig. 2, the small extra contribution from the Oort cloud
does not change the predicted initial decay, but slightly
improves the agreement between the model and the data
for longer times. The small remaining discrepancy can be
the result of an additional decay not accounted for in our
model. In particular, avalanches will seriously perturb the
equilibrium of the condensate by inducing local fluctua-
tions of the mean-field energy [5]. Since the damping rate
of excitations can be small compared to the elastic colli-
sion rate, we expect that this process introduces a second
time scale to the decay that depends on the history of the
condensate.

The simultaneous agreement of our model with the two
complementary data sets strongly supports the evidence
for the occurrence of collisional avalanches in our experi-
ments. Our analysis reveals that the density of a cold gas is
severely limited as soon as the s-wave collisional opacity
exceeds the critical value of 0.693. It is important to point
out that the anomalous initial decay of the condensate is
attributed to collisional avalanches almost exclusively trig-
gered by the intrinsic process of recombination and that no
free parameters are introduced in the model. We have no
evidence for the contribution of an Oort cloud to the fast
initial decay observed in our experiments.

We conclude that it will be hard to enter the collisional
regime in alkali BEC systems. For 87Rb in the j2, 2� state
the prospects are even worse due to the large collision cross

section of the recombination products. Hydrodynamic
conditions might be reached in the longitudinal direction
in an extremely prolate geometry, as can be seen from
Eq. (5). In the vicinity of Feshbach resonances, collisional
deactivation of the highly excited molecules can also cause
avalanches [7] which, in turn, might contribute to the fast
decay reported in Ref. [2]. This offers a new application
for a condensate of, e.g., ground-state helium atoms, where
recombination is not possible.

The authors are indebted to B. J. Verhaar for providing
us with the results of calculations regarding the scattering
cross sections and the spin relaxation rates. H. C. W. B.
gratefully acknowledges the hospitality of JILA, NIST, and
the University of Colorado, Boulder.
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A new method to track the motion of a single particle in the field of a high-finesse optical resonator
is analyzed. It exploits sets of near-degenerate higher-order Gaussian cavity modes, whose symmetry is
broken by the position dependent phase shifts induced by the particle. Observation of the spatial intensity
distribution outside the cavity allows direct determination of the particle’s position. This is demonstrated
by numerically generating a realistic atomic trajectory using a semiclassical simulation and comparing it
to the reconstructed path. The path reconstruction itself requires no knowledge about the forces on the
particle. Experimental realization strategies are discussed.
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In a variety of pioneering experiments in the past few
years [1–3] it has been demonstrated and widely exploited
that a single near-resonant atom can significantly influence
the field dynamics in a microscopic high-finesse optical
resonator. Vice versa, the light field also influences the mo-
tion of a cold atom, which leads to an intricate dynamical
interplay of atomic motion and field dynamics [4,5]. As a
striking example, trapping of a single atom in the field of a
single photon has become feasible [6,7]. This was experi-
mentally substantiated by analyzing the characteristics of
the measured output field. The time variation of the trans-
mitted intensity shows very good agreement with theo-
retical simulations [8] of the confined three-dimensional
motion of the atom in the cavity light field including fric-
tion and diffusion [9–11]. Carrying this analysis further
it was even possible to associate piecewise reconstructed
trajectories with recorded time-dependent intensity curves
[7,12], utilizing the knowledge of the near-conservative po-
tential. However, the reconstruction was possible only for
atoms with sufficiently large and conserved angular mo-
mentum around the cavity axis and can be done only up
to an overall angle and the direction of rotation. The rea-
son was that only a single cavity mode, the TEM00 mode,
was used. Consequently, only a single spatial degree of
freedom of the atom could be extracted directly from a
measurement of the transmitted field.

In this Letter we investigate a new method to obtain
two-dimensional position information on the atom using
near frequency-degenerate higher-order transverse modes.
Examples are the Hermite-Gaussian (HG) or the Laguerre-
Gaussian (LG) modes, which possess a rectangular matrix
of intensity minima and maxima or a pattern of concentric
rings in the transverse plane. The atom inside the reso-
nator redistributes photons from one mode to the other
and tends to phase lock them. Moreover, it induces fre-
quency shifts and losses dependent on its position. In total,
the symmetry of the intracavity field determined by cavity
and pump geometry is perturbed and characteristic optical

patterns containing information on the atomic position ap-
pear. These patterns are reminiscent of a toy kaleidoscope
in which small objects in a symmetric arrangement of mir-
rors create images of a given symmetry. Our technique
yields much more information on the atomic position and
motion as compared to the single-mode case and allows
extraction of the atomic position from a measurement of
the field pattern.

To treat this problem quantitatively we generalize pre-
vious semiclassical models of dynamical cavity QED to
include finite sets of nearly degenerate eigenmodes. For a
weakly saturated atom we derive a coupled set of equations
for the mode amplitudes and the atomic center-of-mass
motion. To be specific, let us consider a single two-level
atom with transition frequency va and linewidth G (half
width at half maximum) moving inside a high-finesse op-
tical resonator with transversal LG eigenmodes upm�r�,
where p is the radial mode index and m is the azimuthal
mode index [13],

upm�r, u, z� � Cpm cos�kz�e2� r2�w 2
0 �1imu

3 �21�p

µ
r
p

2
w0

∂jmj
Ljmj

p

µp
2 r2

w 2
0

∂
, (1)

where La
n is the generalized Laguerre polynomial. The

normalization parameters, Cpm, are chosen such thatR jupm�r, u, z�j2 dV � dw 2
0 p�4 � V00 (the TEM00

mode volume), where w0 is the cavity waist and d the
cavity length. At each spatial point the local atom-mode
couplings are gpm�r� � g0upm�r�, where g0 is the maxi-
mum coupling of the TEM00 mode. The electric field is
given by

P
pm apmupm�r�, where apm is the amplitude of

the mode upm. For simplicity, we assume that the mirrors
are ideally spherical and have a uniform coating. Then,
all these modes have a common eigenfrequency v and
field decay rate k. However, the model can be extended
to incorporate nondegenerate modes in a straightforward
manner. The cavity is assumed short compared to the
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Rayleigh length of the mode so that the wave fronts are
approximately plane with z dependence cos�2pz�l�. The
resonator is externally driven by a coherent pump field of
frequency vp which pumps the modes with strengths hpm.
Assuming low atomic saturation, we can adiabatically
eliminate the internal atomic dynamics and treat the atom

as a linearly polarizable particle, which induces a spatially
dependent phase shift and loss. In the semiclassical limit,
where we consider the center-of-mass motion of the atom
classically, we can derive the following set of coupled
differential equations for the mode amplitudes apm�t�, the
atomic position ra�t�, and momentum pa�t� [14]:

�ra �
pa

M
, �pa � 2U0

X
m,n

=	upm�ra�u�
pn�ra��apma�

pn 1 ig

3
X
m,n

	upm�ra�=u�
pn�ra� 2 u�

pn�ra�=upm�ra��apma�
pn 1 x ,

�apm � hpm 1 �iD 2 k�apm 2 �iU0 1 g�upm�ra�
X
n

u�
pn�ra�apn 1 jpm . (2)

Here, M is the atomic mass, U0 � dg2
0��d2 1 G2� with

d � vp 2 va the single-photon optical light shift, g �
Gg2

0��d2 1 G2� the spontaneous emission rate for a single-
photon field, D � vp 2 v the cavity-pump detuning, and
x and jpm are Gaussian random variables which model
momentum and cavity field fluctuations, respectively.

For an atom at rest one can solve Eqs. (2) for the mean
stationary field amplitudes astat

pm �ra�, which in a parametric
way depend on the atomic position ra. We get

astat
pm �ra� �

h�
pm

iD 2 k
1

iU0 1 g

iD 2 k
u�

pm�ra�E0�ra� , (3)

where E0 is the electric field at the position of the atom,

E0�ra� �

P
p,m upm�ra�h�

pm

�iD 2 k� 2 �iU0 1 g�
P

p,m jupm�ra�j2 .

(4)

Note that the list of the values of the mode functions at
the position of the atom upm�ra� may be seen as coor-
dinates of a vector, which can be rotated into the form
	ueff�ra�, 0, 0, . . .�. Since any linear combination of the
modes can be considered as a mode as well, the atom-field
dynamics for an atom at rest thus reduces to the case of
a single effective mode ueff. This allows one to derive
simple analytical expressions for the steady state. For a
moving atom, this approach must be generalized, but still
helps in finding analytical expressions for friction and dif-
fusion coefficients for the atomic motion [15].

Let us now consider the family of three degener-
ate cavity modes with �p, m� � �1, 0�, �0, 22�, �0, 2�.
Figure 1 shows the steady state field intensities for
the empty cavity and for two different atomic posi-
tions. For the chosen parameters [rubidium atoms,
�g0, G, k� � 2p 3 �16, 3, 1.5� MHz, �h10, h022, h02� �
2p 3 �6.4, 0, 0�MHz, D � 22p 3 2.25 MHz, and d �
22p 3 114 MHz, leading to U0 � D, g � 2p 3
60 kHz] the atom distributes photons between the cavity
modes and changes their relative phases in such a way
that a local maximum of the spatial field intensity pattern
is created near the position of the atom. By a change of
the detuning between the pump laser, the cavity modes,
and the atomic transition, a local minimum can also be

achieved. Figure 1 shows the effect of the atom position
on the shape and overall intensity of the stationary field
distribution.

This dependence of the cavity field on the atomic posi-
tion suggests that measuring the cavity output field distri-
bution yields ample information on the atomic motion. In

FIG. 1. Transversal spatial intensity pattern of the stationary
cavity field for the empty cavity (a) and two atomic positions
indicated by the thick vertical line and a cross (b), (c).
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fact, it can be shown that the functions astat
pm �ra� can be

inverted almost everywhere to yield the atomic position
in three dimensions. Of course, one is limited by the
common symmetries of all modes. For instance, for the
system considered in Fig. 1, a 180± rotation around the
cavity axis forms a symmetry operation. Hence, the re-
construction of the atomic position from the cavity field
will always yield two equivalent positions. Other symme-
try operations are a shift of l�2 in the direction of the
cavity axis and a reflection at the nodes or antinodes of the
standing wave. Another limitation is that an atom cannot
be detected close to the (transversal) nodes of the pumped
mode (see Fig. 1a). However, it is possible to determine
directly from the photodetector signals whether the atomic
position can be obtained or not: reconstruction is pos-
sible if the transmission signal with an atom differs from
the signal of an empty cavity. Also, the nodal areas are
small and one is free to alternate rapidly between different
pump geometries. Alternatively, one can change the pump
geometry online when the atom approaches the nodal area
of the pumped mode.

Although in principle a full three-dimensional atomic
trajectory can be reconstructed, the method encounters
some complications. The longitudinal motion is in general
too fast to be resolved experimentally. This amounts to re-
placing the coupling constant g2

0 by its longitudinally aver-
aged value. A two-dimensional reconstruction still works
in this case, even if the precise factor by which the cou-
pling is reduced is unknown. Second, a single atom must
redistribute enough photons among the cavity modes. This
requires values of U0 of the order of the cavity field de-
cay rate k and hence the strong-coupling regime of cavity
QED. In this regime, the coherent coupling of the atom to
the cavity mode is larger than the decay constants of the
atomic dipole and the cavity field g0 . �k, G�, requiring
a small high-finesse cavity. Third, our arguments above
are based on a stationary cavity field. For an atom mov-
ing in the xy plane, we thus have to assume that the cavity
field follows the transverse atomic motion adiabatically.
This implies slow atomic motion and not too large opti-
cal forces. For strong coupling this is tantamount to low
intracavity photon numbers. The limitations are strongly
reduced in systems where the atom is held in place by other
forces, as, e.g., in ion traps. Fourth, in an actual experiment
the exact intracavity photon number can be deduced only
from the number of photons emitted by the cavity, which
is subject to statistical fluctuations (shot noise). These be-
come significant in the weak field case limiting the accu-
racy to which the cavity field and the atomic position can
be determined.

Despite all this we will now demonstrate with a realistic
sample trajectory that all of these conditions can be met
and a numerical reconstruction of the atomic path should
be possible using existing optical resonators [6,7]. For sim-
plicity we assume a quasi-two-dimensional situation where
the atom is trapped longitudinally close to an antinode
�z � 0� of the standing wave during the interaction time.

In a first step we create a sample trajectory for a single
atom traversing the resonator by integrating the stochastic
equations of motion (2) for a given initial atomic position
and velocity. This procedure includes all reactive and dis-
sipative optical forces which the cavity field imposes on the
atom [14], the backaction of the atom on the cavity field,
as well as the momentum and cavity field diffusion. A re-
sulting trajectory is depicted by the solid curve in Fig. 2.
The atom enters the resonator from below. By chance,
the atom encircles the cavity axis a few times before it is
ejected again.

The generated trajectory allows simulation of a realis-
tic cavity output signal. We assume an arrangement of
16 photodetectors at the cavity output port each counting
the numbers of photons detected in equally sized sectors
covering an angle of 22.5±. Because of the symmetry of the
system, the signals from opposing detectors can be added
without loss of information. We integrate the simulated
photon counts at each detector over a time interval of 100
cavity decay times 1�k to obtain the photon flux. For two
out of the eight pairs of photodetectors it is shown in Fig. 3.

We will now use only the generated fluxes to recon-
struct the atomic trajectory. First, for each time step
we determine the most probable atomic position by a
least-square comparison with a list of precalculated detec-
tor outputs corresponding to the steady-state field distri-
bution astat

pm �ra� for given atomic positions on a discrete
grid. Because of the twofold spatial symmetry, we always
obtain two equivalent points in that way. From a cho-
sen initial point we select the points forming a continuous
curve as a function of time. The spatial points obtained
in that way are indicated by the crosses in Fig. 2. For the
pump geometry chosen here, the field has a ring-shaped
field node, where the atom does not couple to the pumped
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FIG. 2. Central part of Fig. 1(a) with the simulated atomic
trajectory (solid curve), reconstructed atomic positions (crosses),
and fitted atomic path (dashed curve). The atom enters with a
velocity of 12 cm�s and the total trajectory takes 5300 k21 �
0.56 ms. The dashed circle indicates the dark ring of the pumped
cavity mode u10. The waist of the TEM00 mode is w0 � 29 mm.
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FIG. 3. Simulated photon flux (number of photons Nph per 100
k21) measured at two out of 8 photodetector pairs as a function
of time (units of k21). The inset depicts the arrangement of the
detectors on the cavity output, shaded areas correspond to the
plotted curves.

modes. Close to this ring, the reconstruction is difficult.
In principle there are ways around this problem, but here
the corresponding crosses are simply left out.

Because of shot noise in the measured photon fluxes
(Fig. 3), the reconstructed atomic positions show a certain
spatial spread. Since for the given parameters the momen-
tum diffusion in Eqs. (2) is small compared to the dipole
force, we fit a smooth curve to the discrete set of data. The
resulting reconstructed trajectory is shown by the dashed
curve in Fig. 2. Note that rotation by 180± forms an equiva-
lent solution, which can be selected by choosing an alter-
native initial condition. Comparing the reconstructed with
the original trajectory we note that for the depicted area
close to the cavity axis the reconstruction works very well
with an accuracy of w0�30 � 1 mm, which happens to be
of the order of an optical wavelength.

The proposed detector arrangement was chosen to al-
low for easy analytic integration of the field intensity over
the detector area and is not optimzed for the best re-
construction results. It might be constructed by segment
mirrors imaging onto an array of single-photon counting
detectors. Direct imaging on a high-sensitive high-speed
camera seems more practical. In this case one has to nu-
merically generate the lookup table to identify the most
probable atomic position for a given field distribution. The
construction of a suited cavity will be challenging. Scat-
ter, misalignment, and deformation of the high-reflectivity
mirrors must be kept to a minimum to prevent breaking of
the cylindrical symmetry, which could lift the frequency
degeneracy of the modes by too large of an amount. In the
cavity in Garching the three modes used in our numerical
example lie within a range of 22k. It seems reasonable to
assume that for a specially built cavity a splitting smaller
than k is feasible.

An extension of the idea presented here is to use a cavity
where modes with different longitudinal mode index are
degenerate. In that case, one can choose a combination

of modes with opposite parity to break the 180± rotation
symmetry. An example is a LG mode with even m degen-
erate with another one with odd m. Alternative geometries
involving many degenerate modes as of a confocal cavity
proposed in Ref. [16], will eventually lead to a single field
maximum near the position of the atom avoiding ambigu-
ities in the reconstruction.

In summary, we have shown that a high-finesse mi-
crocavity could be used as a real-time single-particle
detector with high spatial resolution. In contrast to
conventional single-atom detection schemes, the cavity
works as a phase-contrast microscope enhanced by the
inherent multipath interference of the high-finesse cavity.
The method does not rely on fluorescence, and hence can
also work for particles without a closed optical transition.
Using larger sets of higher-order modes results in the
encoding of more information in the field pattern allowing
one to obtain higher resolution and track several particles.
The scheme presented here could be implemented for
single atoms moving in presently available high-finesse
cavities, but possible applications extend beyond this sys-
tem. The method should, in principle, also be applicable
to large (bio)molecules in vacuum or even in solution.

P. H. and H. R. acknowledge support by the Austrian
Science Foundation FWF (Project No. P13435-TPH).
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Feedback on the Motion of a Single Atom in an Optical Cavity
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We demonstrate feedback on the motion of a single neutral atom trapped in the light field of a high-
finesse cavity. Information on the atomic motion is obtained from the transmittance of the cavity. This is
used to implement a feedback loop in analog electronics that influences the atom’s motion by controlling
the optical dipole force exerted by the same light that is used to observe the atom. In spite of intrinsic
limitations, the time the atom stays within the cavity could be extended by almost 30% beyond that of
a comparable constant-intensity dipole trap.

DOI: 10.1103/PhysRevLett.88.163002 PACS numbers: 32.80.– t, 42.50.–p

The principle of feedback is universal and finds wide-
spread applications in science and technology. For ex-
ample, feedback can stabilize a system subject to random
perturbations from the environment, even in the quantum
domain [1,2]. An interesting target of feedback control
is the motion of a single particle such as an ion [3] or a
neutral atom [4]. Here, feedback provides new avenues
not accessible to, e.g., standard laser cooling and trapping
techniques. In contrast to these techniques, which employ
a predetermined set of operations, feedback allows one to
control the particle depending on the outcome of a mea-
surement performed on the particle. A prime example is
stochastic cooling of charged particles in accelerator rings
[5]. This technique has also been proposed to cool an en-
semble of atoms [6] and, recently, a single trapped particle
[7]. So far, feedback control of a single neutral atom has
not been realized.

The key to feedback control is to observe the moving
particle with high spatial and temporal resolution. High
spatial resolution was achieved for a molecule embedded
in a solid [8] or an ion trapped in a radio-frequency field
[9]. For an atom, high spatial and temporal resolution can
be obtained by placing a high-finesse optical cavity around
the atom and driving the system with a laser [10,11]. If
the cavity waist is small, the transmittance of the cavity
depends strongly on the position of the atom [12,13]. At
the same time, the intracavity light itself influences the
atomic motion [14,15]. This allows one to catch an atom
entering the cavity by switching the laser intensity to a
higher value when the atom is detected in an antinode of
the cavity mode [16,17]. The atom is then stored in the
dipole trap until heating has increased its kinetic energy to
a value comparable to the trap depth.

This Letter reports on feedback, applied while the stored
atom moves inside the cavity. To illustrate the idea, sup-
pose that the atom has passed the deepest point of the po-
tential and moves uphill, thereby transforming its kinetic
energy into potential energy. Most of the potential energy
can be removed when the trap depth is reduced immedi-
ately after the atom has turned around. The atom will then
slowly move back towards the center, where the trap depth
is increased again. By repeating the sequence, and under

ideal conditions, the atom comes to a rest at the center.
Such a cooling strategy requires knowledge of the velocity
of the atom, which is derived from the time derivative of
the position. Therefore, we call this strategy “differentiat-
ing feedback.” The strategy resembles parametric cooling,
but has the advantage that the modulation of the trap po-
tential is automatically synchronized with the atomic mo-
tion. Note also that feedback cooling would be a natural
extension of cavity-mediated cooling, which is caused by
the delayed response of the intracavity intensity due to the
high Q of the cavity [14,18,19].

Another strategy that will be presented here attacks the
random momentum kicks due to spontaneous photon scat-
tering from the trap light. These kicks disturb the other-
wise regular motion of the atom in the dipole potential and
lead to heating. This heating is large when the atom is in
the region of high intensity at the cavity mode center. Since
here the dipole force vanishes, the light field can equally
well be turned off. Therefore, it is favorable to devise a
trapping strategy that uses a low intensity and, hence, heats
the atom only little when it is located near the trap center,
but switches to a high intensity and, hence, a larger dipole
force if the atom is further away. The pump power is now
a direct function of the position, and we call this strategy
“proportional feedback.”

In our experiment, these two feedback strategies and a
few deterministic strategies are implemented. The experi-
ment is constrained by both technical and fundamental ob-
stacles: The shot noise of the low-power (�10212 W)
light beam limits the amount of information on which the
feedback can react. The random character of the atomic
motion in a near-resonant light field and the shallow opti-
cal potential, which is only slightly larger than the atom’s
kinetic energy, impose further limits. Despite these diffi-
culties, it is possible to extend the time an atom spends
inside the cavity by means of feedback.

Our setup is similar to that described in Ref. [11].
Rubidium-85 atoms are launched towards the cavity by a
pulsed atomic fountain at a repetition rate of about 0.3 Hz.
On their way up, the atoms are optically pumped into
the mF � 3 Zeeman sublevel of the 52S1�2F � 3 state.
The flux is kept so low that only in one out of 17 shots
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a strongly coupled atom is observed in the cavity. The
entrance velocities of the atoms vary between �0.08 and
0.26 m�s, depending on the arrival time in the cavity. The
cavity has a finesse of 4.4 3 105 and is near resonant with
the atomic transition to the 52P3�2F � 4, mF � 4 state
at a wavelength of 780 nm. Our system is characterized
by half the single-photon Rabi frequency for an atom in
an antinode, and the decay rates of the cavity field and
the atomic dipole, �g0, k, g��2p � �16, 1.4, 3� MHz, re-
spectively. A circularly polarized laser pumps the TEM00
mode of the cavity at a rate h, normalized so that h2�k2 is
the mean number of photons in the resonant cavity without
an atom. The frequency of the laser is tuned 2p 3 5 MHz
below the cavity resonance and 2p 3 45 MHz below the
atomic transition. For these detunings, an atom in the
standing wave increases the cavity transmittance. Improv-
ing on our previous experiments [17], the cavity frequency
is stabilized using a second laser resonant with a different
longitudinal cavity mode at 785 nm. This light is insen-
sitive to the presence of an atom so that the stabilization
can be operated continuously. In contrast to Ref. [20],
the stabilization laser is weak and does not influence the
motion of the atom. The dipole force exerted by the near-
resonant pump field, however, induces a fast oscillation
of the atom in the direction of the cavity axis. This leads
to an interesting interplay of cavity-mediated cooling and
diffusion [21,22], but this is not relevant in the context of
this Letter. Only the motion in the plane perpendicular to
the cavity axis is slow enough to allow external feedback.
In this plane, the dipole force does not change the atom’s
angular momentum, nor can the atom’s angular position be
measured. Both drawbacks can in principle be overcome
by using higher order transversal modes [23].

In order to implement the feedback loop, analog elec-
tronics was set up to react on the changes of the cavity
transmittance; see Fig. 1. To this end, the intensity of
the light transmitted through the cavity is detected with a
photon counter. The overall efficiency for detecting a pho-
ton that escapes the cavity mode amounts to about 10%.

Amplitude
Control

Detector

Laser

Set Monitor

Strategies

Hold high RampHold low Active fdbck

time

FIG. 1. Experimental setup showing the cavity and the control
unit with the different strategies. “Hold low,” “hold high,” and
“ramp” are deterministic. In the feedback strategies, the pump
power after the initial stopping pulse depends on the motion of
the atom, but is bound as indicated by the two dashed lines.
The atomic fountain (not shown) injects slow 85Rb atoms from
below into the cavity.

The photon clicks are recorded by a computer and simulta-
neously sent to a count-rate-to-voltage converter (CRVC).
The CRVC signal is passed through a 10 kHz low-pass fil-
ter and is used for the trigger and feedback electronics.
The 10 kHz is large enough to pass the changes caused by
the radial motion of the atom. The signal is then divided
by the measured input power to obtain the transmittance
T̄ . It is normalized to unity for the resonant cavity without
an atom. T̄ depends on the atomic position and the pump
power. In particular, saturation of the atom decreases T̄ .

Once an atom is detected in the cavity, several strategies
can be applied. Each will be discussed below. They are all
subject to the boundary condition that the observation light
beam should not be turned off completely and that the
photon detector should not be saturated. This establishes
lower and upper limits for the power of the pump laser.
The final signal is then sent to an acousto-optic modulator
(AOM) controlling the input power. The intracavity power
will follow the input power within the cavity response time,
�2k�21, which is much shorter than the time it takes an
atom to travel a distance w0 � 29 mm, the cavity mode
waist.

The different control strategies are depicted in Fig. 1.
Not shown is “reference,” in which we take no action
other than passive observation of the passing atom. All
other strategies share a fixed initial stopping pulse at a
pump power of h2 � 10k2, triggered at t � 0 when an
atom is observed at an antinode, and has a duration of
0.15 ms which is chosen to be �1�4 oscillation period
in the dipole trap in order to remove a seizable fraction
of the atoms kinetic energy. The control strategies have
a fixed maximal duration of 2 ms. They are as follows:
(1) “hold low,” in which after the stopping pulse the
pump power is switched to the low level h2 � 2.4k2 that
was used to detect the atom; (2) “hold high,” idem, but
now the pump power is kept at a high level h2 � 7k2;
(3) “ramp,” in which the pump power is ramped up from
the low to the high level in 1 ms, then remaining constant
until t � 2.15 ms. (4) “Proportional feedback,” in which
the pump power switches to the high level if T̄ , 0.19
and to the low level if T̄ . 0.19; see Fig. 2 for a typical
result. (5) “Differentiating feedback,” in which the pump
power is switched to the high level if the atom is seen
to move away from the axis �dT̄�dt , 0�, and to a low
level if the atom moves towards the center �dT̄�dt . 0�.
Note that strategies (1)–(3) are completely deterministic.
Strategies (4) and (5) were implemented by a proportional
and differentiating circuit, respectively, reacting on T̄
with such high gains that the output switches between the
upper or lower limit and rarely has intermediate values.

To evaluate the results, the recorded photon clicks are
binned over 10 ms long intervals. The resulting signal
was divided by the pump power, normalized to unity for
the resonant cavity without an atom, and subsequently
nearest-neighbor averaged to obtain the transmittance T .
In order to determine when an atom enters and exits the
cavity, T is compared with two threshold levels, L and
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FIG. 2. A typical result for the measured transmittance, T , of
the cavity (upper graph) and the corresponding pump power
(lower graph) as a function of time during a proportional feed-
back sequence. T is large if the atom is near an antinode. The
irregular behavior of T indicates the nonconservative motion of
the atom. L and H are threshold levels used to evaluate the data.

H; see Fig. 2. Level L is 1.23 the empty-cavity T plus a
correction that is proportional to the expected Poissonian
noise. Level H is 1.73 level L. It is assumed that
an atom resides in the cavity if T . H, or if T . L
for more than 0.1 ms. The entrance time is set to the
moment when T first exceeds L. The exit time, te, is
defined with respect to the trigger time, t � 0, and is
tentatively set to the moment when T drops below L. If
T returns above L within 0.1 ms, it is decided that the
atom still resides in the cavity. In addition, if within
0.5 ms after the tentative leave of an atom, a second
signal qualifies as an atom in the cavity, it is assumed
that this is the same atom returning from an excursion to
the outer region of the cavity mode. The 0.5 ms interval
is chosen on the basis of simulations where this near-
absent behavior was observed.

In total, we have recorded several thousand events for
which we determined the entrance time and the exit time,
te. Results are listed in Table I, and three exit-time his-
tograms are plotted in Fig. 3. The overall structure looks
similar in all cases. As the initial 0.15 ms stopping pulse is
not perfect, approximately 2�3 of the atoms are not slowed
down enough and, hence, can escape the cavity during the
stopping pulse. The probability for an atom to stay longer
defines the capture probability. It is determined for each
strategy and is tabulated in Table I. It represents an av-
erage over all events, and hence, over all entrance veloci-
ties. It is observed that the capture probability is higher
for the slow atoms that arrive late in a fountain shot. The
capture probability is smallest without the stopping pulse,
as measured in “reference.” That even without a stopping
pulse atoms are sometimes captured is probably due to
momentum kicks by the probe light in the cavity. The ran-
dom character of these kicks allows one to catch some of
the slowest atoms. If a stop pulse is applied, the capture
probability is much higher and independent of the feed-
back strategy applied afterwards. For each strategy, the
mean exit time, 
te�, is determined by averaging the te of

TABLE I. Number of trigger events, capture probabilities, and
mean exit times 
te� for different strategies and their standard
error. The total measuring time for these 6642 trigger events is
more than 100 h.

Trigger Capture 
te� 	ms�
Strategy events probability 150 1

Reference 1098 0.217 6 0.012 259 6 19
Hold low 871 0.339 6 0.016 298 6 18
Hold high 1113 0.371 6 0.015 328 6 16
Ramp 724 0.327 6 0.017 364 6 33
Proportional feedback 590 0.368 6 0.020 395 6 23
Differentiating feedback 2246 0.340 6 0.010 401 6 15

the atoms that stay in the cavity longer than 0.15 ms. To
exclude systematic effects, the different types of measure-
ment were alternated irregularly during data acquisition ev-
ery 1 to 2 h. No correlation is observed between capture
probability and te.

Let us now discuss the results of the various strategies.
As can be seen in Fig. 3 and in Table I, the difference
between the 
te� for hold low and hold high is only
slightly larger than one standard error. To explain this,
consider the ideal case for a very slow atom heading
exactly towards the cavity axis and perfect timing. We
express the kinetic plus potential energy of the atom, E,
as a fraction of the actual trap depth U�h2�, where the po-
tential energy reference is the trap minimum. Ideally, the
stopping pulse would reduce E�U from the initial value,
E�U�2.4k2� � 1, to about U�2.4k2��U�10k2� � 0.4
shortly after the stopping pulse, both for strategies (1)
and (2). From this, and because the value of the trap
depth divided by the spontaneous-emission diffusion
coefficient depends only weakly on the intracavity in-
tensity, one would expect identical 
te�. Clearly, in
the nonideal case E�U . 0.4, as, e.g., the atoms have
initial kinetic energy and angular momentum. Now
E�U also depends on the final trap depth. For hold low,
U�2.4k2��kB � 0.16 mK, is shallower than for hold high,
where U�7k2��kB � 0.34 mK. Therefore, a somewhat

FIG. 3. Histogram of exit times. The width of the histogram
bins is shown at the bottom. The hatched area indicates the
0.15 ms long stopping pulse.
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longer 
te� for the hold high strategy as observed in the
experiment seems reasonable.

An atom can escape only if its motional energy is larger
than the trap depth. The former grows with the integrated
heating rate, whereas the latter is only a function of the
intensity at the moment of escape. Therefore, an atom can
be expected to stay longer in the cavity with the strategy
“ramp,” in which the pump power increases linearly after
the trigger. Indeed, 
te� for ramp is larger than that for hold
low or hold high.

Let us now discuss the results of the two feedback
strategies. As explained in the introduction, proportional
feedback minimizes heating near the mode center while si-
multaneously providing a strong trapping force if the atom
moves away, whereas the differentiating feedback attempts
to take away motional energy of the atom. Both strategies
have 
te�’s exceeding those of the deterministic strategies
(1)–(3), showing that feedback can indeed be exploited to
control the motion of a single neutral atom. The mecha-
nism behind the increase in 
te� for proportional feedback
is reduced heating. The increase in 
te� for differentiating
feedback could be due to cooling, but the increase can also
be accounted for by the fact that in our implementation of
differentiating feedback the pump power switches to a low
value if the atom approaches an antinode. The finite band-
width of T̄ and, hence, the finite response time then causes
the pump power to be low if the atom arrives at the antin-
ode. This reduces momentum diffusion as in the propor-
tional feedback strategy. As differentiating feedback does
not increase the value of 
te� beyond that for proportional
feedback, cooling is not evident here.

In conclusion, we have for the first time implemented
feedback on the motion of a single neutral atom, thereby
extending the time the atom spends in the cavity by up to
30%. In a next-generation experiment, the laser’s double
function of probe and lever could be split. Two in-
dependent laser beams would allow one to optimize a
near-resonant laser as a probe and a far-detuned laser as
a trap. Once cooling is successful, quantization of the
motion can become important. It might even be possible
to cool an atom into the motional ground state. This would
have many applications, e.g., in quantum information
processing.
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A sequence of single photons is emitted on demand from a single three-level atom strongly coupled to a
high-finesse optical cavity. The photons are generated by an adiabatically driven stimulated Raman
transition between two atomic ground states, with the vacuum field of the cavity stimulating one branch of
the transition, and laser pulses deterministically driving the other branch. This process is unitary and
therefore intrinsically reversible, which is essential for quantum communication and networking, and the
photons should be appropriate for all-optical quantum information processing.
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A future quantum network connecting remote quan-
tum processors and memories has several advantages in
processing quantum information as compared to a local
quantum computer, since it combines scalability with
modularity. Different kinds of networks have been pro-
posed [1]: one is an all-optical network [2], where the
nodes are linear optical components, with quantum infor-
mation encoded in the number of photons flying from node
to node. The nodes perform gate operations based on
quantum interference effects between indistinguishable
photons. In another, more general, network the nodes
also serve as quantum memories storing information,
e.g., in long-lived states of atoms located in an optical
cavity [3]. The key requirement for such a network is its
ability to interconvert stationary and flying qubits and to
transmit flying qubits between specified locations [4]. The
atom-cavity system, in particular, must be able to transfer
quantum information between atoms and photons in a
coherent manner [5,6]. It must also act as an emitter and
a receiver of single-photon states. These states must there-
fore be generated by a reversible process. However, all
deterministic single-photon emitters demonstrated so far
[7–15] do not meet this essential requirement. The reason
is that the emission process, namely, an electronic excita-
tion of the system followed by spontaneous emission,
cannot be described by a Hamiltonian evolution and,
hence, is irreversible.

This Letter describes the realization of an intrinsically
reversible single-photon source [3,16–19], which is based
on a stimulated Raman process driving an adiabatic pas-
sage (STIRAP) [20] between two ground states of a single
atom strongly coupled to a single mode of a high-finesse
optical cavity [21,22]. A laser beam illuminating the atom
excites one branch of the Raman transition, while the
cavity vacuum stimulates the emission of the photon on
the other branch. STIRAP is slow compared to the photon
lifetime in the cavity, so that the field generated inside the
cavity is instantaneously mapped to the outside world.
Moreover, it employs a dark state, which has two important
consequences: first, any electronic excitation is avoided, so
that irreversible spontaneous processes do not occur.

Second, the scheme allows one to continuously tune the
frequency of the photon within a range that is only limited
by the atom-cavity coupling strength. The tuning ability
has recently been demonstrated with a beam of atoms
passing through the cavity [23]. This experiment produced
at most one photon per passing atom, but did not operate as
a single-photon source, because its continuous driving
scheme simply mapped the random (Poissonian) atom
statistics to the photons. The present experiment, however,
uses a pulsed driving together with a pulsed recycling. This
makes it possible to produce on demand a stream of several
single-photon pulses from one and the same atom, trig-
gered by the detection of a ‘‘first’’ photon emitted from the
cavity.

Figure 1(a) shows the basic scheme of the photon-
generation process. A single 85Rb atom is prepared in
state jui, which is the F � 3 hyperfine state of the 5S1=2
electronic ground state. The atom is located in a high-
finesse optical cavity, which is near resonant with the
780 nm transition between states jgi and jei. Here, jgi is
the F � 2 hyperfine state of the electronic ground state,
and jei is the electronically excited 5P3=2�F � 3� state.
The state of the cavity is denoted by jni, where n is the
number of photons. When the atom is placed inside the
cavity, the product states jg; ni and je; n� 1i are coupled
by the electric dipole interaction, characterized by the Rabi
frequency �n � 2g

���
n

p
. Here, g is the average atom-cavity

coupling constant, which takes into account that neither the
position of the atom in the cavity nor the magnetic quan-
tum number of the atom is well defined in the experiment.
We assume g to be constant while a pump-laser pulse with
Rabi frequency �P�t� is applied. This laser is close to
resonance with the jui $ jei transition, so that now the
three product states ju; n� 1i, je; n� 1i, and jg; ni of the
atom-cavity system are coupled. For the one-photon mani-
fold, n � 1, and a Raman-resonant excitation, where the
detunings of the pump-laser, �P, and the cavity, �C, from
the respective atomic transitions are equal, it is straightfor-
ward to find the three eigenstates of the coupled atom-
cavity system, j��

1 i and j�0
1i � �2gju; 0i ��P�t�jg; 1i�=��������������������������

4g2 ��2
P�t�

q
. Note that state j�0

1i is dark, i.e., has no
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contribution of the excited state, jei, and is therefore not
affected by spontaneous emission.

The dark state j�0
1i is now used to generate a single-

photon inside the cavity. This is achieved by establishing a
large atom-cavity coupling constant, g, before turning on
the pump pulse. In this case, the system’s initial state,
ju; 0i, coincides with j�0

1i. Provided the pump pulse rises
slowly, the system’s state vector adiabatically follows any
change of j�0

1i, and for a lossless cavity a smooth transition
from ju; 0i to jg; 1i is realized as soon as �P 	 2g. Hence,
a single photon is generated in the relevant cavity mode.
This photon leaves the cavity through that mirror which is
designed as an output coupler. The emission starts as soon
as the decaying state, jg; 1i, contributes to j�0

1i, i.e., al-
ready with the rising edge of the pump pulse, because the
contribution from jg; 1i is proportional to �2

P�t�. If the
pump pulse rises slowly, the emission can therefore end
even before �P > 2g. The dynamics of the simultaneous
excitation and emission processes determines the duration
and, hence, the linewidth of the photon. When the photon is
emitted, the final state of the coupled system, jg; 0i, is
reached. This state is not coupled to the one-photon mani-
fold, and the atom cannot be reexcited. This limits the
number of photons per pump pulse and atom to one.

To emit a sequence of photons from one and the same
atom, the system must be transferred back to ju; 0i once an
emission has taken place. To do so, we apply recycling
laser pulses that hit the atom between consecutive pump
pulses. The recycling pulses are resonant with the jgi $
jei transition and pump the atom to state jei. From there, it

decays spontaneously to the initial state jui. Note that state
jei populated by the recycling laser couples to the cavity.
However, spontaneous emission into the cavity is sup-
pressed by deliberately choosing a large cavity detuning,
�C. The pump laser is detuned by the same amount to
assure Raman resonance. If an atom that resides in the
cavity is now exposed to a sequence of laser pulses, which
alternate between triggering single-photon emissions and
reestablishing the initial condition by optical pumping, a
sequence of single-photon pulses is produced.

Figure 1(b) shows the apparatus. Atoms are released
from a magneto-optical trap and pass through the TEM00

mode of the optical cavity, where they are exposed to the
sequence of laser pulses. On average, 3:4 atoms=ms enter
the cavity [24], so that the probability of finding a single
atom inside the cavity is 5.7%, while the probability of
having more than one atom is only 0.18% which is negli-
gible. The cavity is 1 mm long and has a finesse of 60 000.
One mirror has a 25 times larger transmission coefficient
than the other. Therefore, photons are preferentially emit-
ted into one direction. These photons are counted by two
avalanche photodiodes which are placed at the output ports
of a beam splitter. For each experimental cycle, all photon-
arrival times are recorded with transient digitizers with a
time resolution of 8 ns.

In the experiment, the electric field amplitudes and,
hence, the Rabi frequencies of the pump and recycling
pulses have the shape of a sawtooth and increase linearly,
as displayed in Fig. 2(a). This leads to a constant rate of

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

A

C

0 1 2 3 4 5 6 7 8

B

Time (µs)

C
al

cu
la

te
d

ph
ot

on
 r

at
e 

(µ
s-1

)
R

el
at

iv
e 

ph
ot

on
oc

cu
re

nc
e 

(µ
s-1

)
R

ab
i f

re
qu

.
Ω

P
,Ω

R
 (

M
H

z) 8

6

2

0

4

0.8
0.6
0.4
0.2
0.0

0.6

0.4

0.2

0.0

FIG. 2 (color online). Pulse shapes. (A) The atoms are
periodically illuminated with 2 �s-long pulses from the
pump (solid line) and the recycling laser (dotted line).
(B) Measured arrival-time distribution of photons emitted
from the cavity (dotted line). The solid line shows the
arrival-time distribution of photons emitted from strongly
coupled atoms (see text). (C) Simulation of the pro-
cess with �g;�0

P;R;�P;C;�; �� � 2� 
 �2:5; 8:0;�20:0; 6:0;
1:25� MHz, where �0

P;R are the peak Rabi frequencies of the
pump and recycling pulses, and � and � are the atom and
cavity-field decay rates, respectively.
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FIG. 1 (color online). Scheme of the experiment.
(A) Relevant energy levels and transitions in 85Rb. The
atomic states labeled jui, jei, and jgi are involved in the
Raman process, and the states j0i and j1i denote the photon
number in the cavity. (B) Setup: a cloud of atoms is released
from a magneto-optical trap and falls through a cavity 20 cm
below in about 8 ms with a velocity of 2 m=s. The interaction
time of a single atom with the TEM00 mode of the cavity
(waist w0 � 35 �m) amounts to about 17:5 �s. The pump
and recycling lasers are collinear and overlap with the cavity
mode. Photons emitted from the cavity are detected by a pair
of photodiodes with a quantum efficiency of 50%.
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change of the dark state, j�0
1i, during the initial stage of the

pump pulses and therefore optimal adiabaticity with mini-
mal losses to the other eigenstates. The linear slope of the
recycling pulses suppresses higher Fourier components
and therefore reduces photon emission into the detuned
cavity. Note that the recycling process is finished before the
end of the pulse is reached, so that the final sudden drop in
Rabi frequency does not influence the atom.

Also shown in Fig. 2 are two measured arrival-
time distributions of the photons and a simulation of the
photon-emission rate for typical experimental parameters.
The simulation is based on a numerical solution of the
system’s master equation [22] which takes into account the
decay of the relevant states. The simulation [Fig. 2(c)]
reveals that the pump-pulse duration of 2 �s is slightly
too short, as the emitted photon pulse is not completely
finished. This is also observed in the photon arrival-time
distribution [Fig. 2(b)]. Here, the measured data agree well
with the simulation if only photons from strongly coupled
atoms are considered (solid line). For these, we assume that
several photons are detected within the atom-cavity inter-
action time. If solitary photons, which we attribute to
weakly coupled atoms, are included in the analysis, the
arrival-time distribution is given by the dotted line. Note
that the envelope of the photon pulses is well explained by
the expected shape of the single-photon wave packets, and
therefore cannot be attributed to an uncertainty in emission
time, which is not present for a unitary process. Assuming
transform-limited Gaussian pulses, we infer a single-
photon linewidth of �� � 340 kHz (FWHM) from the
1:3 �s photon-pulse duration (FWHM). We emphasize
that the pump-pulse duration was adjusted to maximize
the number of photons per atom. Longer pump pulses
would not truncate the photon pulses and, hence, would
slightly increase the emission probability per pulse, but due
to the limited atom-cavity interaction time, the total num-
ber of photons per atom would be reduced.

Figure 3 displays an example of the photon stream
recorded while single atoms fall through the cavity one
after the other. Obviously, the photon sequence is different
for each atom. In particular, not every pump pulse leads to
a detected photon, since the efficiencies of photon genera-
tion and photon detection are limited. The second-order

intensity correlation function of the emitted photon stream
is shown in Fig. 4. Displayed is the cross correlation of the
photon streams registered by the two photodiodes D1 and
D2. It is defined as g�2���t� � hPD1�t�PD2�t� �t�i=
�hPD1�t�i hPD2�t�i�, where PD1�t� and PD2�t� are the
probabilities to detect a photon at time t with photodiode
D1 and D2, respectively. Note that all photon-arrival times
are recorded to calculate the full correlation function,
without the otherwise usual restriction of a simple start/
stop measurement which would consider only neighboring
events. Of course, g�2� includes not only correlations be-
tween photons emitted from the cavity but also those
involving detector-noise counts. This last contribution
has been determined from an independent measurement
of the detector-noise count rate. The result is indicated by
the time-independent hatched area in Fig. 4. Only the
excess signal, ~gg�2���t� � g�2���t� � g�2�noise, reflects the
true photon statistics of the light emitted from the atom-
cavity system.

The correlation function, ~gg�2���t�, oscillates with the
same periodicity as the sequence of pump pulses. This
indicates that photons are emitted only during the pump
pulses, and no emissions occur when recycling pulses are
applied. The nearly Gaussian envelope of the comblike
function is obviously a consequence of the limited atom-
cavity interaction time. The most remarkable feature in
Fig. 4 is the missing correlation peak at �t � 0. In fact,
photon antibunching together with ~gg�2��0� � 0 is observed.
This clearly demonstrates the nonclassical character of the
emitted light, and proves that (a) the number of emitted
photons per pump pulse is limited to one, and (b) no further
emission occurs before the atom is recycled to its initial
state. Note that the relatively large noise contribution is no
intrinsic limitation of our system but reflects only the low
atomic flux through the cavity in the present experiment.

We emphasize that the detection of a first photon signals
the presence of an atom in the cavity and fixes the atom
number to one. The photons emitted from this atom during
subsequent pump pulses dominate the photon statistics and
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FIG. 3 (color online). Photon sequence: clip of the photon
streams arriving at the photodiodes D1 and D2 (traces a and
b, respectively,). Several sequences of two (2) and five (5)
photon emissions are observed, with durations comparable to
the atom-cavity interaction time. The solitary events (s) are
either dark counts, or, more likely, photons coming from
atoms that are only weakly coupled to the cavity.
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FIG. 4 (color online). Second-order intensity correlation of
the emitted photon stream, averaged over 15 000 experimental
cycles (loading and releasing of the atom cloud) with a total
number of 184 868 photon counts. The hatched area repre-
sents correlations between photons and detector-noise counts.
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give rise to antibunching. Such an antibunching would not
be observed for faint laser pulses, since a random photon
statistics applies to each pulse. The areas of the different
peaks of the correlation function in Fig. 4 reflect the
probability for the emission of further photons from one
and the same atom. They are determined from a lengthy but
straightforward calculation which relates the number of
correlations per pulse with the total number of photons.
Using the data displayed in Fig. 4, the result for the condi-
tional emission of another photon during the (next, 3rd,
4th, 5th, 6th, 7th) pump pulse is (8.8, 5.1, 2.8, 1.4, 0.8,
0.5)%. Note that the probabilities for subsequent emissions
decrease, since the photon-emission probability, Pemit,
depends on the location of the moving atom. It is highest
for an atom in an antinode and decreases if the atom moves
away from this point. It is not possible to control the atom’s
location in the present experiment, but it is possible to
calculate Pemit�z� from the experimental data. Here, z is the
atom’s vertical position relative to the cavity axis, and
Pemit�z� is averaged over all possible atomic trajectories
in the horizontal xy plane. Assuming a Gaussian z depen-
dence, the deconvolution of ~gg�2���t� gives Pemit�z� �
0:17 exp���z=15:7 �m�2�. For z � 0, the average
photon-emission probability of 17% is smaller than the
calculated value of 67% for an atom in an antinode of
the cavity. It follows that a system combining a cavity and a
single atom at rest in a dipole trap [25,26], or a single ion at
rest in a rf trap [27,28], should allow one to generate a
continuous bit stream of single photons with a large and
time-independent efficiency [21,22]. The photon repetition
rate is limited by the atom-cavity coupling constant, g,
which one could push into the GHz regime by using
smaller cavities of wavelength-limited dimensions in,
e.g., a photonic band gap material.

In conclusion, we have shown that a coupled atom-
cavity system is able to emit single photons on demand.
Moreover, it is possible to generate a sequence of up to
seven photons on demand from one and the same atom in a
time interval of about 30 �s. These photons are all gen-
erated in a well-defined radiation mode. They should have
the same frequency and a Fourier-transform limited line-
width, limited from above by the decay rate of the cavity
field [23]. It follows that one can expect the photons to be
indistinguishable and, therefore, ideal for all-optical quan-
tum computation schemes [2]. Moreover, the photon-
generation process is unitary. This makes it possible to
produce arbitrarily shaped single-photon pulses by suitably
tailoring the envelope of the pump pulse. For symmetric
pulses, the emission process can be reversed. This should
allow one to transfer the photon’s quantum state to another
atom located in another cavity. Such a state mapping
between atoms and photons is the key to quantum tele-

portation of atoms between distant nodes in a quantum
network of optical cavities [3].
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