Special Seminar MPQ/LMU

Date:	Tuesday, April 4, 2017
Time:	10:00 a.m. s.t.
Presentation:	Master Sc. Tobias Vogl Center for Quantum Computing & Communication Technology Department of Quantum Science The National University Acton ACT 2601 Australia
Title:	Room Temperature Single Photon Source Using Fiber-Integrated Hexagonal Boron Nitride
Location:	Discussion Room H 311

Chair Prof. T. W. Hänsch, Facutly of Physics, LMU Director Professor Theodor W. Hänsch

ABSTRACT

Single photons are a key resource for Quantum Optics and Optical Quantum Information Processing. The integration of scalable room temperature quantum emitters into photonic circuits remains to be a technical challenge.

Here I will present a new work utilizing a defect center in hexagonal Boron Nitride (hBN) attached by Van der Waals force onto a multimode fiber as a single photon source. A special feature of the source is that it allows for easy switching beween fiber-coupled and free space single photon generation modes. In order to prove the quantum nature of the emission we measure the second-order correlation function g^2/π . For both fiber coupled and free-space emission, the $g^2(\tau)$ dips below 0,5 indicating operation in the single photon regime.

The results so for demonstrate the feasibility of 2D material single photon sources for scalable photonic quantum information processing.