SONDERSEMINAR/SPECIAL SEMINAR MPQ/LMU

Date:	Tuesday, June 26, 2018
Time:	10:00 a.m., s.t.
Presentation:	Timon EICHHORN, MSc Student QOS Quantum Optics & Statistics Physikalisches Institut Universität Freiburg Albert-Ludwigs Universität Freiburg Hermann-Herder-Str. 3 D-79104 Freiburg
Title:	Transport of High-Dimensional Photonic States Across a Turbulent Atmosphere
Location:	Discussion/Seminar Room H 311 Faculty of Physics/Ludwig Maximilians University (LMU)

Faculty of Physics Research Group Professor Harald Weinfurter/ Ludwig-Maximilians Universität/Ludwig-Maximilians University (LMU)

CHAIR of Laserspectroscopy / Director Professor Professor Theodor W. HÄNSCH

TRANSPORT of HiGH-DIMENSIONAL PHOTONIC STATES ACROSS a TURBULENT ATMOSPHERE

One of the quests of quantum communication is a reliable transmission of highdimensional photonics quantum states (qudits) through a free-space channel. A common approach to realise qudits is by using light modes carrying orbital angular momentum (OAM). We consider the propagation of photonics OAM qudits encoded in Laguerre-Gaussian modes across a turbulent atmosphere.

We find that the fidelity of the propagated state is a non-monotonic function of the state's dimensionality exhibiting a maximum, however, the optimal fidelity values are too low for secure quantum communication. Therefore, we propose an alternative encoding of audits - into the "eigenstates of atmospheric turbulence". Using this method, we find high-dimensional states that can be transmitted with high fidelity through the atmosphere.