contact

Dr. Stephan Dürr
Stephan Dürr
Group Leader
Phone: +49 89 3 29 05 - 291
Room: A 2.22
Prof. Dr. Thomas Udem
Thomas Udem
Scientist
Phone: +49 89 3 29 05 - 282 // -257
Room: D 0.21 // D 0.39




next colloquium

Colloquia

Colloquia

Our series of Colloquium Talks takes place from October till January and from April till July, on Tuesdays, at 2:30 p.m..

Attention! Due to the recontstruction of the foyer at the MPQ talks will take place at the interims Lecuture Hall in Room B 0.32.

Scientific organization of the talks: Dr. Stephan Dürr and Dr. Thomas Udem

If you wish to view the live stream of the MPQ colloquium, please use the link to subscribe to the corresponding mailing list. Detailed instructions will be sent to all subscribers.

Month:

Label-free tissue classification by FTIR- and QCL-based IR-imaging (Prof. K. Gerwert)

Infrared imaging in combination with bioinformatics is an emerging tool for label-free, non-invasive annotation of tissue, cells, and body fluids. [more]

Connecting quantum systems through optimized photonics (Prof. J. Vuckovic)

Semiconductor quantum dot in cavity has been the workhorse of solid-state quantum optics, enabling many exciting demonstrations such as photon blockade, and some of the best quantum light sources and spin-photon interfaces. [more]

Ultrafast Transmission Electron Microscopy with High-coherence Electron Beams (Prof. C. Ropers)

Ultrafast Transmission Electron Microscopy (UTEM) is a powerful technique to study structural and electronic dynamics on the nanoscale. [more]

Atomic giants in a new light: Emerging photon interactions from highly excited Rydberg atoms (Prof. T. Pohl)

The combination of electromagnetically induced transparency (EIT) and strongly interacting Rydberg states in cold atomic gases has opened up new routes towards achieving few-photon optical nonlinearities. [more]

Quantum many-body dynamics under continuous observation (Prof. M. Ueda)

Quantum gas microscopy has revolutionalized our approach to quantum many-body systems where atoms trapped in an optical lattice can be observed in real time at the single-particle level. [more]

 
loading content
Go to Editor View