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Chapter 1

Introduction

The molecular dimer is a basic model system for the theoretical description

of myriad systems. Applications of the molecular dimer range from quantum

information [1–3], to Bose-Einstein condensates [4–6], and to molecular aggre-

gates [7–9]. It is a simple, albeit prolific, system for the study of complicated

electronic-vibrational interactions [8, 10–13]. Early studies of dimers of chro-

mophores and molecular aggregates include work by Förster [14] and Dexter [15]

based on an incoherent rate equation approach. One fascinating role of molecu-

lar aggregates is in photosynthetic light-harvesting complexes. Photosynthesis,

with a quantum yield exceeding 95%, is an extremely efficient mechanism for

the absorption and transfer of solar energy and its conversion to chemical en-

ergy [16]. Complexes of molecular aggregates are used to streamline the trans-

fer of energy from light-harvesting antenna systems, which efficiently capture

sunlight, to the reaction center, in which energy is converted for later use in

biochemical processes [17].

A significant effort is currently underway to fully understand the quantum

mechanical mechanisms underlying the efficient transfer of energy during pho-
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tosynthesis through pigment-protein complexes. The pigments capture sunlight

which is then efficiently transferred to the reaction center. Variations in the

protein scaffold surrounding each pigment effectively vary the absorption max-

imum of each molecule, thereby increasing efficiency, while the protein itself

acts as an energy sink. Studies have shown that the pigments form a system

of electronically coupled excitons [18], in which the excitation simultaneously

extends over several bacteriochlorophyll (BChl) molecules. Thus, the excitation

probes several pathways concurrently and selects the most efficient path to the

lowest energy state, which may account for their remarkable efficiency.

The most extensively studied photosynthetic systems are those for which the

atomic structure has been determined by X-ray crystallography: the peripheral

light-harvesting complexes of photosynthetic purple bacteria [19, 20] and green

plants [21], as well as the Fenna-Matthews-Olson (FMO) pigment-protein com-

plex of green sulphur bacteria [22].

First insight into the energy transfer dynamics of the FMO complex was at-

tained from nonlinear ultrafast spectroscopy. Various nonlinear techniques such

as hole burning [23–25], one- and two-color pump probe [26–32], and accumu-

lated photon-echo (PE) spectroscopy [33] have revealed a number of time scales

ranging from 70-100 fs to about 20 ps.

Recently, two-dimensional (2D) electronic PE spectra of the Chlorobium

(Cb.) tepidum FMO complex were recorded [34, 35]. In contrast to the previ-

ous findings and assumptions, these new experimental results indicate strongly

coherent energy-transfer dynamics [35]. The coherent oscillations in the spec-

troscopic signals were shown to survive on a relatively long time scale of about

700 fs. They were interpreted to be a manifestation of electronic coherences

which arise due to the coupling between the excited states of different pig-

ments [34, 35].
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CHAPTER 1. INTRODUCTION

The first theoretical models of the FMO complex aimed to reproduce the

linear absorption spectrum and the kinetics of the pump-probe spectra [31, 36,

37]. In these models, the seven pigments of one FMO monomer were treated as

seven two-level systems with electronically coupled excited states. The effect of

vibrations and the protein environment was taken into account by considering

the coupling of the electronic degrees of freedom to a phonon bath, which was

introduced in a simplified manner: Only electronic population relaxation was

modeled and the corresponding relaxation rates were determined by fitting the

simulations to the experimental results.

This simple exciton model [37] was also employed for the simulation of 2D

spectra [38]. The relaxation rates were computed using a modified Förster/Redfied

theory and a reproduction of 2D profiles for finite population times was achieved.

However, signatures of coherent energy transfer in 2D signals were beyond the

scope of these simulations, since coherences between the exciton states were not

taken into account. Furthermore, the scheme employed for the simulation of

spectra contained a number of crude approximations and, in particular, did not

allow for the evaluation of the 2D signal at zero population time.

In contrast to pump-probe experiments, which can be fitted by considering

the time evolution of the diagonal elements of the density matrix (populations)

only, PE spectroscopy is a coherent technique and knowledge of the time evolu-

tion of the off-diagonal elements of the density matrix (coherences) is required

for an accurate description of this signal. The first steps toward the understand-

ing of coherent effects in the 2D spectroscopy of the FMO complex were taken

by considering 2D spectra of dimer and trimer systems [39, 40]. The simulations

showed that electronic coherences can indeed be visualized by the 2D technique

as oscillatory beatings of cross peaks in the intensity profiles as a function of

the population time. New pulse-sequence schemes have been recently proposed
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for the investigation of the coherent dynamics of the FMO complex [41, 42].

The present work employs the equation-of-motion phase-matching-approach

(EOM-PMA) [43–45], for the efficient calculation of 2D electronic PE signals

for a Frenkel exciton model. The numerical effort for the calculation of the PE

polarization utilizing the EOM-PMA scales approximately as three times the

number of elements in the density matrix times the square of the number of

time steps [44]. With a given equation of motion of the material system under

study, the EOM-PMA does not invoke additional approximations apart from the

weak-field limit. This approach has been successfully used to compare simulated

and experimental signals [46]. The computational efficiency of the EOM-PMA,

allows for study of more complicated systems, including, for example, explicit

intramonomer or intermonomer electron-vibrational couplings or a nonsecular

multilevel Redfield description of vibrational energy and phase relaxation. In

fact, the EOM-PMA enables the simulation of N -wave-mixing signals for any

material system for which the equation of motion of the reduced density matrix

can be numerically solved on the time scale of interest.

The model Hamiltonian of the FMO complex as specified in Refs. [37, 38]

and an equation of motion that accounts for the time evolution of populations as

well as coherences of the exciton density matrix (within the secular approxima-

tion) are employed. The electronic population relaxation parameters are taken

from Ref. [38], while the pure dephasing rates are considered to be adjustable

parameters. The comparison of the computed signals with the experimental re-

sult thus provides a stringent test of the chosen model of the material dynamics.

Additionally, a rigorous exploration of various relaxation and dephasing effects

is considered.

Recently, Ishizaki and Fleming employed a dimer model to point out the

inadequacy of the standard Redfield equation to treat quantum coherence and
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CHAPTER 1. INTRODUCTION

long-lived oscillations of 2D peak intensities [47]. In addition, excitons in the

FMO complex of Ch. tepidum tend to be comprised of strongly coupled pairs of

BChls [38]. As such, the dimer model lends itself for probing more complicated

vibronic effects in system dynamics in molecular aggregates. This issue is ad-

dressed here as well for the Frenkel exciton model of one pair of BChl molecules

within the FMO complex. In the present work, 2D PE spectra of an ideal dimer

system under influence of the Redfield model of relaxation are simulated, us-

ing the EOM-PMA. Although the dimer model in the secular approximation

was used to point out the inadequacy of the standard Redfield equation to

treat quantum coherence and long-lived oscillations of 2D peak intensities, the

present study adopts a nonsecular approach, while including vibrational modes

explicitly. The inclusion of vibrational modes in the system Hamiltonian allows

for a deeper understanding of the nature of quantum coherences, as well as the

determining factors of their lifetimes. The dimer is modeled after BChls three

and four of the FMO complex of Ch. tepidum, as designated in Ref. [22]. These

particular molecules are chosen as they are the primary consituents of excitons

one and three, [38] for which coherence 1–3 was seen to survive on a relatively

long timescale, and thus its dynamics are particularly interesting, even at short

timescales. Excitons one and three are also energetically well-separated from

the other excitons, thereby justifying the omission of the other excitons in this

model study.

The theory used to describe the system dynamics is well known, and an

outline is provided in Chapter 2. In addition, a description of the two model

systems under study, the full FMO complex and a dimer of BChls, is also

provided. Details about how various dissipation mechanisms are modeled, as

well as the EOM-PMA, are also outlined in Chapter 2.

In Chapter 3, accurate simulations of 2D PE signals for an existing simple
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Redfield equation model [37, 38] are discussed. Various dephasing mechanisms

on coherence lifetimes are systematically studied for this rather versatile model

system. This demonstrates the successful application of the EOM-PMA for the

efficient simulation of four-wave-mixing spectra for reasonably complex material

systems.

With confirmation of the applicability of the EOM-PMA to molecular ag-

gregates, we study details of dimer dynamics in Chapters 4 and 5. Specifically,

relaxation and dephasing effects of a dimer modeled after BChls 4 and 5, so

named in Ref. [22], in the FMO complex are studied. First, in Chapter 4, both

site and eigenstate dynamics are studied after stimulation by a single laser pulse

with the system coupled to an uncorrelated bath. Following this, analysis of the

effect of a dimer experiencing (un-)(anti-)correlated baths is presented. Subse-

quently, in Chapter 5, 2DPE signals are calculated for the dimer system, using

the EOM-PMA, and diagonal and crosspeak behavior is analyzed in the 2D

spectral profiles.
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Chapter 2

Theory

2.1 Quantum Master Equation

2.1.1 Liouville equation

The density matrix formalism is used in the following to describe the molecular

complexes outlined in the previous section during and after excitation by an

electric field, a complete and detailed description of which can be found in

Refs. [48] and [49]. The total density matrix, also called the statistical operator,

represents all degrees of freedom in the total system and is defined as

W =
∑

n

wn|ψn〉〈ψn|, (2.1)

which is a sum of projection operators on the states |ψn〉 weighted by the prob-

abilites of finding the system in the aforementioned state, wn. The diagonal

elements of the density matrix, 〈φm|W |φm〉, give the total probabilities of find-

ing a particle in the corresponding basis state, |φm〉; and thus Wmm ≥ 0. The

density matrix is normalized, tr{W} = 1, and is hermitian. The physical sig-
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2.1. QUANTUM MASTER EQUATION

nificance of the time evolution of the off-diagonal elements is associated with

quantum coherences. In this notation, the expectation value of any observable,

A, can be found using 〈A〉 = tr{WA}.

The time-dependent Schrödinger equation can be used to derive the time

evolution of the wave function (! = 1):

i
∂|ψ(t)〉

∂t
= H(t)|ψ(t)〉, (2.2)

and likewise for the adjoint. Eq. (2.2) can be generalized by defining the time

evolution operator, U(t) = exp(−iHt), which transforms an initial state |ψ(0)〉

to a state at a later time, |ψ(t)〉:

|ψ(t)〉 = U(t)|ψ(0)〉, (2.3)

such that U(0) = 1. Using Eq. (2.3) and its hermitian conjugate in the Schrödinger

equation, the equation of motion for the time evolution operator can be written

as

i
∂U(t)

∂t
= H(t)U(t), (2.4)

since the Schrödinger equation must hold for any wavefunction, |ψ(t)〉. The

time evolution of the density matrix can thus be written using Eq. (2.3)

W (t) = U(t)W (0)U†(t). (2.5)

Differentiating and using Eq. (2.4), its adjoint, and the Schrödinger equation,

the equation of motion for the density operator can be derived

∂W (t)

∂t
= −i[H(t),W (t)], (2.6)
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CHAPTER 2. THEORY

which is called the Liouville equation.

2.1.2 The interaction picture

When the Hamiltonian for a system can be described according to Eq. (2.34),

and if the system-bath interaction is a small perturbation, then Eq. (2.4) can be

solved using time-dependent perturbation theory. By defining the wave function

in the interaction picture, |ψ(t)I〉, as

|ψ(t)〉 = e−iH0t|ψ(t)I〉, (2.7)

and inserting it into Eq. (2.2), we find that

∂|ψ(t)I〉
∂t

= HSB(t)I |ψ(t)I〉, (2.8)

where the perturbation in the interaction picture is defined as

HSB(t)I = eiH0tHSBe
−iH0t. (2.9)

In other words, the time dependence of the wavefunction in the interaction

picture is created only by the external potential term HSB(t)I . Since HSB is a

small perturbation, |ψ(t)I〉 varies slowly with time. Note that all operators in

the interaction picture can be defined using

A(t)I = eiH0tA(t)e−iH0t. (2.10)

Let U(t)0 = exp(−iH0t); then, since U(0)0 = 1, the Schrödinger and inter-
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2.1. QUANTUM MASTER EQUATION

action pictures are equivalent for t = 0. Using Eq. (2.3),

|ψ(t)I〉 = eiH0tU(t)|ψ(0)〉,

= U(t)I |ψ(0)I〉, (2.11)

where we have defined

U(t) = e−iH0tU(t)I . (2.12)

Thus, U(t)I determines the time evolution of states in the interaction picture.

The density matrix can be written in the interaction picture, as well:

W (t)I =
∑

n

wn|ψ(t)n,I〉〈ψ(t)n,I |

= eiH0tW (t)e−iH0t. (2.13)

Using Eqs. (2.5) and (2.12), this becomes

W (t)I = U(t)IW (0)U(t)†I , (2.14)

sinceW (0)I = W (0). The Liouville equation is written in the interaction picture

by inserting Eq. (2.13) into Eq. (2.6). After some manipulation, it follows that

the Liouville equation in the interaction picture is:

∂W (t)I
∂t

= −i[HSB(t)I ,W (t)I ]. (2.15)

2.1.3 Reduced density matrix

While the complex under study has been split into a relevant part, includ-

ing a few degrees of freedom and a bath, the full density matrix, too, can be

written as a product of the relevant system and the bath degrees of freedom:
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CHAPTER 2. THEORY

W (t) = ρ(t)R(t), where ρ(t), called the reduced density matrix, describes only

the relevant system of interest, and R(t) describes the reservoir. The reduced

density matrix can be defined by tracing out the bath degrees of freedom from

the full density matrix:

ρ(t) = trB{W (t)}, (2.16)

likewise, in the interaction picture

ρ(t)I = trB{W (t)I}. (2.17)

In order to derive an equation of motion for the reduced density matrix, the

Liouville equation in the interaction picture, Eq. (2.15) is formally integrated:

W (t)I = W (0)I − i

∫ t

0
dτ [HSB(τ)I ,W (τ)I ]. (2.18)

This is the first-order approximation to the Liouville equation in the interaction

picture. Inserting this back into Eq. (2.15), we find the second-order approxi-

mation to the Liouville equation in the interaction picture.

∂W (t)I
∂t

= −i[HSB(t)I ,W (0)I ]−
∫ t

0
[HSB(t)I , [HSB(τ)I ,W (t)I ]]dτ. (2.19)

Assuming the interaction is turned on at a time t = 0, and by taking the trace

over the reservoir degrees of freedom, the equation of motion for the reduced

density operator in the interaction picture can be written

ρ̇(t)I = −itrB{[HSB(t)I , ρ(0)IR(0)]}

−
∫ t

0
dτtrB{[HSB(t)I , [HSB(τ)I , ρ(τ)IR(τ)]]}, (2.20)

since W (0) = ρ(0)R(0) = W (0)I at t = 0.
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2.1. QUANTUM MASTER EQUATION

Consider now the basic condition of irreversibility, which states that the

reservoir has so many degrees of freedom that the effects of an interaction with

the system will quickly dissipate away and will not again affect the system to

any measurable extent. In other words, R(t) = R(0) ≡ R0 and so the density

matrix can be rewritten as W (t)I = ρ(t)IR0 for all time. Then Eq. (2.20)

becomes

ρ̇(t)I = −itrB{[HSB(t)I , ρ(0)IR0]}

−
∫ t

0
dτtrB{[HSB(t)I , [HSB(τ)I , ρ(τ)IR0]]}, (2.21)

to second order in the system-bath interaction. The equation of motion for a

reduced density matrix is known as the generalized master equation.

The Markov approximation states that the system has no memory of its

past. In other words, ρ(t)I depends only on its present value, and not on its

history. In this case, ρ(τ)I in the integral of Eq. (2.21) can be replaced with

ρ(t)I and thus

ρ̇(t)I = −itrB{[HSB(t)I , ρ(0)R0]}

−
∫ t

0
dτtrB{[HSB(t)I , [HSB(τ)I , ρ(t)IR0]]} (2.22)

is the equation of motion for the reduced density operator in the interaction

picture to second order in the system-bath interaction.

If the system-bath interaction takes the form
∑

i QiFi, where the coordi-

nates, Qi, are system operators and the Fi operate only on the bath, and the

index counts contributions from different microscopic descriptions of the system-

12



CHAPTER 2. THEORY

bath coupling, then HSB(t)I can be written

HSB(t)I = ei(HS+HB)tHSBe
−i(HS+HB)t

=
∑

i

eiHStQie
−iHSteiHBtFie

−iHBt

=
∑

i

Qi(t)Fi(t), (2.23)

since Fi and Qi commute. Inserting this into Eq. (2.22), and utilizing the cyclic

property of the trace, we find that

ρ̇(t)I = −i
∑

i

([Qi(t), ρ(0)I ])trB{Fi(t)R0}

−
∫ t

0
dτ

(
[Qi(t), Qj(τ)ρ(t)I ]trB{Fi(t)Fj(τ)R0}

−[Qi(t), ρ(t)IQj(τ)]trB{Fj(τ)Fi(t)R0}
)
. (2.24)

Consider first the expectation value

〈Fi(t)〉 = trB{Fi(t)R0}

=
∑

N

〈N |Fi(t)|N〉〈N |R0|N〉, (2.25)

which is expanded in bath eigenstates, |N〉, for convenience: In this basis, R0

is diagonal. In other words, thermal fluctuations occur symmetrically around

F = 0, and this term vanishes.

Consider now the time correlation functions

〈Fi(t)Fj(τ)〉 = trB{Fi(t)Fj(τ)R0}, (2.26)

which are the expectation values of the product of physical quantities measured

at different times, or the correlation which exists between interactions occurring
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2.1. QUANTUM MASTER EQUATION

at times t and τ . Since the reservoir is large, it quickly dissipates the effects of

an interaction, so that it “forgets” its interaction with the system. Therefore,

the time correlation functions are only nonzero when t−τ ! τc, where τc is some

correlation time specific to a given reservoir. In other words, interactions at t

and τ become uncorrelated (〈Fi(t)Fj(τ)〉 → 0) when t−τ ' τc and when t = τ ,

the time correlation functions have reached a maximum value. It is also worth

noting that the time correlation functions are stationary: They depend only on

the time between the two interactions. Thus 〈Fi(t)Fj(τ)〉 = 〈Fi(t − τ)Fj〉 ≡

Cij(t− τ).

Applying this to the Liouville equation, the integral over τ is only nonzero

during the time interval t− τ ! τc, and so Eq. (2.24) becomes

ρ̇(t)I = −
∑

ij

∫ t

0
dτ

(
[Qi(t), Qj(τ)ρ(t)I ]〈Cij(t− τ)〉

−[Qi(t), ρ(t)IQj(τ)]〈C∗
ij(t− τ)〉

)
. (2.27)

Choosing t′ = t − τ , dt′ = −dτ and
∫ t
0 dτ =

∫ t
0 dt′; then the upper limit

of integration can be taken to infinity with little error, since the correlation

functions are effectively zero for t′ ' τc. Then,

ρ̇(t)I = −
∑

ij

∫ ∞

0
dt′

(
[Qi(t), Qj(t− t′)ρ(t)I ]〈Cij(t

′)〉

−[Qi(t), ρ(t)IQj(t− t′)]〈C∗
ij(t

′)〉
)
. (2.28)

Writing the eigenstates ofHS as |m〉, and sinceQi(t) = exp(iHSt)Qi exp(−iHSt)

from Eq. (2.23), the notation

〈m|Qi(t)|n〉 = eiωmnt〈m|Qi|n〉 (2.29)
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CHAPTER 2. THEORY

can be used, where ωmn = Em − En, the difference in eigenenergies.

The Redfield operator, (, which describes the relaxation of the system, is

introduced to simplify the notation in Eq. (2.28):

ρ̇(t) = −i[H(t), ρ(t)] + ([ρ(t)], (2.30)

where

([ρ(t)] =
∑

κλ

Rµνκλρκλ(t), (2.31)

and

Rµνκλ = Γ+
λνµκ + Γ−

λνµκ − δνλ
∑

α

Γ+
µαακ − δµκ

∑

α

Γ−
λααν . (2.32)

The following notation has been introduced:

Γ+
λνµκ =

∑

ij

〈λ|Qi|ν〉〈µ|Qj |κ〉
∫ t

0
dτCij(−τ)e−iωµκτ

Γ−
λνµκ =

∑

ij

〈λ|Qi|ν〉〈µ|Qj |κ〉
∫ t

0
dτCij(τ)e

−iωλντ , (2.33)

and Eq. (2.29) was used. Eq. (2.30) is called the quantum (or Pauli) master

equation.

2.2 System Hamiltonians

In the case of laser-matter interaction, when the laser influences only a few rele-

vant degrees of freedom of the complex under study, the description of the total

system can be split into the relevant part, that which interacts with the laser

field, and a dissipative reservoir, e.g. a heat bath. In this case, the Hamiltonian
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2.2. SYSTEM HAMILTONIANS

describing the full complex, H, is

H = H0 +HSB , (2.34)

with H0 = HS+HB ; HS describes the system of interest, HB is the Hamiltonian

of the reservoir, and HSB is the interaction between the two.

Two separate complexes will be presented here, both pertaining to a system

of pigment-protein complexes found in photosynthetic systems of green sulphur

bacteria. The full Fenna-Matthews-Olson (FMO) complex, which is in essence

a wire connecting the light harvesting complex to the reaction center, will first

be studied. The seven pigments make up the system, with the protein scaffold

and vibrational modes comprising the bath. Subsequently, a dimer of bacteri-

ochlorophylla (BChl) molecules will be studied to probe the role of vibrational

levels on energy transfer dynamics in photosynthetic systems. Following the

method outlined in Ref. [8], each monomer of the dimer complex can be de-

scribed by two harmonic oscillator potentials with displaced excited potentials

along a nuclear coordinate.

2.2.1 FMO Subunit

The FMO pigment-protein complex forms a trimer of identical, weakly inter-

acting subunits. Each monomer contains seven BChl molecules, which serve to

both collect energy and transfer it to the reaction center. The pigments are

surrounded by a protein structure that holds the pigments in what are presum-

ably their ideal positions, in order to maximize efficiency, ensure directionality

of energy transfer toward the reaction center, and provide an energy sink [17].

The present study is based on a model of the FMO complex which has

been elaborated over recent years by the analysis of experimental signals such

as linear absorption, linear and circular dichroism [50], pump-probe [26–32],
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and 2D photon echo (PE) [34, 38]. In this model, the interaction between the

subunits is neglected and only a single monomer is considered (a comparative

study of the monomer and trimer models justifies this approximation [51]). Each

of the seven BChl molecules within the subunit is represented by an electronic

two-level system. The excited states of the molecules are assumed to be coupled

to each other and thus form a system of excitons. The vibrational degrees of

freedom of the BChl pigment molecules and the protein environment are taken

into account as a thermal bath. In the Hamiltonian given in Eq. (2.34), HS is

the electronic Hamiltonian of the seven BChl pigment molecules, HB describes

the protein scaffold, and HSB determines the pigment-protein interaction. The

system Hamiltonian can be further partioned as follows:

HS = Hg +He, (2.35)

where Hg and He describe the electronic ground states and the excited states of

the pigment molecules, respectively. The ground states are assumed to be uncou-

pled and possess the same ground-state energy which is set to zero throughout:

Hg = |g〉〈g|. In the site representation (local basis), He reads

He =
7∑

α=1

|α〉εα〈α|+
∑

α %=β

(|α〉Jαβ〈β|+ |β〉Jβα〈α|) , (2.36)

where |α〉 denotes the excited states of the BChla molecules, εα are the pertinent

vertical excitation energies, and Jαβ are electronic couplings between excited

states α and β. The diagonalization of the system Hamiltonian results in the

set of seven exciton states |i〉, with the eigenenergies Ei,

He|i〉 = Ei|i〉. (2.37)
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2.2.2 Vibronic Dimers

Before describing the dimer Hamiltonian, the theory and notation will be clar-

ified by a brief description of a simple harmonic oscillator with an excited elec-

tronic state displaced by an amount, d, along the reaction coordinate, from

the ground state. The system can be described with the Hamiltonian given in

Eq. 2.35, where the ground and excited state Hamiltonians are, in this case,

(! = 1)

Hg = εg +
p2

2m
+

1

2
mω2

gx
2,

He = εe +
p2

2m
+

1

2
mω2

e(x− d)2. (2.38)

Here, the vertical transition energy of the ground (excited) state is εg(e), while

ωg(e) is the normal mode frequency of the ground (excited) state, and x, p, and

m are the usual reaction coordinate, momentum, and mass, respectively, This

can also be written using the creation and annihilation operators:

a† =

√
mω

2

(
x− i

mω
p

)
,

a =

√
mω

2

(
x+

i

mω
p

)
, (2.39)

as in

Hg = εg + hg

He = εe + he + ωe∆
2 − ωe∆(a+ a†), (2.40)
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with the normal mode Hamiltonian defined as hi = ωi(a†a + 1
2 ), and the dis-

placement along the dimensionless coordinate, Q = (a+ a†)/sqrt2, is

∆ =

√
mωe

2
d. (2.41)

Given a pair of nearly identical chromophores, each with one electronic ex-

cited state, by neglecting the doubly excited state, the electronic Hilbert space

of the dimer is three-dimensional:

|g; νa, νb〉 ≡ |ag; νa〉 ⊗ |bg; νb〉

|a; νa, νb〉 ≡ |ae; νa〉 ⊗ |bg; νb〉 (2.42)

|b; νa, νb〉 ≡ |ag; νa〉 ⊗ |be; νb〉,

where the subscript g (e) stands for the ground (excited) state of the molecule,

and the vibrational states are denoted νm, for m = a, b. The shorthand notation

for a generic state, |m; νa, νb〉, will be used in the following, along with the ladder

operators a and a† (b and b†) for monomer a (b). The schematic depicted in

Fig. 2.1 shows the potential energy surfaces for each molecule, as well as the

coupling between their excited states, Jab (assumed to be independent of the

nuclear coordinate). Taking the minimum energy of both ground states to be

zero, then the total dimer Hamiltonian can be written:

Hdimer = |0〉h〈0|+
∑

m=a,b

|m〉
(
Em+h−ωm∆m(m+m†)

)
〈m|+Jab(|a〉〈b|+|b〉〈a|),

(2.43)

where Em = εm + ωm∆2
m, and εm, ∆m, and ωm are the vertical excitation

energy, the dimensionless shift of the excited electronic state, and the normal

mode frequency of monomer m = a, b, respectively, as shown in Fig. 2.1. The

vibrational Hamiltonian is h = ha + hb, where hm = ωvib(m†m+ 1
2 ).
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Figure 2.1: Potential energy surfaces for the dimer system along the dimen-
sionless reaction coordinates Qa and Qb. Vibrational states are denoted ν.
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A commonly employed approach, is to consider this system in the “exciton”

basis; that is, the excited states are transformed to a new basis defined by the

symmetric (+) and antisymmetric (−) subspaces,

|±〉 = 1√
2
(|a〉±| b〉), (2.44)

with corresponding ladder operators

b+ = (a+ b)/
√
2, b†+ = (a† + b†)/

√
2,

b− = (a− b)/
√
2, b†− = (a† − b†)/

√
2. (2.45)

In this basis, the dimer Hamiltonian can be written

HS = |0〉h〈0|+ |+〉(2h+ E+ + Jab −
√
2ω∆(b− + b†−)〈+|

+|−〉(2h+ E+ − Jab −
√
2ω∆(b− + b†−)〈−|

+|+〉(E− −
√
2ω∆(b− + b†−))〈−|

+|−〉(E− −
√
2ω∆(b− + b†−))〈+|, (2.46)

where h = h+ + h− and E± = Ea ± Eb. This Hamiltonian can be partitioned

into the symmetric and antisymmetric subspaces. Since the dimer reservoir

is often modeled as a symmetric bath (see §2.3), the antisymmetric subspace

of the dimer system does not couple to it, and thus can be disregarded when

calculating the system-bath interaction.

Upon diagonalization of the system Hamiltonian, the system in the energy

eigenstate representation can be partitioned into ground and excited arrays of

states. For the purpose of dynamics calculations, only the few lowest states of

each array need be retained.
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2.3 Dissipation

In order to describe the dissipation term in Eqs. (2.30) and (2.31), or rather

the bath correlation functions in Eq. (2.33), the reservoir must be defined for

each system under study. Due to the macroscopic nature of a thermal bath,

a quantum mechanical description is not possible. In the dimer model under

study in this work, a harmonic ocsillator reservoir is employed, a description of

which is given in §2.3.2. The FMO complex reservoir is modeled after invoking

additional approximations outlined in the following section.

2.3.1 FMO Complex Reservoir

For study of the FMO subunit, consisting of seven electronically coupled BChl

molecules, the secular approximation is invoked. In terms of the Redfield op-

erator, Eq. (2.31), this means that only the secular terms in Rµνκλ, i.e. those

that satisfy

Eµ − Eν − Eκ + Eλ = 0, (2.47)

are retained. Then the evolution of the diagonal elements of the reduced density

matrix are decoupled from the evolution of the off-diagonal elements. According

to the Pauli master equation, the dissipation operator for the diagonal elements

(“populations”) of the system density matrix in the eigenstate (exciton) repre-

sentation is then

{(ρ(t)}ii =
∑

j %=i

(Mijρii(t)−Mjiρjj(t)). (2.48)

To describe the relaxation of populations, we adopt the rates Mij which have

been determined in Ref. [38] using a modified Förster/Redfield theory. The

dissipation operator for the off-diagonal terms of the reduced density matrix
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(“coherences”) is given by

{(ρ(t)}ij = ξijρij(t), {(ρ(t)}ig = ξigρig(t). (2.49)

The dephasing of the exciton states is determined by ξij , whereas the rate

of pure optical dephasing between the ground state and the exciton states is

denoted by ξig. The rates ξij can be estimated as ξij = (Mij +Mji)/2 + ξPD,

where ξPD is the rate of pure dephasing of the exciton states. In this study, ξij

and ξig are treated as adjustable parameters in order to explore their effect on

both the coherent dynamics of the system and the 2D signals. Although the

relaxation model is oversimplified and cannot account for coherence transfer or

memory effects [47, 52], it is sufficient for our purposes: the systematic study

of decoherence and population transfer effects on two-dimensional photon echo

spectra within the existing Frenkel exciton model of the FMO complex.

2.3.2 Dimer Reservoirs

Before going into detail about the dimer reservoir, a review of the harmonic os-

cillator reservoir will be presented. This is in order, in part, to clarify notation,

as well as to present full and consistent theory. The harmonic approximation

can be used when the molecular complex under study forms a crystalline lattice

with high symmetry. At a low enough temperature, lattice vibrations are sim-

ply small oscillations around the equilibrium position, and the driving force is

proportional to their displacement from the equilibrium position. In this case,

normal mode vibrations, called lattice phonons, can be introduced. The har-

monic approximation is utilized for the dimer system, the description of which

presented here is once again adopted from Ref. [48]. Its application to the dimer

system is outlined below.

If a Taylor expansion is performed on HSB with respect to the reservoir
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coordinates, all higher-order terms can be neglected and HSB is linear with

respect to the harmonic oscillator reservoir coordinates, q = {qξ}. Since each

monomer is coupled to an identical bath, Eq. (2.23) can be written as

HSB = Q
∑

ξ

cξqξ, (2.50)

where cξ is the system-bath coupling constant and Q is proportional to the sum

of system creation and annihilation operators. The reservoir is comprised of

decoupled harmonic oscillators; thus the bath Hamiltonian takes the form

HB =
∑

ξ

H(ξ)
B =

∑

ξ

ωξ(C
†
ξCξ +

1

2
), (2.51)

where C†
ξ and Cξ are the normal mode oscillator creation and annihilation opera-

tors, respectively, and ωξ is the normal mode frequency. The harmonic oscillator

eigenstates, |Nξ〉, are denoted by the quantum number Nξ, with eigenenergies

ENξ = ωξ(Nξ + 1/2). Bath coordinates are qξ =
√
1/2ωξ(Cξ + C†

ξ ).

We now assume that each degree of freedom of the BChl dimer is coupled to

an identical harmonic bath. Using the notation outlined above (that 〈qξ〉R = 0)

and a bit of mathematical manipulation, the Fourier transform of the correlation

function now takes the form

C(ω) = 2π
∑

ξ

c2ξ
2ωξ

((n(ωξ) + 1)δ(ω − ωξ) + n(ωξ)δ(ω + ωξ)), (2.52)

where the Bose-Einstein distribution, the mean occupation number of a har-

monic oscillator mode,

n(ω) =
1

eω/kBT − 1
, (2.53)

was introduced, using the Boltzmann constant, kB , and the temperature, T .

If there are only a few bath oscillators, then energy is transferred from the
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bath back into the system on a timescale that is equivalent to other relevant

timescales. However, if there are more than about 20 bath modes, the recurrence

time is found to be near infinity [53] and the spectral density, J(ω), can be

introduced:

J(ω) =
∑

ξ

g2ξδ(ω − ωξ), (2.54)

with the dimensionless coupling constant gξ given by cξ
√
1/2ωξ = ωξgξ. The

spectral density will eventually be considered a smooth function of ω. Now,

Eq. (2.52) can be further simplified:

C(ω) = 2πω2(1 + n(ω))(J(ω)− J(−ω)). (2.55)

The spectral density is defined for specific system-bath situations. For the

purposes of this research, the Ohmic spectral density is used to define the protein

environment, which encapsulates the BChl molecules:

ω2J(ω) = Θ(ω)ηωe−ω/ωc , (2.56)

and η is simply a normalization factor. The Heaviside step function ensures

that J = 0 for ω < 0. Using the stationary Redfield approximation (t → ∞)

and assuming a harmonic bath, Eqs. (2.33) can be rewritten as

Re(Γ+
λνµκ) = 〈λ|Q|ν〉〈µ|Q|κ〉






J(ωκµ)(1 + n(ωκµ)) if ωκ > ωµ

J(ωµκ)n(ωµκ) if ωµ > ωκ

limω→0J(ω)n(ω) if ωµ = ωκ

(2.57)
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Re(Γ−
λνµκ) = 〈λ|Q|ν〉〈µ|Q|κ〉






J(ωλν)(1 + n(ωλν)) if ωλ > ων

J(ωνλ)n(ωνλ) if ων > ωλ

limω→0J(ω)n(ω) if ων = ωλ.

(2.58)

The system coordinate takes the usual form: Q = (a+ a†)/
√
2 in dimensionless

units.

Now the general harmonic oscillator reservoir will be applied to a dimer. The

explicit procedure for the construction of Redfield operator, (, for the dimer

problem is described in detail elsewhere [48, 54]. However, there are several

ways to construct the QijQkl term in Eqs. (2.57) and (2.58) in the system-bath

interaction. This term can be generalized as

QijQkl = (Qa)ij(Qa)kl+γ(Qa)ij(Qb)kl+γ(Qb)ij(Qa)kl+(Qb)ij(Qa)kl. (2.59)

where Qa(b) is the coordinate for monomer a (b) and the new parameter, γ,

is a correlation parameter [55]. Specifically, if γ = 0, then there are no cross-

couplings and the bath-induced fluctuations are fully uncorrelated. This means

that the relaxation of Qa is solely determined by bath a and the relaxation of

Qb is solely determined by bath b. If γ = 1, then all of the coupling coefficients

are equal, and the bath-induced fluctuations are then fully correlated. Roughly

speaking, this means that both of the baths (on average) push or pull the dimer

vibrational mode in the same direction with the same strength. If γ = −1,

then the bath-induced fluctuations are fully anticorrelated. Hence, the baths

(on average) pull or push the dimer vibrational mode in opposite directions, but

with the same strength.

For brevity, the baths with γ = 0,+1,−1 will be referred to as baths with

fully uncorrelated, correlated, and anticorrlated fluctuations, respectively. In

previous studies of vibronic dimers within Redfield theory, baths with uncorre-
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lated or fully correlated fluctuations have been considered. With this notation,

the coordinates and momenta in the symmetric (+) and antisymmetric (-) sub-

spaces can be defined

Q± =
Qa ±Qb√

2
, P± =

Pa ± Pb√
2

. (2.60)

Then the system Hamiltonian can be written as the sum of the commuting

operators H(+)
S and H(−)

S :

HS = H(+)
S +H(−)

S , [H(+)
S , H(−)

S ] = 0. (2.61)

As per the analysis in Ref. [55], the antisymmetric (symmetric) bath is com-

pletely decoupled from the system and can be dropped in the case of fully

correlated (anticorrelated) fluctuations.

This means that the total Hamiltonian of the vibronic dimer coupled to two

baths with fully correlated or anticorrelated fluctuations can be transformed to

the sum of two mutually commuting Hamiltonians. As explained in detail in

Ref. [55], for fully correlated fluctuations, the baths have no influence on the

antisymmetric Hamiltonian, H(−)
S , but H(+)

S is bilinearly coupled through the

coordinate Q+. If the fluctuations are fully anticorrelated, the opposite is true:

The baths have no effect on H(+)
S , but H(−)

S is bilinearly coupled through Q−.

In other words, the dimer coupled to baths with fully correlated or anticor-

rleated fluctuations thus possesses decoherence-free subspaces (see Ref. [56] for

definitions). More precisely, the decoherence-free subspace spans the entire Q−

subspace in the case of fully correlated fluctuations and the entire Q+ subspace

in the case of fully anticorrelated fluctuations. There also exists a classical ana-

logue of this phenomenon: Distributions of linear/angular momenta of a particle

immersed in a gas with fully correlated or fully anticorrelated collisions do not
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relax to equilibrium [57].

Note that despite the vanishing of the commutator between the total sym-

metric and antisymmetric Hamiltonians, the dynamics in the Q+ and Q− sub-

spaces are not completely decoupled, in general. The reason is that the dimer

possesses not only continuous, but also discrete degrees of freedom. The an-

tisymmetric system Hamiltonian in the singly excited state is not diagonal in

the singly excited state basis. In the case of anticorrelated fluctuations, it is

thus impossible to obtain a closed-form dissipation-free Liouville-von Neumann

equation for the symmetric reduced density matrix, ρ(+)(t) ≡ trB,Q−{ρ(t)}, by

tracing out the bath and the Q− degrees of freedom. This observation has clear

dynamical manifestations in the behaviors of observables in the Q+ subspace,

as will be seen in §4.2 in detail.

On the other hand, all symmetric system sub-Hamiltonians are diagonal

in their respective electronic basis. It is this property which allows for the

derivation of an exact non-Markovian master equation for the reduced (dimer)

density matrix for baths with fully correlated fluctuations. In this case, the

dissipation-free Liouvill-von Neumann equation for the antisymmetric reduced

density matrix, ρ(−)(t) ≡ trB,Q+{ρ(t)}, holds in the ground, singly, and doubly

excited exciton states.

There exist two major descriptions of transport and relaxation phenomena in

excitonic systems: the vibration-bath-coupling model and the electronic-bath-

coupling model. In this work, the focus is on the former. However, the ma-

jority of studies of the photoinduced dynamics of molecular dimers has been

done within the electronic-bath-coupling model (see, e.g., Refs. [52, 58–60] and

references therein). How the results of the vibration-bath-coupling model are

translated to the electronic-bath-coupling model can be found in the appendices

of Ref. [55]. Qualitatively, all major phenomena found for the vibration-bath-
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coupling model have their counterparts for the electronic-bath-coupling model.

These include the complete decoupling of one of the baths, the (im)possibility

to derive an exact master equation for the reduced dimer density matrix in the

case of baths with fully (anti)correlated fluctuations, incomplete relaxations,

and the existence of decoherence-free subspaces.

2.4 Calculation of Spectra

2.4.1 System-Field Interaction Hamiltonian

In the case of laser-matter interaction, the time-dependent part of the full Hamil-

tonian is the system-field interaction, which is defined in the electric-dipole and

rotating-wave approximations as

HSF (t) = −XE(t) +H.c. (2.62)

The electronic transition dipole operator µ̂ of the exciton system is given by the

expression

µ̂ =
N∑

i=1

µi(|g〉〈i|+ |i〉〈g|) = X +X†, (2.63)

where the µi determine the dipole strengths of the excitonic transitions from

the ground state, |g〉, to one of the N excited eigenstates |i〉.

Consider an experiment in which three temporally spaced fields interact with

the system, see Fig. 2.2. The fields are characterized by

E(t) =
3∑

a=1

Ae−(t−ta)
2/2Γ2

eiωte−ikar, (2.64)

where A, ta, ka, and ω are the amplitude, envelope central time, wave vector,

and frequency of the pulses. The pulse duration is characterized by Γ, which is
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Figure 2.2: Schematic of four-wave (three input + one output) mixing setup.

related to the FWHM of Gaussian pulses by 2
√
2 ln(2)Γ. Note that all pulses

are assumed to have equal amplitudes, carrier frequencies, and durations.

Since the interaction with the laser field is included in the commutator in

Eq. (2.30), no ad hoc assumption of initial populations is needed. The system

is initially in the electronic ground state; when a vibrational mode is included,

the ground state population is distributed among vibrational levels using the

Maxwell-Boltzmann thermal distribution function

Ni

N
=

e−Ei/kBT

∑
j e

−Ej/kBT
. (2.65)

Subsequent interaction with laser pulses of appropriate duration creates a real-

istic initial condition.

2.4.2 Photon echo spectroscopy

The signal resulting from the interaction of the system and the electric field

in Eq. (2.64) is a function of time and the center times of each laser pulse:
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PPE(t, t1, t2, t3). It can be detected in any of the eight directions ks = ±k1 ±

k2 ± k3. For a given system with two electronic levels, and a field that is at

or near resonance with the system (ω1, ω2, ω3 ∼ ωeg) the rotating wave ap-

proximation (RWA) is invoked in order to neglect the quickly oscillating terms,

those proportional to ωa + ωeg, and retain only the slowly varying terms, those

proportional to ωa − ωeg. In order to prevent a highly oscillating term after

the second interaction, the first two interactions must have an opposite sign of

frequency (one interaction with E, the other with E∗). Therefore, the dominant

signal will be produced at the four possible wavevector directions ±k3±(k2−k1).

The applicable double-sided Feynman diagrams, adopted from Ref. [61], can be

seen in Fig. 2.3 on the following page. In photon echo experiments, the signal

is detected with the wavevector ±ks ≡ ±(−k1 + k2 + k3), which selects only

the R2 and R3 pathways.

The photon echo is generated in the following manner (see Fig. 2.2): Initially

the system is assumed to be in its ground state, ρgg. At a time t1, the first pulse

interacts with the system creating a coherence, ρeg, which is allowed to evolve

during the coherence time, τ = t2−t1. The second pulse then interacts with the

system at a time t2, creating population in either the ground (ρgg, R3 pathway)

or excited (ρee, R2 pathway) state. The population then evolves during the

population time, T = t3 − t2. Finally, the system interacts with the third pulse

at a time t3, which again creates a coherence. The photon echo signal reaches

a maximum when it is allowed to rephase for the same amount of time as it

spent in the first coherence, i.e. at a time t = t1 + τ + T + τ . The photon echo

signal can thus be considered to be a function of the coherence, population, and

rephasing times only: PPE(τ, T, tr).

For the purpose of calculating photon echo signals, pulse one is chosen to

remain fixed at 800 fs, with respect to “absolute” time, and the other two pulses
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Figure 2.3: Double-sided Feynman diagrams for time-domain four-wave mixing
in a two-level system. The diagrams shown are those that survive the rotating
wave approximation.
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scan across is. The photon echo polarization can now be plotted with respect to

the coherence and absolute times, as seen in Figs. 2.4a and 2.5a for a simple two-

level system, for two different population times, T = 0 and 400 fs, respectively.

The horizontal line in each plot indicates the location of t1. Vertical lines are

drawn for τ = 0 and τ = −T . The photon echo signal clearly has a triangular

shape, reaching a maximum when τ = 0 and absolute time is 1.2 ps, or t1+T (as

stipulated above, for τ = 0). Along the absolute time (vertical) axis, no signal

will be seen untill all pulses have interacted with the system i.e. t " t1 + τ + T

(the ∼ is due to overlap effects). The maximum line is along the diagonal,

indicating the situation in which the rephasing time is equal to the coherence

time. Along the coherence axis, we see that there is no signal for negative τ

until the third peak begins to overlap with the first, i.e. when τ ∼ −T .

Figs. 2.4b and 2.5b show the two-dimensional Fourier transform of the signal

in the former. A large peak is generated at the freqency of the excited state, in

this case set to zero. Because there is only a single excited state, no additional

diagonal peaks, and thus no cross-peaks, are generated. For nonzero population

times, additional peaks can be seen along the coherence axis, which is caused

by taking a Fourier transform over the Heaviside step function in this direction,

as explained in detail below. The spacing of these peaks is found to be directly

related to the population time.

A commonly employed approach is to split the 2D signal into rephasing

and nonrephasing spectra; that is, the Fourier transform over the positive and

negative values of the coherence time, respectively. Examples of nonrephasing

and rephasing spectra can be seen in Figs. 2.4 and 2.5, panels c and d. For

zero population time, the nonrephasing spectrum is shown in Fig. 2.4c. Here,

there is no peak along the coherence axis, since there is no signal for negative

coherence times. On the other hand, for T = 400 fs, the nonrephasing spectrum
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Figure 2.4: (a) Photon echo polarization of a two electronic level system at
population time, T = 0 fs. Horizontal line drawn at peak one center time, t1.
Vertical line drawn at coherence time, τ = 0fs. (b) Two-dimensional photon
echo spectra, i.e. the 2D Fourier transform of (a). (c) Nonrephasing spectrum
(Fourier transform over negative τ). (d) Rephasing spectrum (Fourier transform
over positive τ). The absolute value is shown for clarity.
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Figure 2.5: (a) Photon echo polarization of a two electronic level system at
population time, T = 400 fs. Horizontal line drawn at peak one center time, t1.
Vertical lines drawn at coherence times 0 and −T . (b) Two-dimensional photon
echo spectra, i.e. the 2D Fourier transform of (a). (c) Nonrephasing spectrum
(Fourier transform over negative τ). (d) Rephasing spectrum (Fourier transform
over positive τ). The absolute value of is shown for clarity.

(Fig. 2.5c), displays the expected peak at ωτ = 0 cm−1, as well as very distinct

additional oscillations along this axis. For even longer population times, these

peaks become more closely spaced (not shown). This artifact is due to taking

the Fourier transform over a step function along the coherence axis in the region

−T < τ < 0, marked by the two vertical lines in Fig. 2.5c. This results in the

sinc function, sin(πx)/(πx), where x is proportional to the population time.

Conversely, the rephasing spectra do not show this artifact. Instead of inte-

grating over the Heaviside step function in the region −T < τ < 0, the positive
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2.4. CALCULATION OF SPECTRA

τ region is characterized by a simple step function. The numerical analysis of

this region does not give rise to these additional peaks. As such, only dimer

rephasing spectra will discussed in Chapter 5. The FMO spectra, on the other

hand, exhibit rather strong signals, such that this artifact does not interfere with

the 2D spectra. Therefore, full 2D FMO spectra will be analyzed in Chapter 3.

2.4.3 EOM-PMA

As in any four-wave mixing scheme, the main computational task is the de-

termination of the induced nonlinear polarization obeying a particular phase-

matching condition. Recently, an efficient computational scheme, the equation-

of-motion phase-matching approach (EOM-PMA [43–45]), has been proposed,

which can be implemented to evaluate four-wave mixing signals. The EOM-

PMA is valid up to the third order in the system-field interaction, has no lim-

itations with respect to pulse duration, and automatically accounts for pulse-

overlap effects.

The particular realization of the method is determined by the required phase-

matching condition. In the case of the PE signal, the system of interest interacts

with a series of three laser pulses, which are centered at times t1, t2, and t3,

and the phase-matching direction is given by ks = −k1 + k2 + k3, where ka

(a = 1, 2, 3) denote the wave vectors of the three incoming fields [61].

In the EOM-PMA, the polarization in the PE direction can be calculated by

simultaneously propagating three auxiliary density matrices (σ1, σ2, σ3), each

of which obeys a modified equation of motion [45],

∂tσ1(t) = −i[HS − V1(t, t1)− V †
2 (t, t2)− V †

3 (t, t3),σ1(t)]−(σ1(t)

∂tσ2(t) = −i[HS − V1(t, t1)− V †
2 (t, t2),σ2(t)]−(σ2(t) (2.66)

∂tσ3(t) = −i[HS − V1(t, t1)− V †
3 (t, t3),σ3(t)]−(σ3(t),
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where the Va(t, ta) = XAe−(t−ta)
2/2Γ2

eiωt are derived from Eq. (2.62). To

third-order, the desired polarization in the PE direction is then obtained as

PPE(t1, t2, t3, t) = eiks·r〈X(σ1(t)− σ2(t)− σ3(t))〉+ c.c., (2.67)

where the bracket 〈. . .〉 denotes evaluation of the trace. In this work, the

fourth-order Runge-Kutta method with a fixed time step (see Appendix A.1

on page 107) has been used to propagate Eqs. (2.66).

The 2D PE experiment uses the heterodyne detection scheme. In the limit

of ideal detection, the heterodyne PE signal is proportional to the polarization

PPE(t1, t2, t3, t), where t denotes the detection time. Therefore, the ideally

detected 2D spectrum can be calculated as

SPE(ωτ , T,ωt) ∼
∫

dτ

∫
dte−iωττeiωttPPE(τ, T, t), (2.68)

where τ and T denote the delays between the incoming pulses: τ = t2 − t1,

T = t3 − t2. The coherence time, τ , corresponds to a period in which the

system is in a coherence state after the first interaction with the electric field.

The second interaction with the field creates populations, and the delay between

the second and the third pulses, T , is therefore referred to as population time.

For the case τ = 0, the 2D PE scheme reduces to a frequency-dispersed pump-

probe measurement. The population time is thus analogous to the delay time

between pump and probe pulses.

The Fourier transforms in Eq. (2.68) are performed over the coherence time

τ and the detection time t. The corresponding frequencies ωτ , ωt are often

refered to as coherence (or absorption) and rephasing (or emission) frequencies,

respectively.

The assumption of a Gaussian envelope for the detection pulse (local oscil-
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2.4. CALCULATION OF SPECTRA

lator) allows for simulation of realistic detection schemes by post-processing of

spectral data obtained with Eq. (2.68). To achieve this, the FMO spectra cal-

culated with Eq. (2.68) are convoluted with a Gaussian function exp(−Γ2(ωt −

ω)2/2) of the rephasing frequency ωt to account for the finite duration of the

pulse width of physical detectors. The detection pulse is centered at the same

wavelength ω as the incoming laser pulses, and its duration has the same FWHM

of 2
√

2 ln(2)Γ. As follows from Eq. (2.68), the 2D signal is a complex quantity.

In the following, only the part associated with the absorptive changes (the real

part) is considered.

The only approximations in the signal calculations of this work are the as-

sumed Gaussian profiles of the field envelopes and the third-order perturbative

treatment of the system-field interaction. These assumptions are appropriate

for the experiments reported so far. Note, however, that we do not include

excited-state absorption (ESA), since our main interest is the detection of co-

herence survival. ESA is known to influence only the region ωt > ωτ of the 2D

profiles; our 2D plots do not reproduce the negative contibution due to ESA in

this region.

2.4.4 Inhomogeneous Broadening

Static disorder, giving rise to inhomogeneous broadening, occurs due to vari-

ations in the excited-state transition energy of each molecule. This can be

accounted for by using different realizations of the system Hamiltonian to cal-

culate the polarization, and then average over the resulting spectra [62]. In

the present work, fluctuations in the transition frequencies are assumed to obey

Gaussian distributions of the form

exp(−(E′
i − Ei)

2/2σ2
i ), (2.69)
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where the σi are the standard deviations, resulting in the full width at half

maximum (FWHM) of 2
√
2 ln(2)σi. The Box-Muller transform has been used

to generate normally distributed random numbers. The effect of inhomogeneous

broadening on FMO spectral profiles is studied in detail in §3.2.3.
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Chapter 3

FMO Complex

The seven bacteriochlorophylla molecules (BChl) of the Fenna-Matthews-Olson

complex (FMO) of Chlorbium tepidum is modeled as a system of seven electronic

excited states and one common electronic ground state. The parameters of

the system Hamiltonian in both the site and the exciton representations were

identified from best fits with experimental observables [31, 36–38, 50] as well

as calculated independently [51, 63]. The differences in the resulting exciton

energies are minor. Here we adopt the set of parameters employed in Ref. [38],

since this set has been used for the calculation of 2D spectra, as in the present

work. For convenience, Table 3.1 gives site energy levels, εα, and electronic

couplings, Jαβ , and Table 3.2 gives exciton energy levels, Ei, as well as dipole

couplings, |µi|2.

The broadening of each exciton transition has been previously estimated

from the linear absorption spectrum [38], and is also included in Table 3.2 in

terms of FWHM. These data contain both the homogeneous and the inhomo-

geneous contributions. In order to vary and adjust the strength of the inho-

mogeneous broadening, we scale the FWHM values of Table 3.2 by a factor

41



δinhom < 1.

Table 3.1: Site energy levels and electronic couplings (cm−1) of BChl molecules
as in the model of Ref. [38].

BChl 1 BChl 2 BChl 3 BChl 4 BChl 5 BChl 6 BChl 7
BChl 1 12400 -106 8 -5 6 -8 -4
BChl 2 -106 12540 28 6 2 13 1
BChl 3 8 28 12120 -62 -1 -9 17
BChl 4 -5 6 -62 12295 -70 -19 -57
BChl 5 6 2 -1 -70 12440 40 -2
BChl 6 -8 13 -9 -19 40 12480 32
BChl 7 -4 1 17 -57 -2 32 12380

In this section, we first briefly discuss the exciton dynamics induced by laser

excitation and then turn to simulations of the corresponding 2D spectra. Several

electronic 2D PE experiments for the FMO complex have been reported: The

pioneering work by Brixner et al. [34], followed more recently by measurements

of Engel et al. [35], did much to encourage extensive studies on the FMO com-

plex. In Ref. [34], cross peaks indicating couplings between exciton transitions

were resolved, and the intensity modulations of the peaks with the popoulation

time, T , were highlighted and analyzed. An additional finding was reported

in Ref. [35]: It was demonstrated that both diagonal and cross peaks exhibit

coherent oscillations of their intensity with respect to the population time. It

has been found that these oscillations survive for at least 660 fs [35].

Table 3.2: Exciton energy levels (cm−1), dipole strengths (|µi|2) and FWHM
(cm−1) of the linear absorption spectrum [38].
exciton 1 2 3 4 5 6 7

Ei 12101 12265 12346 12397 12442 12526 12600
|µi|2 49 87 73 31 82 24 36

FWHM 141 102 129 123 100 102 129

Here, we discuss both the overall 2D spectral profiles for various population

times as well as intensity modulations of several diagonal and cross peaks as
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a function of the population time. Therefore, we mainly adopt the work by

Engel et al. [35] as the experimental reference. The pulse carrier frequencies

and durations employed in the calculations are ω = 12422 cm−1 (805 nm) and

Γ = 17 fs (40 fs at FWHM), which are very close to the experimental parameters

of Ref. [35] (808 nm and 41 fs at FWHM) and Ref. [34] (805 nm and 50 fs at

FWHM). The field amplitude is chosen to be A = 40 cm−1 and corresponds to

the weak-field regime.

3.1 Photoinduced Dynamics

Let us first discuss the exciton dynamics which is initiated by a single laser-pulse.

The equation of motion, Eq. (2.30), is solved numerically; HSF represents the

interaction with a pump pulse of 40 fs (FWHM) duration and centered at t = 0.

The system is initially in the ground state and the pulse excites all exciton

states and creates coherences. Subsequent population dynamics in the exciton

representation (diagonal elements ρii(t)) is shown in Fig. 3.1a. The overall

population evolution is determined by the master equation, i.e., by the ratesMij

and is thus similar to previous reports [38, 51]. The initial populations created

by the pump pulse are, however, different from those estimated in Ref. [38] (by

consideration of the spectral distribution of the laser intensity) and obtained in

Ref. [51] (by approximate description of excitation by a pulse of 50 fs (FWHM)

duration). As is seen in the inset of Fig. 3.1a, which shows the early-time

exciton dynamics and the pump-pulse envelope, exciton states two, three, and

five are populated almost equally and most efficiently. Exciton four is populated

to about 44% of the maximum population, while excitons one and seven are

each populated to about 37%, and exciton six to about 27% of the maximum

population. Since the excitation pulse (FWHM 736 cm−1, centered at ω =

12422 cm−1) covers all exciton transitions, the initial populations are primarily
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determined by the dipole strengths (c.f. Table 3.2). The populations of states

four to seven decay much faster than those of the lower exciton states. Around

40 fs, the preparation process is complete and relaxation rates determine the

subsequent dynamics. Note that the employed relaxation rates lead to a longer

lifetime of exciton three compared to exciton two, even though exciton three

has a higher energy.

Fig. 3.1b shows the coherence between excitons 1 and 3, ρ13(t) (this co-

herence is chosen since it is of relevance for the discussion of the 2D spectra

below). In the absence of dephasing processes, each coherence oscillates with a

frequency determined by the energy difference between the coresponding states;

for ρ13(t) the resulting period is 136 fs. Within the present model, the os-

cillations decay within a time scale dictated by the dephasing rate ξ13. The

latter can be estimated as (M13 + M31)/2 + ξPD = 0.6 ps−1 + ξPD. Shown

in Fig. 3.1b is ρ13(t) obtained with ξ13 = 5 cm−1 ≈ 0.9 ps−1 (blue line) and

ξ13 = 20 cm−1 ≈ 3.7 ps−1 (red line). When ξ13 = 5 cm−1, the coherences

survive for over 2 ps, while when ξ13 = 20 cm−1, which is dominated by pure

dephasing, the coherences survive for about 1 ps.

In Fig. 3.1c, the population dynamics in the local basis (site representation,

ραα(t)) is shown. The coherence dephasing rates are ξij = 5 cm−1 (solid lines)

and 20 cm−1 (dashed lines) for all i, j. For clarity, we have picked the excited-

state populations of molecules BChl 1 (red lines), BChl 3 (blue lines), and BChl 7

(green lines). The populations of all molecules show pronounced modulations

due to exciton coherences that last as long as the coherences survive. The me-

diating BChl 1 and BChl 7 are seen to be modulated by only one frequency,

whereas multiple frequencies contibute to the population dynamics of the BChl 3

excited state. BChl 1, which contributes to excitons three (strongly) and seven

(weakly) [38], oscillates with a period of approximately 131 fs, corresponding to
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Figure 3.1: (a) Electronic population dynamics of the FMO model in terms
of the diagonal elements of the density matrix in the exciton representation,
ρii(t). (b) Off-diagonal element ρ13(t) of the density matrix in the exciton
representation (real part) for two dephasing rates, ξ13 = 5 cm−1 (blue line) and
ξ13 = 20 cm−1 (red line). (c) Population dynamics of BChl one, three, and
seven (site or local representation of the density matrix, ραα(t)) obtained with
ξ13 = 5 cm−1 (solid lines) and ξ13 = 20 cm−1 (dashed lines).
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the coherence between excitons three and seven (∆E37 = 254 cm−1). Similarly,

BChl 7, which contributes to excitons two (weakly) and four (strongly) [38],

oscillates with a period of about 255 fs. This corresponds to the coherence be-

tween excitons two and four (∆E24 = 132 cm−1). The dominating frequency in

the BChl 3 dynamics corresponds to the energy difference between excitons one

and two (∆E12 = 164 cm−1, period of approximately 200 fs). Note that even

a relatively strong exciton dephasing ξij = 20 cm−1 gives rise to pronounced

coherent modulations of the local populations at times up to about one picosec-

ond. The picture is very different if the exciton coherences are neglected (see,

for example, the supplementary material of Ref. [63]).

3.2 2D Photon Echo Spectra

In addition to the relaxation and dephasing parameters relevant to exciton dy-

namics, the spectroscopic signals are also strongly influenced by optical dephas-

ing and inhomogeneous broadening. In this section, 2D signals of the model for

various population times are calculated and the influence of dephasing processes

on 2D profiles are addressed in some detail. Unless otherwise specified, a weak

dephasing rate of the exciton coherences is assumed (ξij = 5 cm−1).

3.2.1 Near-ideal Case

We start the discussion in this section by considering a 2D PE spectrum for

population time T = 0 for an idealized case of very weak optical dephasing

(ξig = 5 cm−1 for all i, which is one order of magnitude less than the average

energy difference between successive excitons, 84 cm−1) and no inhomogeneous

broadening. Fig. 3.2 shows a very clear pattern in this near-ideal regime: The

spectrum exhibits seven characteristic diagonal peaks arising from the transi-

tions to the seven exciton states. The cross peaks, which reflect the couplings
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Figure 3.2: 2D PE spectra of the FMO model, calculated with a near-ideal
value of the optical dephasing rate (ξig = 5 cm−1) and without inhomogeneous
broadening (δinhom = 0) at population time T = 0 fs. Gray lines are drawn
along ωτ = Ei and ωt = Ei to indicate the locations of exciton transition
energies.

between these transitions (via the common ground state), are also observed at

their expected positions. The intensity of the peaks is determined by the dipole

strengths of the corresponding transitions and slightly modified due to the fi-

nite pulse durations (the pulses are centered at 12422 cm−1 and have a width

(FWHM) of about 736 cm−1). The effect of excited state absorption (ESA) is

neglected in our calculations. Therefore, the spectral intensity above and below

the diagonal is expected to be very similar for population time T = 0.

3.2.2 Homogeneous Broadening

The experimental peak profiles of Ref. [35] are significantly broader than the

spectrum in Fig. 3.2 and the individual peaks are not resolved. This suggests

that a realistic optical dephasing (homogeneous broadening) is considerably

stronger than the employed, ξig = 5 cm−1, and that inhomogeneous averaging

must also be taken into account. We first consider the influence of these two

broadening mechanisms separately, then study their combined effect.
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Figure 3.3: 2D PE spectra of the FMO model obtained with an optical de-
phasing rate of ξig = 20 cm−1 (left panel) and ξig = 35 cm−1 (right panel) for
population time T = 0, in the absence of inhomogeneous broadening. The spec-
tra are displayed with arcsinh scaling to enhance weaker aspects of the peak
profiles.

The spectra shown in Fig. 3.3 were calculated using optical dephasing rates

ξig = 20 cm−1 (left panel) and ξig = 35 cm−1 (right panel), but without in-

homogeneous broadening, δinhom = 0 (population time, T = 0). As expected,

larger values of the dephasing rate lead to broader peaks along both the ωτ

and the ωt axes. However, in both cases, the peaks are still too localized to be

considered accurate reproductions of experimental spectra [35].

3.2.3 Inhomogeneous Broadening

In Fig. 3.4, inhomogeneous broadening is included, while the optical dephasing

rate is kept at 5 cm−1. Shown are the signals at T = 0 for δinhom = 0.5 (left

panel) and δinhom = 0.7 (right panel). Inclusion of inhomogeneous broadening

leads to the averaging of the highly localized diagonal peaks observed in Fig. 3.2

due to variations of transition frequencies. This leads to an elongation of spectra

along the ωτ = ωt line, as well as a loss of intensity and poor resolution of the
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Figure 3.4: 2D PE spectra of the FMO model, calculated with very weak
optical dephasing ξig = 5 cm−1 and inclusion of inhomogeneous broadening for
population time T = 0. δinhom = 0.5 in the left panel and 0.7 in the right panel.
The spectra are displayed with arcsinh scaling to enhance weaker aspects of the
peak profiles.

cross peaks. In agreement with the experimental results of Ref. [35], only two

peaks can be well resolved along the diagonal: The lower peak corresponds to the

spectrally well separated transition to exciton one, while the higher-frequency

region represents the contribution from the remaining exciton transitions.

3.2.4 Combined dephasing mechanisms

Finally, Fig. 3.5 shows our best fit of the experimental spectra within the em-

ployed simple exciton model. It has been achieved with the optical dephasing

rate ξig = 30 cm−1 and δinhom = 0.5. As in Ref. [35], the signals for four values

of the population time T = 0, 150, 280, and 600 fs are shown. Since ESA is not

included, the simulated signals disregards the negative contibution in the region

ωt > ωτ (above the diagonal). Otherwise, the agreement with experimental

profiles is satisfactory. For larger T , population relaxation leads to an inten-

sity redistribution between the cross peaks [59]. The development of a strong
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and broad peak below the diagonal with increasing T is a typical experimental

observation [34, 35] and has also been reproduced in previous simulations [38].

This finding is easy to rationalize: Since population relaxation progresses with

T , emission occurs at lower frequencies as T increases. The analysis of coherent

oscillations in peak intensities is slightly more involved. In the next section the

intensity evolution of individual peaks is considered in more detail.

Before closing this section, we briefly address the effect of a stronger exciton

dephasing rate ξij on the 2D profiles. It can only become prominent at larger

population times (cf. Fig. 3.1), since the dephasing becomes more efficient with

T . Since dephasing rates scale with the difference in energy between two states,

optical dephasing, ξig, should always be stronger than the dephasing between

excited states, ξij . The effect on spectra of stronger ξij (5 cm−1, left panel and

20 cm−1, right panel), for a fixed value of the optical dephasing (ξig = 35 cm−1)

at T = 600 fs, is shown in Fig. 3.6. As can be seen, the spectral profiles are not

strongly influenced by the dephasing rate: Overall peak widths and intensities

are relatively unaffected. Since the dephasing between excited states does not

significantly alter 2D spectra snapshots, a record of intensity evolution of a

particular peak is required to gain information about the decoherence time scale.

3.3 Peak Evolution

In Ref. [35], the intensities of the lowest diagonal peak (DP 1) and of the lower

(ωt < ωτ ) cross peak between excitons one and three (CP 1-3) were measured

as a function of the population time, T . The intensities of the peaks exhibited

strong quantum beating with multiple frequencies for at least 660 fs. The oscil-

lations were attributed to electronic coherences between excitons. Furthermore,

it has been argued that coherence transfer takes place; the observed multiple

frequencies in the intensity evolution of CP 1-3 were assigned to the frequencies
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Figure 3.5: 2D PE spectra of the FMO model, calculated with ξig = 30 cm−1

and δinhom = 0.5 for various population times as indicated. The spectra are dis-
played with arcsinh scaling to enhance weaker aspects of the peak profiles. The
figure shows the best reproduction of the experimental 2D signals of Ref. [35].
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Figure 3.6: 2D PE spectra of the FMO model, calculated with optical dephasing
ξig = 35 cm−1, without inhomogeneous broadening, and for the population time,
T = 600 fs. The exciton coherence dephasing is ξij = 5 cm−1 (left panel) and
20 cm−1 (right panel). The spectra are displayed with arcsinh scaling to enhance
weaker aspects of the peak profiles.

between all participating exciton transitions.

This interpretation suggests that the bath induces transfer between the exci-

tonic coherences (ρij), and simultaneously allow the coherences to survive on an

experimentally observable time scale. The model employed in the current sec-

tion does not include coherence transfer mediated by the bath, but it provides an

estimate of coherence lifetimes in the presence of several dephasing mechanisms

directly from experimental observables. Chapters 4 and 5 address coherence

transfer effects in a dimer of BChl molecules. Note that in the existing simu-

lations of conceptually new 2D spectroscopies for the FMO complex [41, 42],

exciton dephasing has not been taken into account.

3.3.1 Cross Peaks

In the absence of dissipation, cross peaks are expected to oscillate with T like

the corresponding off-diagonal elements of the reduced density matrix, ρij(t),
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i.e. with a frequency equal to the energy difference between corresponding exci-

tons [39, 64]. The decay of the oscillations is induced by dissipation. While the

coherences of the density matrix decay with the rates ξij , the intensity modula-

tions of the cross peaks can be further influenced by the optical dephasing (ξig)

and inhomogeneous broadening.

As in the reported experiment [35], we focus on CP 1-3 located at ωt =

E1 = 12101 cm−1, ωτ = E3 = 12346 cm−1 as well as on DP 1 at ωt = ωτ =

12101 cm−1. The calculated intensities of CP 1-3 and DP 1 with respect to the

population time are shown in Figs. 3.7 and 3.8, respectively (a 10 fs popula-

tion time step was employed in the calculations). The dotted line in Fig. 3.7a

corresponds to the idealized case of Fig. 3.2, i.e. to the limit of very weak de-

phasing, ξig = ξij = 5 cm−1, and no inhomogeneous broadening, δinhom = 0.

In this limit, a well-resolved long-lived oscillation in the intensity of CP 1-3

with a period of 136 fs (corresponding to the energy difference between exci-

tons three and one, E3 − E1 = 245 cm−1) is observed. While an increase in

optical dephasing considerably influences the 2D spectral profiles (Fig. 3.3), it

does not significantly dampen the oscillations in the cross peak intensity: The

dashed and solid lines in Fig. 3.7a have been obtained with ξig = 20 cm−1 and

ξig = 35 cm−1, respectively (ξ13 = 5 cm−1 has been retained).

To demonstrate how cross peak intensity oscillations map the corresponding

off-diagonal density matrix elements, Fig. 3.7b shows the evolution of CP 1-3 for

ξ13 = 5 cm−1 (solid line) and ξ13 = 20 cm−1 (dashed line). Since the strength

of the dephasing scales with the energy difference between states, a value for

the optical dephasing ξig = 35 cm−1 is used. As can be seen, the decay of the

cross peak oscillation is determined by the dephasing between exciton states,

ξ13, in the same manner as the decay of ρ13(t) in Fig. 3.1b. Comparing with

experimental results [35], a moderate value of the dephasing rate, ξ13 = 20 cm−1

53



3.3. PEAK EVOLUTION

0.4

0.8

1.2

1.6

2.0

2.4

 0  100  200  300  400  500  600  700  800

A
m

p
lit

u
d
e
 (

a
rb

. 
u
n
it
s
)

(a)

!ig = 5 cm
-1

!ig = 20 cm
-1

!ig = 35 cm
-1

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

 0  100  200  300  400  500  600  700  800

A
m

p
lit

u
d
e
 (

a
rb

. 
u
n
it
s
)

Population time (fs)

(b)
!ij  = 5 cm

-1

!ij  = 20 cm
-1

Figure 3.7: The normalized amplitude of CP 1-3 as a function of population
time, for (a) various values of the optical dephasing ξig with ξij = 5 cm−1, and
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or weaker, must be used in order to resolve oscillations beyond 660 fs. Indeed,

Ref. [65] shows that beating in crosspeak 1–3 survives for about 300 fs even at

physiological temperature. This result is attributed to the correlated motion

within the protein structure surrounding the chromophores. They conclude

that the protein scaffold mediates efficient energy transport despite thermal

fluctuations.

3.3.2 Diagonal Peaks

The intensity of DP 1 (Fig. 3.8a, dotted line) exhibits very weak oscillations

when idealistic values for dephasing (ξig = ξij = 5 cm−1) and inhomogeneous

broadening (δinhom = 0) are used. As can be seen in Fig. 3.8a, an increase of

optical dephasing induces oscillations in the diagonal peak. This effect scales

with the strength of the optical dephasing and can be understood by compar-

ing 2D spectra in the ideal case (Fig. 3.2) and in the case of stronger optical

dephasing (Fig. 3.3). The modulation is most likely due to the spread of peak

widths, which leads to the overlap of the oscillating cross peaks with the diago-

nal peaks. In the specific case of DP 1, the oscillation can be approximated to

be 223 cm−1 (corresponding to a period of about 150 fs), which is approximately

equal to the energy difference between excitons one and two (E1 = 12101 cm−1

and E2 = 12265 cm−1). As can be seen in the left panel of Fig. 3.3, the cross

peaks between excitons one and two have spread to such an extent that they

overlap with DP 1. This interpretation is confirmed by Fig. 3.8b: Modula-

tions in the amplitude of DP 1 observed for ξij = 5 cm−1 and ξig = 35 cm−1

(solid line) decay faster with an increase of dephasing between the exciton states

(ξij = 20 cm−1, dashed line), since this damps the contributing cross peak oscil-

lations more efficiently. Another source of the oscillations of the diagonal peak

intensity is the so-called non-rephasing contribution [40], which is automatically
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of population time using parameters that best reproduce the experimental 2D
spectra: ξig = 30 cm−1 and δinhom = 0.5 (cf. Fig. 3.5). A weak dephasing,
ξij = 5 cm−1, is used.

taken into account in the present calculations.

So far, we did not include the effect of the inhomogeneous broadening on

the peak intensity modulations with population time. The best reproduction of

the experimental 2D spectra [35] (cf. Fig. 3.5) is obtained with the adjustable

parameters of ξig = 30 cm−1 and δinhom = 0.5. In this case, we find that the

coherent modulation of CP 1-3 is reduced and that of DP 1 cannot be resolved,

even in the case of slow dephasing (ξij = 5 cm−1), as can be seen in Fig. 3.9.

This finding indicates that the signatures of excitonic coherences are rather

sensitive to inhomogeneous dephasing.

In the reported experiment both CP 1-3 and DP 1 are found to oscillate

with multiple frequencies [35]. Within the model employed in this study, each

cross peak at a particular ωt = Ei, ωτ = Ej is expected to oscillate with a
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single frequency determined by the energy difference |Ei − Ej |. The additional

frequencies in CP 1-3 (found experimentally [35]) could arise due to the overlap

of broadened neighboring peaks. The effects of broad cross peaks on diagonal

peaks are observed here, yet they are insufficient to produce additional oscilla-

tions in either diagonal or cross peak intensities. This result strongly suggests

that another physical mechanism must be involved. A possible hypothesis is

that the bath initiates a very fast coherence transfer so that the evolution of

each off-diagonal element of the system density matrix depends on several fre-

quencies |Ei−Ej |. So far, this has not been theoretically confirmed, although a

number of developments have recently emerged [52, 66]. Another possibility is

that high-frequency vibrational degrees of freedom of the monomers are excited

in the experiment which give rise to the observed oscillations.
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Chapter 4

Photoinduced dynamics of

vibronic dimers

Consider the standard model of a molecular chromophore, which consists of

two electronic states coupled to a number of vibrational modes. If the modes

can be modeled as harmonic and the electron-vibrational coupling is at most

quadratic in the vibrational displacements, then the dynamics of the system

and its nonlinear response to external fields can be calculated exactly.[61] If two

such molecules form a dimer, their mutual (usually dipole-dipole) interactions

cause intermonomer electronic couplings, which complicate the electronic and

vibrational dynamics and render the ensuing nonlinear responses more difficult

to calculate and to interpret.

There exist two major approaches to the modeling of energy transport and

relaxation phenomena in exictonic systems, and dimers in particular.[61, 67, 68]

In the first approach, a few high-frequency optically active vibrational modes

are incorporated into the system Hamiltonian and treated explicitly. The rest

of the vibrational modes are assumed to form a thermal reservoir. The reservoir
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is normally treated as harmonic, with bilinear system-bath coupling. In the

second approach, all vibrational modes are incorporated into the reservoir. In

this representation, the vibrational (usually harmonic) reservoir is coupled to

the system’s electronic degrees of freedom directly, inducing fluctuations of the

site energies. Hereafter, these approaches will be referred to as the vibration-

bath-coupling model and the electronic-bath-coupling model, respectively.

The two models of the exciton transport are, in principle, equivalent. Via a

canonical transformation, one can switch from one description to the other by

incorporating the system modes into the bath or by singling out several (high-

frequency) modes from the bath and treating them explicitly (see Refs. [69–72]

for a comprehensive discussion). In the present study of vibronic dimers, the

vibration-bath-coupling model is investigated for the following reasons: We are

primarily interested in the study of vibrational and electron-vibrational coherent

effects, which requires the explicit consideration of spectroscopically-relevant

vibrations. Furthermore, the exact treatment of certain high-frequency modes,

which are strongly coupled to the electronic degrees of freedom, allows us to

assume that the remaining bath modes are coupled to the monomers rather

weakly. This assumption justifies the use of Redfield theory for the description

of the vibrational relaxation of the dimer.

Exact results concerning the photoinduced dynamics of vibronic dimers are

scarce in the literature. The Hamiltonian of a symmetric dimer with a single vi-

brational mode per monomer can be partitioned into the sum of the commuting

Hamiltonians in the symmetric and antisymmetric vibrational subspaces. [10] If

the energies in the single-exciton subspace are doubly degenerate (e.g. molecules

of D4 symmetry with Jahn-Teller active vibrational modes), a π/4-rotation di-

agonalizes the Hamiltonian and reduces the problem to a displaced harmonic

oscillator. [73, 74] Certain exact results also exist beyond the strictly degener-
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ate case (see, for example, Refs. [12, 75–78] and references therein). Beyond

these exact results, several approximate methods are widely employed for the

investigation of the photoinduced dynamics of molecular dimers: Redfield the-

ory, [8, 36, 79–81] the stochastic Schrödinger equation, [82, 83] or the quantized

Hamiltonian dynamics. [83] If vibrational relaxation and thermal fluctuations

can be neglected on the timescale of interest, the Schrödinger equation can be

solved numerically to obtain the spectroscopic observables. [84, 85] More gener-

ally, third-order response functions are used for the calcuation of spectroscopic

signals of dimers and other multi-exciton systems. [67, 73, 86–88]

The origins of long-lived coherent optical responses of dimers [89, 90] and

more complex aggregates coupled to dissipative environments [35, 91–97] are

being actively debated at present. This Chapter addresses the dissipative dy-

namics of the vibronic dimer, which is a minimal model relevant for the analysis

of the dynamics of multi-exciton systems. The dimer comprises a pair of elec-

tronic two-level systems, each of which possesses a vibrational mode. Through

these vibrational modes, the dimer is bilinearly coupled to a harmonic reservoir.

Using firmly established results regarding relaxation pathways [55] as a guide-

line, the relaxation of vibronic dimers is studied in detail numerically, with

emphasis on the effects of bath-induced correlations on the dimer dynamics.

Redfield theory is used to study the relaxation of the dimer vibrational modes

and the evolution of populations and coherences of the dimer density matrix,

considering the evolution of the bath-induced fluctuations from the fully uncor-

related to the fully anticorrelated.

For the purposes of these simulations, ∆ = ∆a = ∆b will be varied in order

to observe the effect of increasing the excited state displacement, as well as the

effect of varying an asymmetry between the molecules (∆a .= ∆b), on the system

dynamics. The chromophores are assumed to be bilinearly coupled to two baths
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(§2.3.2), which are modeled using the Ohmic spectral density (Eq. 2.56). A

moderate vibrational dissipation, η = 0.2, is assumed. The cutoff frequency,

ωc = 600 cm−1, is on the order of magnitude of the system-mode vibrational

frequency. To emphasize coherent effects, the temperature is taken to be low,

T = 4.5 K.

Electronic dipole moments were found after transformation of the matrix

of electronic dipole moments from the exciton basis (given in Ref. [38]) to the

site basis, resulting in µa = 3.8249 D and µb = 6.8718 D. The pulse carrier

frequency is in the infrared: ωfield = 900 cm−1, (note the use of reduced energies

throughout) which is only slightly closer to the energies of eigenstates 5 and 6,

than to states 3 and 4 (see Table 4.1). The pulse duration of 30 fs at FWHM

corresponds to a width of 980 cm−1 in the frequency domain, and so the laser

pulse creates populations of all states in listed in Table 4.1, as well as higher

states and coherences.

Table 4.1: Eigenenergies of the first nine eigenstates for each value of the coor-
dinate displacement in the symmetric case, i.e. ∆ = ∆a = ∆b. All values are
given in cm−1.

∆ 0.5 1.0 1.5 2.0
E1 0 0 0 0
E2 206 190 179 175
E3 751 752 750 747
E4 757 759 751 750
E5 950 934 929 925
E6 956 940 932 929
E7 1501 1502 1499 1498
E8 1508 1508 1501 1501
E9 1512 1509 1503 1502

The Redfield equation (Eq. 2.30) is converted in to matrix form, by an expan-

sion in terms of the eigenstates of the system Hamiltonian. The field-matter in-

teraction is treated numerically exactly. The fourth-order Runge-Kutta method
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is used for the propagation of the reduced density matrix (see Appendix A.1 for

details).

4.1 Photoinduced dynamics for uncorrelated baths

In the following discussion, the dynamics of the system after excitation by a

single laser pulse is discussed, for which the two electronically excited states are

displaced along the dimensionless coordinate axis from their respective ground

state by an equal amount, ∆ ≡ ∆a = ∆b = 1.5. Initially, the dimer is in the

electronic ground state, while vibrational levels are populated according to the

thermal distribution given in Eq. (2.65). Additionally, the baths are assumed

to be uncorrelated (γ = 0). Upon interaction with a laser pulse, dynamics of

the first six eigenstates can be seen in Fig. 4.1a; higher states are not shown

due to their negligible population. States 5 and 6 are initially more efficiently

populated than states 3 and 4, while relatively little population is transfered to

the lowest eigenstate.

Pumping is complete within about 25 fs; after which dissipation dominates

the dynamics. The system-bath interaction is characterized by the coupling,

η = 0.2, and the bath cutoff frequency, ωc = 600 cm−1, and the temperature

used is T = 4.5 K. With these parameters, eigenstates 3 through 6 decay within

about 200 fs, and population transfers to the lowest eigenstate, as expected.

Eigenstate 2, however, decays significantly slower than higher states. This is due

to the weak coupling between the molecules: Higher states relax to the ground

state of their respective molecule; subsequently, population transfers from state

|b; 0, 0〉 to state |a; 0, 0〉 at a rate corresponding to the coupling strength, Jab =

−62 cm−1.

The dynamics of the coherences between the lowest three eigenstates is shown

in Fig. 4.1b. The dominant oscillation in these coherences is proportional to the
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Figure 4.1: Dynamics for the dimer system with ∆ = 1.5 for (a) the first six
eigenstates; (b) coherences 1-2, 2-3, and 1-3; (c) total populations in the local
electronically excited states for chromophores a and b; (d) normalized coordinate
dynamics for chromophores a and b.

64



CHAPTER 4. PHOTOINDUCED DYNAMICS OF VIBRONIC DIMERS

energy difference between corresponding eigenstates, as expected. For example,

coherence 1–2 oscillates with a period of T = 186 fs, consistent with ω12 =

179 cm−1; coherence 2–3 has a period of about 59 fs, closely corresponding to

ω23 = 572 cm−1; and coherence 1–3 oscillates with period of about 44.5 fs,

approximately equal to ω13 = 750 cm−1. Except for coherence 1–2, which has a

pronounced lifetime longer than 3 ps, coherences decay on a timescale of about

500 fs. The rate of decay depends on system-bath coupling strength. Notice the

fast oscillation in coherence 1–2 in the first 100 fs. Its origin and dependence

on the displacement will be discussed in the following.

The population dynamics in the local basis (site representation ραα) of the

excited electronic states of chromophores a and b is shown in Fig. 4.1c. A

weak modulation on the order of ω12, can be seen due to exciton coherences.

This oscillation has a period of about 162 fs (206 cm−1). Its behavior on the

coordinate displacement will also be studied in detail below.

The dynamics of the normalized coordinate expectation values, 〈Qa〉 and

〈Qb〉, (where the brackets imply normalization by the population of the electron-

ically excited state of chromophore i, i.e. 〈Qi/Pi〉) is shown in Fig. 4.1d. Both

coordinate expectation values oscillate around 1.5 as expected, since ∆a = ∆b =

1.5, with a period of about 45 fs; This corresponds closely to ωvib = 750 cm−1

(compare with 737 cm−1). For this value of the displacement, ωvib is approxi-

mately equal to ω13. However, as the coordinate displacement is varied, thereby

modifying ω13, this oscillation remains consistant (not shown) and can therefore

be attributed to the vibrational energy.

Now the effect of varying the coordinate displacement on system dynamics

is studied. Site population dynamics for various values of the displacement is

shown in Fig. 4.2. Notice that the efficiency decreases both for the largest and

the smallest values of the coordinate displacement. This is due to the fact that
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Figure 4.2: Population dynamics of the electronically excited state of chro-
mophore a (solid) and b (dashed), for various values of the coordinate displace-
ments (colors as indicated).

the electronic dipole moments, (via Franck-Condon overlaps), determine the

efficiency of population transfer; see Appendix A.2 for details on calculations

of Franck-Condon overlap integrals. Thus, even though ωfield is approximately

centered between the degenerate pairs of eigenstates: 3, 4 and 5, 6, the efficiency

of population transfer is not constant when the displacement is varied. For

example, when ∆ = 0.5, the Franck-Condon factor, which is proportional to

the square of the overlap 〈0|0〉, is relatively large and decreases significantly as

the coordinate displacement increases. On the other hand, the overlap 〈0|i〉,

for i = 3, 4, 5, 6, are quite small and increase only a small amount as the

displacement increases.

Modulation in the site population dynamics arises due to the excitonic nature

of the system. As seen in Fig. 4.2, the weak modulation in the site populations

becomes more pronounced as ∆ is decreased. For ∆ = 0.5, it is easily mea-

surable, and clearly related to ω12, with a period of 162 fs (206 cm−1). This

oscillation survives for at least 3 ps in this case (not shown), and for ∆ = 1.0,

it decays in about 2.5 ps.
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While 2D PE spectroscopy is believed to provide information about system

coherences, in the model considered here, the coherences are represented by the

off-diagonal elements of the reduced density matrix in the system eigenstate

representation, ρµν . If initially nonzero and in the absence of dissipation, they

evolve with time as exp{−iωνµt}. The eigenenergies listed in Table 4.1 therefore

provide an idea as to which frequencies will be present in the coherent dynamics.

According to Table 4.1, the eigenstate structure is only slightly modified for

various displacement values of the symmetric dimer. Therefore, the coherences

between the same eigenstates can be directly compared.

Coherence dynamics for various values of the coordinate displacement is

shown in Fig. 4.3. Coherences 1–3 and 2–3 oscillate at ω23 and ω13, respec-

tively, for all values of the displacement as expected. Slight modifications in

the oscillation frequency arise due the slight variances in the eigenstate values;

see Table 4.1 for eigenenergies for each case. Coherence 1–2 also oscillates at

ω12 as expected, however, an additional fast oscillation can be seen in the first

200 fs. This fast oscillation has a period of approximately 46 fs, corresponding

to an energy of 724 cm−1, which is close (less than 4% discrepancy) to the vibra-

tional energy of the chromophores. As the coordinate displacement increases,

the strength and detectability likewise become more pronounced. Notice that

the manner in which this fast oscillation in coherence 1–2 depends on the coordi-

nate displacement is opposite of the effect of increasing coordinate displacement

on electronic site population dynamics.

Fig. 4.4 shows the coherence between the eigenstates 1 and 2 (panel (a),

ω21 = E2 − E1 = 206, 190, 179 cm−1 for the three displacements considered)

and between 2 and 6 (panel (b), ω62 = E6 − E2 = 750, 750, 753 cm−1 for

∆ = 0.5, 1, 1.5, respectively). These are two of the most dominant system

coherences generated upon laser excitation. They represent two major time
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Figure 4.3: Dynamics of the coherences involving the first three eigenstates for
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should not have the same frequency, as the various coordinate displacements
give rise to slightly different eigenvalues (see Table 4.1).
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scales of the coherent system dynamics: The slow oscillation is due to eigenstates

closely spaced in energy (as the lowest states 1 and 2 shown in panel (a)), and

is mainly determined by the coupling Jab and the vertical energy gap of the two

excited states εb − εa. The faster oscillation is between eigenstates separated

by about one vibrational quantum (e.g. states 2 and 6 shown in panel (b)),

and the corresponding frequency depends on both the vibrational frequency

and on the coupling Jab. Since the eigenstates separated by about one or more

vibrational quanta are only significantly populated when the difference between

the equilibrium geometry of the electronic states (here ∆) is not negligible, these

types of coherences are often referred to as vibrational coherences. If only the

lowest vibrational states are mostly populated upon optical excitation, then the

created coherence is of purely electronic origin. Therefore, the coherences like

the one between the lowest eigenstates 1 and 2 are often referred to as electronic

coherences.

Coherence 1–2 shows a very slow decay on the considered timescale, while

coherence 2–6 decays almost completely. The reason for this is that the bath

cut-off frequency is 650 cm−1, and the system eigenfrequencies close to this

value experience the strongest influence of the bath. The amplitude of the

low-frequency “electronic” oscillation (coherence 1–2) has been reduced by a

factor of four in Fig. 4.4 in case ∆ = 0.5, while no scaling has been performed

for the fast coherence 2–6. Therefore, for the smallest displacement value, we

expect the lower-frequency oscillation to dominate the system dynamics. For

∆ =1 , 1.5, on the other hand, the two coherences are on the same order of

magnitude. This allows for the observation of the effect of coherence transfer by

the bath: At short times, coherence 1–2 is modulated by its higher-frequency

vibrational counterpart.

Incorporating a small asymmetry between the coordinate displacements of
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each monomer leads to only slight changes in the dynamics of the system, as

can be seen in Fig. 4.5. The top panel shows the dynamics of the electronically

excited state of each monomer (solid lines denote BChl a and dashed lines are

for BChl b) for the symmetric case (∆a = ∆b = 1.5 shown in red), and for the

two asymmetric cases: ∆a = 1.5, ∆b = 1.3 (green) and ∆a = 1.3, ∆b = 1.5

(blue). The same color scheme is used to show the dynamics of coherence 1–

2 in the bottom panel. Here, it can be seen that, as in the symmetric case,

coherence 1–2 beats with a frequency equal to the energy difference, ω12, and

at short times, it also exhibits a fast oscillation, which is consistent with the

vibrational energy.

This asymmetry is now increased such that one monomer’s electronically

excited state is displaced by 0.5 and the other by 1.5, and the dynamics are

presented in Fig. 4.6. The left panels (site population dynamics in (a) and

coherence 1–2 dynamics in (b)) shows the cases for which∆b is fixed at 1.5, while

∆a = 1.5 (for the symmetric case, shown in red) or ∆a = 0.5 (the asymmetric

case, shown in blue). The dynamics for these two situations are remarkably

similar to each other. Again, the population transfer rate between monomers

is nearly unchanged, and the weak modulation in site population dynamics is

related to the oscillation in coherence 1–2. Notice, however, that an additional

fast modulation appears in the site population dynamics of the asymmetric case,

which can be seen for very short times (< 100 fs).

Switching the displacement asymmetry leads to significantly different dy-

namics, as shown in the right panels of Fig. 4.6 (site population dynamics in (c)

and coherence 1–2 dynamics in (d)). Here, ∆b is fixed at 0.5, and the symmetric

case (∆a = 0.5, red) is compared with the asymmetric case (∆a = 1.5, blue). In

the site population dynamics, the strong oscillation seen in the symmetric case

(proportional to ω12) becomes weaker when the asymmetry is added. However,
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Figure 4.5: (Top panel) Population dynamics of the electronically excited state
of chromophore a (solid) and b (dashed) in the local basis, and (bottom panel)
dynamics of coherence 1–2 (ρ12) for various small asymmetries in the values of
the coordinate displacements (colors as shown).
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Figure 4.6: (Top panels) Population dynamics of the electronically excited state
of chromophore a (solid) and b (dashed) in the local basis, and (bottom panels)
dynamics of coherence 1–2 (ρ12) for various large asymmetries in the values of
the coordinate displacements. Red lines denote the symmetric cases: ∆ = 1.5
(left panels) or ∆ = 0.5 (right panel). Blue lines denote the asymmetric cases:
∆a = 0.5 and ∆b = 1.5 (left panels) or ∆a = 1.5 and ∆b = 0.5 (right panels).
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Figure 4.7: Expectation value of the excited-state coordinate of monomer a,
corresponding to the model with equal displacements ∆a = ∆b = ∆ =0.5 (red),
1.0 (blue), and 1.5 (black).

there once again can be seen a fast oscillation (∼ ωvib) that survives for about

200 fs in the site population dynamics. This fast oscillation does not appear in

coherence 1–2.

The excited-state coordinate expectation value, 〈Qa〉, is shown in Fig. 4.7. In

all cases, it has been normalized by a constant representing the overall excited-

state population after the interaction with the laser pulse. The oscillatory be-

havior of this observable is dominated by “vibrational” coherence. The ampli-

tude of the oscillations (or, of the vibrational motion) increases with the coor-

dinate displacement value, ∆. This is particularly noticeable when ∆ = 0.5, in

which case the electronic coherence is so dominant that it is clearly resolved as

a slow oscillation of the coordinate.

4.2 Bath-induced correlation effects on photoin-

duced dynamics

To illustrate the influence of the bath-induced correlations on the dynamics of

the vibronic dimer, the chromophores are now assumed to be bilinearly coupled
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to two partially correlated baths (c.f. §2.3.2), where −1 ≤ γ ≤ 1. Initially, the

dimer is assumed to be in its ground electronic state and in vibrational thermal

equilibrium, Eq. (2.65). Because of the interesting dynamics that arise with the

inclusion of a large asymmetry, two cases will be considered for the coordinate

displacements: a symmetric dimer (∆a = ∆b = 1.5) and an asymmetric dimer

(∆a = 1.5 and∆b = 0.5). As before, a moderate vibrational dissipation, η = 0.2,

is assumed and the reservoir cutoff frequency, ωc = 600 cm−1, is on the order

of the system-mode vibrational frequency. To emphasize coherent effects, the

temperature is chosen to be T = 4.5 K.

Fig. 4.8 shows the coordinate expectation values, 〈Q+(t)〉 (panel (a)) and

〈Q−(t)〉 (panel (b)), for the symmetric dimer (∆ = 1.5) coupled to correlated

(γ = 1, green lines), uncorrelated (γ = 0, red lines), and anticorrelated (γ = −1,

blue lines) baths. Consistent with the theoretical analysis in Ref. [55], 〈Q−(t)〉

for a correlated bath and 〈Q+(t)〉 for an anticorrelated bath exhibit no damping.

On the other hand, the Q+ and Q− subspaces are subjected to vibrational

relaxation in the reversed case, as shown.

Notice that 〈Q+(t)〉 in the case of anticorrelated baths (Fig. 4.8a, blue line)

exhibits undamped harmonic oscillations with a period of 44.5 fs. These os-

cillations are modulated by a longer beating with a period of about 187 fs

(∼ 178 cm−1). This is the so-called energy gap beating (Eb − Ea = 175 cm−1)

[98–100]. Likewise, 〈Q−(t)〉 for a correlated bath (Fig. 4.8b, green line) exhibits

fast oscillations with the vibrational period of 44.5 fs, superimposed on which

are slower, energy-gap beatings with a period of ∼ 187 fs.

On the other hand, the Q+ subspace for a correlated bath and the Q−

subspace for an uncorrelated bath exhibit bath-induced relaxation; Thus the

green line in Fig. 4.8a and the blue line in Fig. 4.8b decay. This behavior is

similar to the case of an uncorrelated bath (panels (a) and (b), red lines), since
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Figure 4.8: Expectation values of the (a) symmetric and (b) antisymmetric
coordinate for the symmetric (∆a = ∆b = 1.5) dimer coupled to baths with
uncorrelated (γ = 0, red, solid lines), correlated (γ = 1, green, dashed lines),
and anticorrelated (γ = −1, blue, dotted lines) fluctuations.
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an uncorrelated bath induces relaxation in both the Q+ and Q− subspaces. All

of these curves exhibit fast damped vibrational oscillations with a period of

44.5 fs, on which the energy-gap beatings are superimposed.

Fig. 4.9 shows the coordinate expectation values 〈Q+(t)〉 (panel (a)) and

〈Q−(t)〉 (panel (b)) for the asymmetric dimer (∆a = 1.5 and ∆b = 0.5). Qual-

itatively, evolutions of 〈Q+(t)〉 and 〈Q−(t)〉 in Figs. 4.8 and 4.9 are markedly

similar. However, notice that 〈Q−(t)〉 for a correlated bath (Fig. 4.9b, green line)

exhibits certain incomplete bath-induced relaxations, which is weakly damped

compared to 〈Q+(t)〉 for a correlated bath (Fig. 4.9a, green line) and 〈Qa
−(t)〉 for

an anticorrelated bath (panel (b), blue line). Thus, it can be said that the Q−

(Q+) subspace is weakly affected by the correlated (anticorrelated) bath, even

for asymmetric dimers. Furthermore, noting that these cases do not completely

relax within 1 ps, it can be inferred that a small fraction of the decoherence-

free subspaces is mixed with the coherence-free subspaces in the case of fully

correlated or anticorrelated baths.

Fig. 4.10 shows the dynamics of the populations of the system density ma-

trix, ρii(t), for the first six eigenstates |ψi〉 (i = 1, . . . , 6) of the symmetric dimer.

Results for an uncorrelated bath are shown in panel (a). The bath ensures that

the dimer density matrix eventually relaxes to the equilibrium Boltzmann dis-

tribution in the singly excited excitonic state. For the chosen dimer parameters,

the lowest eigenenergy E1 ' kBT (as is usual for optically-excited vibrations).

Therefore, only the lowest (i = 1) state of the equilibrium distribution is pre-

dominantly populated. Indeed, ρii(t) for i = 3 − 6 relax to zero within about

250 fs (for the dimer and pulse parameters chosen, the near-degenerate pairs of

states (α = 3, 4 and 5, 6) are almost equally populated initially). Relaxation of

ρ11(t) and ρ22(t) is much slower; this effect is discussed in detail below.

Correlated and anticorrelated baths do not describe a proper relaxation of
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Figure 4.9: Symmetric (a) and antisymmetric (b) coordinate expectation val-
ues for the asymmetric (∆a = 1.5,∆b = 0.5) dimer for three different baths:
uncorrelated (γ = 0, red, solid lines), correlated (γ = 1, green, dashed lines),
and anticorrelated (γ = −1, blue, dotted lines).
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Figure 4.10: Time evolution of the density matrix populations ρii(t) for the
lowest six eigenstates (i = 1, ...6) for the symmetric dimer (∆a = ∆b = 1.5)
coupled to (a) an uncorrelated, (b) a correlated, and (c) an anticorrelated bath.
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the dimer to equilibrium, due to the presence of decoherence-free subspaces.

Therefore ρ33(t) and ρ66(t) for a fully correlated bath (Fig. 4.10b), as well as

ρ44(t) and ρ55(t) for a fully anticorrelated bath (Fig. 4.10c), do not tend to zero.

Interestingly, the eigenstates which relax due to the coupling to a correlated

bath, do not relax due to the coupling to an anticorrelated bath, and vice

versa. This indicates that the eigenstates |ψ3〉 and |ψ6〉 belong predominantly

to the Q− subspace, while states |ψ4〉 and |ψ5〉 belong predominantly to the Q+

subspace.

Fig. 4.11 depicts the evolutions of the coherences, ρij(t) for i .= j, involving

the lowest three eigenstates (i = 1, 2, 3). As expected, all ρij(t) oscillate at the

frequencies ωij = Ei−Ej . Since the electronic coupling, Jab, is relatively small,

ω21 ≈ Eb − Ea, ω31 ≈ ωvib, and ω32 ≈ ωvib − (Eb − Ea). Hence the oscillation

periods for ρ12(t), ρ31(t), and ρ32(t) are 187, 44.5, and 58.6 fs, respectively.

An uncorrelated bath induces a rapid decay of all coherences, except ρ12(t)

(Fig. 4.11a), which relaxes on a much longer timescale. This will be discussed

in greater detail below. Qualitatively similar behaviors are exhibited for ρij(t)

in the case of a fully anticorrelated bath (panel c). On the other hand, a fully

correlated bath is not efficient in damping these coherences (panel b). Evolutions

of ρij(t) for an asymmetric dimer is qualitatively similar (not shown).

Let us now reinspect Fig. 4.10a, which depicts the evolution of ρii(t) in the

case of an uncorrelated bath. Clearly, the ρii(t) for i = 3, . . . , 6 relax to zero

within ∼ 250 fs. However, relaxation of ρ11(t) and ρ22(t) is much slower. This

behavior is rather general and reflects the following physics: If Jab = 0, the

two monomers are independent, so that the distributions in the Qa and Qb

subspaces (or in the Q+ and Q− subspaces) relax independently to equilibrium.

The corresponding relaxation rate, ν, is determined by the coupling of each

monomer to its vibrational bath. If we now allow for Jab 0 |E2 − E1| .= 0,
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Figure 4.11: Time evolution of the density matrix coherences ρij(t) involving
the lowest three eigenstates of the symmetric dimer (∆a = ∆b = 1.5) coupled
to (a) an uncorrelated, (b) a correlated, and (c) an anticorrelated bath; with
ρ12(t) shown by red, solid lines, ρ23(t) by green, dashed lines, and ρ13(t) by
blue, dotted lines.
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then each monomer first reaches its local equilibrium in the relevant subspace

at the same rate ν. Subsequent relaxation to global equilibrium will take place

at the rate νJab ∼ J(ω21) sin
2(2θ), where J(ω) is the bath spectral density

(Eq. 2.54) and 2θ = arcsin(2Jab/
√
(ω21)2 + 4J2

ab) is the (double) mixing angle

for the effective two-level system |ψ1〉, |ψ2〉 (see, e.g., Ref. [59]). In fact, νJab

is also the rate for the intermonomer energy transfer. Normally, νJab is (much)

slower than ν ∼ J(ωvib). Only for dimers with the vertical electronic energies

Ea ≈ Eb, and thus E2 ≈ E1, are these two rates comparable. In the present

case, Eb − Ea = 175 cm−1, sin2(2θ) ≈ 0.33, and νJab/ν ≈ 0.2. The actual ratio

of the rates is even smaller than the one resulting from the above qualitative

analysis.

The long-time decays of the density matrix populations ρ11(t) and ρ22(t)

are presented in Fig. 4.12. The solid lines depict the same populations as in

Fig. 4.10a, but on a longer timescale. The dashed lines, which show the pop-

ulations calculated for a stronger intermonomer coupling Jab = −150 cm−1,

exhibit noticeably faster relaxations. Remnants of the slow relaxations with a

characteristic timescale of 1/νJab are also seen in the upper panels of Figs. 4.8

and 4.9: 〈Q+(t)〉 does not decay to zero within ∼ 250 fs but rather exhibits

low-amplitude damped oscillations on the timescale of ∼ 1 ps.

The presence of two relaxation rates, ν and νJab 0 ν, manifests itself vividly

in the relaxation of the coherences. Even when the dimer is coupled to an un-

correlated bath, which provides the fastest relaxation rates in both the Q+ and

Q− subspaces, ρ12(t) decays much slower than all other coherences (Fig. 4.11a).

The slow long-time decay of ρ12(t) is shown in Fig. 4.12b. The solid lines cor-

respond to the intermonomer coupling, Jab = −62 cm−1, and the dashed lines

to the stronger coupling, Jab = −150 cm−1. Again, the stronger the coupling,

the faster the decay of the coherences. The following qualitative picture is thus
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Figure 4.12: Long-time evolution of (a) the density matrix populations ρ11(t)
and ρ22(t) and (b) coherences ρ12(t) for the symmetric dimer (∆a = ∆b = ∆ =
1.5) coupled to an uncorrelated bath. Solid lines correspond to Jab = −62 cm−1;
dashed lines correspond to Jab = −150 cm−1.
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emerging: If the dimer is coupled to an uncorrelated bath, it effectively becomes

a two-level system after t ≥ 1/ν. Only the populations in the two lowest levels

(|ψ1〉, |ψ2〉) as well as the coherence between them (|ψ1〉〈ψ2|) remain nonzero.

Thus, the existence of the long relaxation time ∼ 1/νJab may be a source of

long-lived populations and coherences in quantum dissipative systems.

Fig. 4.13 illustrates the effect of partial bath correlations (γ = 1/
√
2, panel

(a)) and anticorrelations (γ = −1/
√
2, panel (b)) on the relaxation of the density

matrix populations ρii(t) (i = 1, . . . , 6). The evolution of ρ44(t) and ρ55(t) for

a fully correlated bath, as well as the evolution of ρ33(t) and ρ66(t) for a fully

anticorrelated bath, are almost unaffected by the presence of γ .= 0 (compare

Fig.4.10b with 4.13a, and Fig. 4.10c with 4.13b). These are the components of

the density matrix that exhibit vibrational relaxation for a fully correlated and

a fully anticorrelated bath, respectively. On the other hand, ρ33(t) and ρ66(t)

for a fully correlated bath, as well as ρ44(t) and ρ55(t) for a fully anticorrelated

bath (which do not relax for a fully correlated (Fig. 4.10b) or anticorrelated

(Fig. 4.10c) bath, respectively) now exhibit bath induced relaxations with the

rates νγ ∼ ν(1 − |γ|). Due to the reasons described above, the relaxations of

ρ11(t) and ρ22(t) are much slower.

Fig. 4.14 shows the influence of partial bath correlations (γ = 1/
√
2, panel

(a)) and anticorrelations (γ = −1/
√
2, panel (b)) on the evolution of the density

matrix coherences ρij(t). Two aspects are to be emphasized here: First, ρ23(t)

and ρ31(t), which do not decay for fully correlated bath (Fig. 4.11b), now relax

at the rate νγ ∼ ν(1 − |γ|). Second, the coherence between the two lowest

eigenstates, ρ12(t), now undergoes additional relaxation on the timescale 1/νγ

(note the difference in the maximum amplitude of ρ12(t) in Figs. 4.11 and 4.14).

Subsequently, they slowly decay at the rate ∼ νJab (not shown).
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Figure 4.13: Time evolution of the density matrix populations ρii(t) for the
lowest six eigenstates (i = 1, ...6) of the symmetric dimer (∆a = ∆b = ∆ = 1.5)
coupled to a partially (a) correlated (γ = 1/

√
2) and a partially (b) anticorre-

lated (γ = −1/
√
2) bath.
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Figure 4.14: Time evolution of the density matrix coherences ρij(t) involving
the lowest three eigenstates of a symmetric dimer (∆a = ∆b = 1.5) coupled to
a partially (a) correlated (γ = 1/

√
2) and a partially (b) anticorrelated (γ =

−1/
√
2) bath; ρ12(t) is shown by red, solid lines, ρ23(t) by green, dashed lines,

and ρ13(t) by blue, dotted lines.
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Chapter 5

Time-resolved spectroscopy

of vibronic dimers

5.1 2D photon echo spectra

In the previous Chapter, we have demonstrated how different coherences exhibit

themselves in system observables. A much more challenging task is to relate

coherent dynamics to measurable signals. It is often assumed that the system

coherences are represented by cross peaks (CP) of the 2D PE signals. This

belief is based on the response-function analysis of an excitonic dimer, where, in

the absence of relaxation and in the impulsive limit, the CP intensity depends

on the population time T as e±i(E1−E2)T , i.e., it evolves exactly as a coherence

between a pair of excitonic-dimer eigenstates with energies E1 and E2.

The same response-function analysis (in the zero-temperature limit, with no

dissipative processes, in the limit of instantaneous excitation) can be applied to

a vibronic dimer, when both the ground and the excited electronic states have

multilevel vibrational structure. The oscillating T -dependence of a cross peak at
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an absorption frequency ωτ = Ee−E0 and an emission frequency ωt = Ee′ −Eg

(Ee is the energy of the excited state resonant with the absorption frequency

ωτ , E0 denotes the energy of the initial state, and Ee′ and Eg can pertain to

any vibrational levels in the excited- and ground-state manifold, respectively)

is determined by

CP (ωτ = ωe0,ωt = ωe′g) ∼
∑

e′,g

µ0eµegµge′µe′0

(
eiωee′T + eiωg0T

)
, (5.1)

where ωee′ = Ee′ − Ee, ωg0 = Eg − E0 and µµν denote the dipole transition

strengths between a pair of eigenstates µ and ν, and the initial state E0 corre-

sponds to the ground vibrational state. For each CP at certain ωτ and ωt, the

oscillative behavior with population time T is determined by the frequencies

ωee′ and ωg0 related by ωee′ + ωg0 = ωτ − ωt.

Eq. 5.1, as well as the computed signals that follow, correspond to the rephas-

ing part of the signal and do not include the ESA contribution. The rephasing

part of 2D PE is an experimentally measurable and well-defined observable,

as described in Section 2.4, which corresponds to positive coherence time, i.e.

τ > 0 in the Fourier transform in Eq. 2.68. The 2D PE signals discussed in this

Chapter have been calculated with the same laser pulses as the one employed

in the previous Chapter (reduced carrier frequency ω = 900 cm−1 and 30 fs

duration at FWHM), and optical dephasing equal to 30 cm−1. Inhomogeneous

broadening is neglected here because it was previously shown not to significantly

affect peak dynamics with population time[46].

As can be recognized from the employed model Hamiltonian (Eq. 2.43), the

ESA contribution is not taken into account in the present work. The reason

for this simplification is that the vibronic effects addressed here are most pro-

nounced for the stimulated-emission (SE) contribution. Therefore, the 2D PE

profiles shown in Fig. 5.1 are purely model observables. Nevertheless, the data
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provide valuable information about how the 2D PE signals of a dimer are affected

by the variation of the excited-state displacement. While different displacement

values only slightly affect the eigenstate structure in the present model, they

significantly influence the dipole strengths (via Franck-Condon factors, refer to

Appendix A.2 for details) of individual transitions.

Fig. 5.1 displays 2D PE signals at T = 0 obtained with the excited-state

displacements ∆ = 0.5, 1.0, 1.5, and 2.0. The location of the peaks can be ratio-

nalized using the expressions ωτ = Ee −E0 and ωt = Ee′ −Eg, the eigenvalues

listed in Table 4.1, and the fact that the ground-state vibrational manifold is

equidistant and obeys Eg = nωvib, n = 0, 1, 2, . . .. The signal visualizes the

eigenstate structure discussed in the previous Chapter (the small peaks separa-

tions due to the splitting via the interstate coupling, and the larger separations

on the order of the vibrational frequency), and provides a very clear picture

of how increasingly higher vibronic states get excited with the increase of the

coordinate displacement ∆ by identical laser pulses. The resulting 2D profiles of

the vibronic dimer are similar to the previously reported signals of the vibronic

electron-transfer model, and we refer the interested reader to Ref. [64] for a

detailed discussion of the fine structure of the 2D profiles.

The intensity of the peaks is determined by the dipole strengths of the cor-

responding transitions (as well as Franck-Condon factors of the involved vibra-

tional states) and are slightly modified by the finite pulse durations. Notice

that as the displacement increases, the peaks corresponding to eigenstates 3-6

(around ωt = ωτ = 950 cm−1) become brighter. This is due to the increase in

Franck-Condon factors involving these higher states when the coordinate dis-

placement is large, and thus more efficient population transfer to these states.
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Figure 5.1: 2D PE spectra at population time T = 0 fs for the symmetric cases
∆ =0 .5 (top-left panel), ∆ = 1.0 (top-right), ∆ = 1.5 (bottom-left panel), and
∆ =2 .0 (bottom-right). Arcsinh scaling is used to highlight weaker peaks in
the spectral profiles.
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5.2 Peak evolution

Now, we turn to the CP dynamics with population time and study to what

extent it can be related to the evolution of the system coherences. For each cross

peak, only ωτ corresponds to one particular, energetically well-defined transition

from the initial state to a certain excited state with the energy E0 + ωτ . As

for ωt, several transitions satisfying Ee′ − Eg = ωt may contribute. According

to Eq. (5.1), three distinct contributions may arise; Fig. 5.2 shows the relevant

energy level diagram illustrating these contributions. The red arrow shows the

transition with a well-defined absorption frequency, ωτ = Ee − E0. The first

contribution (i) corresponds to the blue lines, for which ωt = ωe′0, such that ωt =

ωe′0 and the CP oscillating component has the single frequency ωee′ = ωτ − ωt

(denoted by the blue, vertical line). The second contribution (ii) corresponds to

the green lines in Fig. 5.2, for which ωt = ωeg, and the CP oscillating component

has the single frequency ωg0 = ωτ − ωt (denoted by the green, vertical line).

The final contribution (iii) can be manifested by several scenarios, all of which

have ωt = ωe′g; two examples are shown by the purple lines in Fig. 5.2. In this

situation, ωg0 .= 0 and ωee′ .= 0 (Fig. 5.2 purple, vertical lines), which would

lead to a superposition of CP oscillations with frequencies ωee′ and ωg0, which

are related by ωee′ + ωg0 = ωτ − ωt.

The contributions (ii) and (iii) involve vibrational levels of the electronic

ground state, i.e., they may arise for any system with discrete vibrational struc-

ture in the initial electronic state. One of them may coexist together with a

contribution of type (i), if the eigenstate structure is such that ωee′ ∼ ωg0 can

be fulfilled. For a simultaneous realization of (ii) and (iii), the presence of the

eigenstates with ωee′ ∼ ωgg′ is required. Note that case (ii) is special: The tran-

sition associated with the emission frequency ωt (green line in Fig. 5.2) occurs

from a state |e〉 and is well defined by the absorption frequency. Therefore, it is
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|0> 

|e> 

|g> 
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(iii) 
(ii) 

Figure 5.2: Transitions contributing to a cross peak at ωτ = Ee −E0 (red) and
ωt = Ee′ − E0 (blue), ωt = Ee − Eg (green), and ωt = Ee′ − Eg′

realized only for those CPs with ωτ > ωt (in our notation, CPs below diagonal)

and located at ωτ = ωt + ωg0.

If the oscillatory behavior of a CP with population time T shows only one

frequency corresponding to the difference ωτ − ωt, then for CPs above the di-

agonal contributions of type (i) dominate. This is most probable for those CPs

where the transition dipoles µe0 are large, so that the diagonal peaks at given

ωτ and ωt are most intense. The weaker peaks at the diagonal provide ωτ and

ωt for which contributions of type (iii) may become comparable or larger then

those of type (i), and the observation of multiple frequencies in the CP evolution

is most probable. For certain CPs below the diagonal, contributions of type (ii)

may be present as well, but it delivers a single-frequency oscillative component

corresponding to a vibrational energy splitting in the ground state manifold,

which is hard to distinguish from the components of type (i) (both frequencies

should approximately equal ωτ − ωt)

In the following, we first address the CPs where ωt results in an intense

diagonal peak at ωt = ωτ , when contribution of type (i) will most likely dom-

inate, and a single-frequency evolution of CPs is expected. For ∆ = 0.5, we

study the lower diagonal peak at ωτ = 0 cm−1, ωt = 200 cm−1, and its above-
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diagonal mirror CP; for ∆ = 1.0, we take the above- and below-diagonal peaks

at 190 cm−1, 940 cm−1; and for ∆ = 1.5, the peaks at 930 cm−1, 1500 cm−1

are studied. This discussion extends then to cases when multiple-frequency

behavior in CP dynamics is observed. For the dimer model considered here,

due to an equidistant vibrational energy ladder in the ground-state manifold,

ωg0 = Eg − E0 = nωvib. Therefore, case (ii) can be realized only for CPs with

ωτ = ωt+nωvib, and in case (iii), a superposition of oscillations with frequencies

nωvib and |nωvib − (ωτ − ωt)| is expected. A time step of 2 fs was used in the

calculations in order to resolve all fast and slow oscillations in peak dynamics.

For ∆ = 0.5, the brightest peaks are located in the bottom-left corner of

Fig. 5.1 (top-left panel), and the diagonal peaks correspond to the transitions to

the two lowest excited states E1 = 0 and E2 = 206 cm−1 (Table 4.1). The dipole

moments of these two transitions are of the same order and the strongest for the

system (Table ??). We consider the CP below the diagonal at ωτ = 206 cm−1,

ωt = 0 cm−1 and its mirror counterpart above the diagonal at ωτ = 0 cm−1,

ωt = 206 cm−1. The evolution of their intensity with population time is shown

in Fig. 5.3. When ωτ = 0 cm−1, ωt = 206 cm−1 (blue, dashed line in Fig. 5.3),

absorption occurs to the lowest excited state with the energy E1 (ωτ = E1−E0 =

0 cm−1). At the same time, ωt corresponds to several transitions simultaneously:

the transition from the second excited state with energy E2 = 206 cm−1 to

the ground state (E0 = 0 cm−1), the transition from E6 = 956 cm−1 to the

vibrationally excited ground state with energy equal to one vibrational quanta

(Eg = ωvib = 750 cm−1), as well all other transitions of type (iii). However,

only the single frequency ωt−ωτ = 206 cm−1 is resolved in Fig. 5.3. The type (i)

contribution dominates, since the dipole transition to the second excited state

is much stronger than to the higher-lying states (µ20 ' µn0, n > 2, cf. Fig. 5.1

and Table 5.1), and the transitions involving excited vibrational states of the
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ground state are weak.

Table 5.1: Dipole moments µ0i between the lowest vibrational ground electronic
state and the first twielve (i) excited eigenstates, for each value of the coordinate
displacement in the symmetric case, i.e. ∆ = ∆a = ∆b.

∆ 0.5 1.0 1.5
µ0,1 -5.29 -4.15 2.76
µ0,2 5.23 4.71 -3.74
µ0,3 -1.00 1.69 1.96
µ0,4 0.52 -1.46 1.91
µ0,5 1.76 -2.65 2.70
µ0,6 -1.28 2.28 2.72
µ0,7 0.08 0.36 1.40
µ0,8 -0.19 0.40 0.59
µ0,9 -0.20 -0.83 1.03
µ0,10 -0.26 -1.33 0.34
µ0,11 -0.47 -0.92 1.13
µ0,12 0.21 0.86 2.68

The same single frequency is characteristic for the dynamics of the lower

CP at ωτ = 206 cm−1, ωt = 0 cm−1 (red, solid line in Fig. 5.3). In this case,

the absorption process is to the second excited state E2, and the contribution

corresponding to the emission from E1 = 0 cm−1 to E0 = 0 cm−1 dominates the

CP oscillatory dynamics. The type (ii) contribution cannot arise for the CP

since ωτ − ωt does not correspond to any ωg0 = nωvib.

For ∆ = 1, the most intense diagonal peak corresponds to transitions to

the closely lying levels E5 = 936 cm−1 and E6 = 940 cm−1. For our analysis,

we follow the most intense cross peak below the diagonal at ωτ = 940 cm−1,

ωt = 190 cm−1, as well as its mirror counterpart at ωτ = 190 cm−1, ωt =

940 cm−1, which is plotted with population time in Fig. 5.4. In this case, the

difference between ωτ and ωt is on the order of one vibrational quantum and

the contribution of type (ii) may occur for the lower CP. The single-frequency

beating with |ωτ − ωt| = ωvib = 750 cm−1 dominates the oscillation dynamics
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Figure 5.3: The amplitude of the most intense crosspeak of the 2D PE profile
corresponding to ∆ = 0.5 as a function of population time, ωτ = 206 cm−1,
ωt = 0 cm−1 (red, solid line) and the mirror counterpart with ωτ = 0 cm−1,
ωt = 206 cm−1 (blue, dashed line).

of both CPs shown in Fig. 5.4. For the upper CP, one can thus conclude that

the type (i) contribution dominates. Here, the emission frequency matches all

transitions from E5,6 + nωvib to the ground-state levels with nωvib, but only

the case n = 0 is observed. For the lower CP, one cannot exclude the type (ii)

contribution, since it is nearly indistinguishable from the type (i) contribution.

The emission at ωt = 190 cm−1 may correspond either to the transitions from

the levels with energy of about E2 to the initial state E0 (type (i)), or to

the transitions from E5,6 to the ground-state levels with ωvib (type (ii)). The

dynamics of both CPs in Fig. 5.4 are similar to each other, with the exception

of their relative intensity. This difference arises, since the absorption frequency

of the lower CP (red, solid line in Fig. 5.4) corresponds to transitions from the

initial state (E0 = 0) to the excited states with E5 ≈ E6 (see Table 4.1), which

are resonant with the excitation pulse, while the absorption frequency of the

upper CP corresponds to the off-resonant E2 level.

The most intense CP For ∆ = 1.5, is located around ωt = 930 cm−1 and

ωτ = 1500 cm−1. The dynamics of this CP, as well as its mirror counterpart,

is shown in Fig. 5.5. In contrast to Figs. 5.3 and 5.4, the oscillative character
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Figure 5.4: The amplitude of the most intense crosspeak of the 2D PE profile
corresponding to ∆ = 1.0 as a function of population time, ωτ = 940 cm−1,
ωt = 190 cm−1 (red, solid line) and the mirror counterpart with ωτ = 190 cm−1,
ωt = 940 cm−1 (blue, dashed line).

differs significantly for the two mirror peaks considered. For the lower peak,

ωτ = 1500 cm−1, ωt = 930 cm−1, the absorption goes to the three states of a

very similar energy E7 ≈ E8 ≈ E9. For the emission at 930 cm−1, we may

expect, in general, all possible transitions from E5,6 + nωvib to the ground-

state levels of nωvib. Since only the single-frequency component of 1500 cm−1−

930 cm−1 = 570 cm−1 is well resolved in the CP dynamics, we conclude that

dominating contribution is of type (i). The upper peak, where excitation occurs

to the levels E5 ≈ E6, and the emission frequency must match 1500 cm−1, i.e.,

transitions from E7,8,9+nωvib to Eg = nωvib, however, shows a different, higher

frequency, as compared to the 570 cm−1 oscillation of the lower CP. This can be

understood in terms of the type (iii) contribution that leads to a superposition

of oscillations with frequencies nωvib and nωvib + 570 cm−1. Most likely, the

stimulated-emission processes of both types are reflected in the dynamics of

the upper CP: transitions from E7,8,9 to E0 (type (i)) and transitions from

E7,8,9 + ωvib to Eg = ωvib (type (iii) for n = 1). The observation of multiple

frequencies in the dynamics of the upper cross peak only can be related (using

Eq. 5.1) to the fact that the dipole strength of the transitions to E5,6 are much
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Figure 5.5: The amplitude of the most intense crosspeak of the 2D PE profile
corresponding to ∆ = 1.5 as a function of population time, ωτ = 1500 cm−1,
ωt = 930 cm−1 (red, solid line) and the mirror counterpart with ωτ = 930 cm−1,
ωt = 1500 cm−1 (blue, dashed line).

higher than those of the transitions to E7,8,9 (Table 5.1), which is also reflected

in the relative intensity of the corresponding diagonal peaks.

To pursue the idea that less intense transitions may lead to CPs with multiple

frequencies in their CP dynamics, we consider additional CPs of the 2D PE

signals obtained for the dimer with the excited-state displacements ∆ = 1.

Fig. 5.6 shows CP at ωτ = 940 cm−1, ωt = 750 cm−1 (red, solid line) as well as

its mirror counterpart at ωτ = 750 cm−1, ωt = 940 cm−1 (blue, dashed line).

Along with the type (i) frequency of 940 cm−1 − 750 cm−1 = 190 cm−1, the

intensities of both peaks show higher-frequency modulations, which arise due

to non-negligible contributions from transitions involving vibrationally excited

states of the ground-state manifold, ωg0 = nωvib .= 0 in Eq. (5.1). For the lower

peak (absorption to the excited states with E3 ≈ E4, red, solid line), the higher

frequency component arises due to a superposition of oscillations with nωvib and

nωvib − 190 cm−1 (750 cm−1 and 560 cm−1 for n = 1), while for the upper peak

(absorption to the excited states with E5 ≈ E6, blue, dashed line), the type (iii)

contribution results in the additional frequencies nωvib and nωvib + 190 cm−1

(750 cm−1 and 940 cm−1 for n = 1).
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Figure 5.6: The amplitude of a crosspeak of the 2D PE profile corresponding
to ∆ = 1.0 as a function of population time, ωτ = 940 cm−1, ωt = 750 cm−1

(red, solid line) and the mirror counterpart with ωτ = 750 cm−1, ωt = 940 cm−1

(blue, dashed line).

Cross peak oscillation dynamics with multiple frequencies is observed in

another case, for ∆ = 1.0. Fig. 5.7 shows the CP at ωτ = 940 cm−1, ωt = 0 cm−1

(red, solid line) and the mirror peak at ωτ = 0 cm−1, ωt = 940 cm−1 (blue,

dashed line). The high-frequency oscillation can be related to |ωτ − ωt| =

940 cm−1. The low-frequency modulation of the lower peak can be rationalized

as the contribution from |nωvib−(ωτ−ωt)| = 190 cm−1. As for the low-frequency

component of the upper peak, it must arise as an amplitude modulation due

to a superposition of high-frequency oscillations with 940 cm−1, 750 cm−1 and

940 + 750 = 1690 cm−1. An alternative explanation is simply an overlap with

neighboring peaks.

Finally we briefly address the issue of coherence transfer, noted in Chapter 4

when considering the system low-frequency coherences ρ12 (Fig. 4.4) for ∆ = 1

and ∆ = 1.5. The CPs corresponding to the transitions involving the levels

E1 and E2 are those at ωτ = E1 = 0 cm−1, ωt = E2 ≈ 180 − 190 cm−1 and

vice versa; as shown in Fig. 5.8 for ∆ = 1. The CP dynamics closely resem-

bles the dynamics of the same CPs for ∆ = 0.5 (Fig. 5.3) and, in contrast to

system coherences ρ12 (Fig. 4.4), no signatures of high-frequency modulations
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Figure 5.7: The amplitude of a crosspeak of the 2D PE profile corresponding
to ∆ = 1.0 as a function of population time, ωτ = 940 cm−1, ωt = 0 cm−1 (red,
solid line) and the mirror counterpart with ωτ = 0 cm−1, ωt = 940 cm−1 (blue,
dashed line).

are observed. Although present in the system dynamics, the coherence-transfer

effect is not reflected in the evolution of the corresponding CPs for the consid-

ered model. This finding questions the interpretation of a multiple-frequencies

oscillative evolution of CPs as a signature of coherence transfer, given, e.g., in

Ref. [35] for the FMO complex. Furthermore, this observation, together with

the above analysis, suggests that 2D PE spectroscopy does not, in general, pro-

vide direct information on the system coherences. The signals depend strongly

on the transition dipoles between the system eigenstates, and, as system energy

levels become increasingly complex, a correct interpretation may become very

tedious.
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Figure 5.8: The amplitude of a crosspeak of the 2D PE profile corresponding
to ∆ = 1.0 as a function of population time, ωτ ≈ 185 cm−1, ωt = 0 cm−1 (red,
solid line) and the mirror counterpart with ωτ = 0 cm−1, ωt ≈ 185 cm−1 (blue,
dashed line).
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Chapter 6

Conclusion

In this work, accurate simulations of 2D photon echo signals applied to a sin-

gle subunit of the Fenna-Matthews-Olson complex have been performed using

the equation-of-motion phase-matching-approach. The system is based on the

model of Ref. [38], which has been extended to explicitly consider the evolu-

tion of exciton coherences. Realistic pulse durations were considered and pulse-

overlap effects were taken into account. The simulations reproduce peak profiles

and allow for the study of both diagonal and cross peak oscillations, the latter

being visual representations of quantum coherences.

We have thoroughly studied the effects of various dephasing mechanisms

on the exciton dynamics, 2D profiles, and oscillations in peak intensity with

population time within the Redfield equation model for the FMO complex. We

have identified the broadening parameters that result in 2D spectra that are in

good agreement with experimental results [35]. The FMO complex is coupled to

a bath with a strength of η = 0.2, while optical dephasing equal to 30 cm−1 was

found to be appropriate for reproducing experimental spectral profiles. Using

these parameters, the evolution of 2D spectra with population time is adequately
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reproduced, apart from the negative contribution due to ESA.

Multiple frequencies in peak oscillations, as detected experimentally, were

not observed in these initial simulations. Since the secular approximation has

been employed for the description of the system-bath interaction, the phe-

nomenon of coherence transfer through dissipation could not be addressed. The

conclusion can be drawn that the fast oscillations of cross peaks observed in

experimental data must arise from a more complicated interaction between ex-

citons and bath vibrations than is considered here. Consequently, further de-

velopments in the description of the mechanisms underlying energy transfer in

the FMO complex are required. A dynamical description beyond the Redfield

and Förster theories has been recently proposed [52]. It allows for long-lived

coherences, but coherence transfer could not be addressed in the dimer model

studied.

Resonance Raman experiments [101–103] have revealed dozens of BChl vi-

brational modes with frequencies in the range of 88 to 1700 cm−1. These

and lower-frequency vibrations have been resolved in a recent fluorescence line-

narrowing experiment [104] on the FMO complex of Cb. tepidum. The most

intense bands lie in the regions near 200, 770, 1200, and 1600 cm−1 and are close

to the frequencies obtained by a Fourier transform of the experimental 2D peak

oscillations with population time [35]. As has been shown theoretically [44, 64]

and experimentally [105], the dynamics of vibrational modes can considerably

alter the 2D peak profiles and coherent vibrational motion can contribute to

peak intensity oscillations [64]. A study of the effect of damped intramonomer

high-frequency vibrational modes on the 2D signals of the FMO complex is a

challenging problem.

In order to further probe the dynamics of the FMO system in particular,

and of molecular aggregates in general, inclusive of vibrational modes, we have

102



CHAPTER 6. CONCLUSION

both extended and simplified our study to a vibronic dimer. The FMO complex

lends itself to the modeling by a dimer system, since FMO excitons are primar-

ily created through the interaction of only two BChl molecules. In addition,

molecular aggregates form dimer pairs in myriad other biomolecular systems.

With this impetus, we have modeled a vibronic dimer after BChl molecules three

and four of the FMO complex [22], since these are the primary constituents of

excitons one and three, which were extensively studied experimentally [35] and

theoretically [46]. Single pulse dynamics of the vibronic dimer are computed

and analyzed, with special attention focused on the dimer bilinearly coupled to

two harmonic baths through the vibrational modes of the monomers. We have

analytically shown that the dimer coupled to baths with fully correlated or fully

anticorrelated fluctuations possesses decoherence-free subspaces. The existence

of such subspaces is a striking manifestation of quantum interference. Qualita-

tively similar effects have also been studied in Ref. [106]. For baths with fully

correlated fluctuations, an exact master equation for the reduced density matrix

of the vibronic dimer was derived in Ref. [55]. No decoherence-free subspaces

exist for baths with uncorrelated or partially correlated fluctuations, which en-

sure relaxation of the entire system towards equilibrium. Similar phenomena

have also been demonstrated for the vibrationless dimer within the electronic-

bath-coupling model (for further details, see Appendix C of Ref. [55]).

Baths with uncorrelated fluctuations are the default choice in many sim-

ulations, although there exists strong experimental evidence that this is not

universally the case [92, 93, 95, 107, 108], and baths with partially correlated

fluctuations are more appropriate for describing coherent energy and exciton

transport [38, 51, 58, 109–121]. We have demonstrated that partially correlated

fluctuations give rise to three different relaxation mechanisms with the charac-

teristic rates ν, νJab , and νγ , where ν characterizes the vibrational relaxation
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within each individual monomer, νJab governs the global vibrational relaxation

of the dimer as a whole (νJab = 0 if Jab = 0), and νγ describes the vibrational

relaxation in those subspaces, which are decoherence-free for fully correlated

or uncorrelated fluctuations (νγ = 0 if γ = ±1). The existence of slow vi-

brational relaxation channels (νγ , νJab < ν) manifests itself in slow decays of

the populations and coherences of the dimer density matrix. This observation

may contribute to the understanding of the observed long-lived coherences in

dimers [89, 90] and more complex excitonic systems. [35, 65, 91–95, 97]

Finally, simulations of 2D PE signals for a vibronic dimer coupled to an

uncorrelated harmonic bath were performed. Short Gaussian pulses of 30 fs

duration have been employed in the calculations. Optical excitation leads, on

the one hand, to a manifestation of the inter-monomer dipole-dipole interaction

in the system dynamics and, on the other hand, initiates coherent vibrational

motion in excited states of the dimer. The mixing of electronic and vibrational

degrees of freedom creates a vibronic manifold, which can be probed by 2D

PE spectroscopy. Since ESA was not taken into account (although we believe

that the striking dependence of the 2D profiles on the displacement between

the equilibrium geometries of the optically coupled electronic case will remain

when ESA is included), we concentrated our attention on those vibronic ef-

fects on the CP dynamics, which arise due to multilevel vibrational structure

in the electronic ground state. The oscillatory behavior of CPs using analyt-

ical response-function results for a simplified dephasing- and dissipation-free

case have been thoroughly analyzed. Only the rephasing contribution has been

calculated, and the employed response-function analysis has involved only the

rephasing pathways.

It has been shown that only one contribution to the oscillatory behavior of

the CP intensities of a vibronic dimer has the frequency |ωτ−ωt| = |ωee′ | charac-
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terisitic for the system excited-state coherence ρee′ between the two levels with

energies Ee and Ee′ . For the most intense transitions (those with the largest

µe0), this contribution is likely to dominate and will lead to single-frequency CP

dynamics with population time. Another source of single-frequency dynamics

is specific for those CPs for which ωτ − ωt is positive and matches a transition

frequency between the initial ground state and one of the excited vibrational

levels of the ground-state manifold, ωg0. If a similar transition frequency exists

between the levels of the excited-state manifold, the two contributions are nearly

indistinguishable. A mechanism that leads to multiple frequencies in CP oscil-

lations is a superposition of oscillations with excited-state (ωee′) and ground-

state (ωg0) characteristic frequencies. These contributions due to higher-lying

levels become more pronounced if the corresponding dipole transition strengths

become significant. Therefore, the probability of finding multiple-frequency os-

cillations in CP dynamics is larger for the CPs for which ωt corresponds to

relatively weak transitions. Linear-absorption profiles can provide useful hints

in this respect. Another interesting observation is that CPs above and below

the diagonal can show different frequencies if several oscillatory contributions

are resolved. We believe that a Fourier analysis of the CP oscillatory behavoir,

combined with information on ground-state vibrational frequencies, will prove

very helpful for the interpretation of vibronic effects in 2D PE spectroscopy of

complex systems.

The excited state coordinate displacement of the dimer determines the dipole

strengths of the transitions between the levels of the electronic ground and

excited-state manifolds. We have shown how larger values of the displacement

complicate the 2D PE signals and interpretation of the CP oscillatory dynamics.

This effect is due to the fact that for larger displacement values more transitions

with non-negligible dipoles are involved.
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Although included in the calculations, dissipative effects were not the focus

of the 2D PE crosspeak analysis for the dimer system under study. The effect of

coherence transfer was briefly addressed and it was shown that it is not detected

by 2D PE spectroscopy in the present model. The presented analysis is general

for any vibronic system and will remain valid for 2D PE spectroscopy of conical

intersections, for example, with the exception of the equidistant vibrational

ladder specific for the dimer model considered here.
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Appendix A

Mathematical Calculations

A.1 The Four-step Runge-Kutta Method

The equation of motion to be modeled in (2.30) is simply a first-order differential

equation of the form:
dy(x)

dx
= f(t, y). (A.1)

Given the initial values of t0 and y0 (e.g. t0 = 0 and ρij(t0) = 0, except for

the case i = j = 1, for which ρij(t0) = 1), subsequent values for the function,

f(t, y) can be computed. The Runge-Kutta numerical analysis methods are

commonly employed techniques for solving initial value problems for ODEs.

These methods are well described in Ref. [122] and subsequent editions, as well

as in other numerical analysis texts. The four-step Runge-Kutta method (RK4)

is used in this work, and is defined by the equations:

yn+1 = yn +
1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4 +O(h5)

tn+1 = tn + h, (A.2)
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where yn+1 is the RK4 approximation of y(tn+1), h is the temporal step size,

and

k1 = hf(tn, yn)

k2 = hf(tn +
1

2
h, yn +

1

2
k1)

k3 = hf(tn +
1

2
h, yn +

1

2
k2)

k4 = hf(tn + h, yn + k3). (A.3)

A.2 Franck-Condon Overlap Integrals

Franck-Condon overlap integrals are calculated using an expression derived in

Ref. [123], which is briefly summarized here. The wavefunction of a harmonic

oscillator is (! .= 1)

|ν〉 = NνHν(
√
αx) exp

(
− 1

2
αx2

)
, (A.4)

where the normalization factor is given by

Nν =

( √
α

2νν!
√
π

) 1
2

, (A.5)

Hν(x) is the Hermite polynomial, x is the normal coordinate, α = ω/! and ω

is the angular frequency of the oscillator. A second oscillator displaced by an

amount d from the first (i.e. x′ = x+d) likewise is described by the wavefunction

|ν′〉 = Nν′Hν′(
√
α′x′) exp

(
− 1

2
α′x′2

)
. (A.6)

Defining K = (k + k′)/2,

S =
αα′d2

α+ α′ , (A.7)
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and

A =
2
√
αα′

α+ α′ , (A.8)

the overlap of the vibrational states |ν〉 and |ν′〉 is

〈ν|ν′〉 =

(
Ae−S

2ν+ν′ν!ν′!

) 1
2 ν∑

k=0

ν′∑

k′=0

(
ν

k

)(
ν′

k′

)
Hν−k(b)Hν′−k′(b′)

×(2
√
α)k(2

√
α′)k

′
I(K), (A.9)

where I(K) = 0 if k + k′ is odd, and

I(K) =
(2K − 1)!!

(α+ α′)K
(A.10)

for k + k′ even. Note that the following mathematical notation has been used:

(
ν

k

)
=

ν!

k!(ν − k)!
(A.11)

and

(2n− 1)!! = 1× 3× 5× · · ·× (2n− 1). (A.12)
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[21] Kühlbrandt, W., D. N. Wang, and Y. Fujiyoshi. “Atomic model of
plant light-harvesting complex by electron crystallography”. Nature 367,
614 (1994).

[22] Fenna, R. and B. Matthews. “Chlorophyll arrangement in a bacteri-
ochlorophyll protein from Chlorobium limicola”. Nature 258, 5536, 573
(1975).

[23] Johnson, S. G. and G. J. Small. “Spectral hole burning of a strongly
exciton-coupled Bacteriochlorophyll-a antenna complex”. Chem. Phys.
Lett. 155, 371 (1989).

[24] Johnson, S. G. and G. J. Small. “Excited-state structure and energy-
transfer dynamics of the Bacteriochlorophyll-a antenna complex from
Prosthecochloris-aestuarii”. J. Phys. Chem. 95, 471 (1991).

111



BIBLIOGRAPHY

[25] Franken, E. M., S. Neerken, R. J. W. Louwe, J. Amesz, and T. J.
Aartsma. “A permanent hole burning study of the FMO antenna com-
plex of the green sulfur bacterium Prosthecochloris aestuarii”. Biochem-
istry 37, 5046 (1998).

[26] Savikhin, S. and W. S. Struve. “Ultrafast energy-transfer in FMO
trimers from the green bacterium Chlorobium-tepidum”. Biochemistry
33, 11200 (1994).

[27] Savikhin, S. and W. S. Struve. “Low-temperature energy transfer
in FMO trimers from the green photosynthetic bacterium Chlorobium
tepidum”. Photosynthesis Res. 48, 271 (1996).

[28] Gulbinas, V., L. Valkunas, D. Kuciauskas, E. Katilius, V. Liuo-
lia, W. Zhou, and R. E. Blankenship. “Singlet-singlet annihilation
and local heating in FMO complexes”. J. Phys. Chem. 100, 17950 (1996).

[29] Freiberg, A., S. Lin, K. Timpmann, and R. E. Blankenship. “Exci-
ton dynamics in FMO bacteriochlorophyll protein at low temperatures”.
J. Phys. Chem. B 101, 7211 (1997).

[30] Vulto, S. I. E., A. M. Streltsov, and T. J. Aartsma. “Excited
state energy relaxation in the FMO complexes of the green bacterium
Prosthecochloris aestuarii at low temperatures”. J. Phys. Chem. B 101,
4845 (1997).

[31] Vulto, S., S. Neerken, R. Louwe, M. de Baat, J. Amesz, and
T. Aartsma. “Excited-state structure and dynamics in FMO antenna
complexes from photosynthetic green sulfur bacteria”. J. Phys. Chem. B
102, 10630 (1998).

[32] Savikhin, S., D. R. Buck, and W. S. Struve. “Toward level-to-level
energy transfers in photosynthesis: The Fenna-Matthews-Olson protein”.
J. Phys. Chem. B 102, 5556 (1998).

[33] Louwe, R. J. W. and T. J. Aartsma. “On the nature of energy transfer
at low temperatures in the BChl a pigment-protein complex of green sulfur
bacteria”. J. Phys. Chem. B 101, 7221 (1997).

[34] Brixner, T., J. Stenger, H. M. Vaswani, M. Cho, and R. E.
Blankenship. “Two-dimensional spectroscopy of electronic couplings in
photosynthesis”. Nature 434, 625 (2005).

[35] Engel, G. S., T. R. Calhoun, E. L. Read, T. Ahn, T. Mančal,
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and T. Mančal. “Two-dimensional electronic spectra of an aggregating
dye: simultaneous measurement of monomeric and dimeric line-shapes”.
PCCP 11, 5986 (2009).

[89] Bittner, T., K.-D. Irrgang, G. Renger, and M. R. Wasielewski.
“Ultrafast excitation energy transfer and exciton-exciton annihilation pro-
cesses in isolated light harvesting complexes of photosystem II (LHC II)
from spinach”. Journal of Physical Chemistry 98, 11821 (1994).

[90] Yamazaki, I., N. Aratani, S. Akimoto, T. Yamazaki, andA. Osuka.
“Observation of quantum coherence for recurrence motion of exciton in
anthracene dimers in solution”. Journal of American Chemical Society
125, 24, 7192 (2003).

[91] Savikhin, S., D. Buck, and W. Struve. “Oscillating anisotropies in a
bacteriochlorophyll protein: Evidence for quantum beating between exci-
ton levels”. Chemical Physics 223, 2-3, 303 (1997).

[92] Womick, J. M. and A. M. Moran. “Exciton coherence and energy
transport in the light-harvesting dimers of allophycocyanin”. Journal of
Physical Chemistry B 113, 15747 (2009).

[93] Lee, H., Y. Cheng, and G. Fleming. “Coherence Dynamics in Photo-
synthesis: Protein Protection of Excitonic Coherence”. Science 316, 5830,
1462 (2007).

[94] Milota, F., J. Sperling, A. Nemeth, and H. F. Kauffmann. “Two-
dimensional electronic photon echoes of a double band j-aggregate: Quan-
tum oscillatory motion versus exciton relaxation”. Chemical Physics 357,
1–3, 45 (2009).

[95] Collini, E. and G. D. Scholes. “Coherent intrachain energy migration
in a conjugated polymer at room temperature”. Science 323, 369 (2009).

[96] Panitchayangkoon, G., D. Hayes, K. A. Fransted, J. R. Caram,
E. Harel, J. Wen, R. E. Blankenship, and G. S. Engel. “Long-lived
quantum coherence in photosynthetic complexes at physiological temper-
ature” .

117



BIBLIOGRAPHY

[97] Collini, E., C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer,
andG. D. Scholes. “Coherently wired light-harvesting in photosynthetic
marine algae at ambient temperature”. Nature 463, 644 (2010).

[98] Stock, G. and W. Domcke. “Model studies on the time-resolved mea-
surement of excited-state vibrational dynamics and vibronic coupling”.
Chemical physics 124, 2, 227 (1988).

[99] Egorova, D., M. Thoss, W. Domcke, and H. Wang. “Modeling of ul-
trafast electron-transfer processes: Validity of multilevel redfield theory”.
Journal of Chemical Physics 119, 5 (2003).

[100] Egorova, D., M. F. Gelin, and W. Domcke. “Time- and frequency-
resolved fluorescence spectra of nonadiabatic dissipative systems: What
photons can tell us”. Journal of Chemical Physics 122, 134504 (2005).

[101] Lutz, M., A. J. Hoff, and L. Brehamet. Biochimica et Biophysica
Acta 679, 331 (1981).

[102] Diers, J. R. and D. F. Bocian. “Qy-excitation resonance raman spec-
tra of bacteriochlorophyll observed under fluorescence-free conditions. im-
plications for cofactor structure in photosynthetic proteins”. Journal of
American Chemical Society 117, 6629 (1995).

[103] Zazubovich, V., I. Tibe, and G. J. Small. “Bacteriochlorophyll a
franck-condon factors for the s0 -¿ s1(qy) transition”. Journal of Physical
Chemistry B 105, 12410 (2001).

[104] Rätsep, M. and A. Freiberg. “Electron-phonon and vibronic couplings
in the fmo bacteriochlorophyll a antenna complex studied by difference
fluorescence line narrowing”. Journal of Luminesence 127, 251 (2007).

[105] Nemeth, A., F. Milota, T. Mančal, V. Lukeš, and H. F. Kauff-
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