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Kurzfassung

Wir behandeln zwei Phänomene welche beide heutzutage häufig als mögliche Werkzeuge
für die Manipulation von geladenen Teilchen auf kleinen Skalen und in extrem kurzen
Zeitspannen diskutiert werden: Auf dem Gebiet der ultraschnellen Laser-Atom Wechsel-
wirkung beschäftigen wir uns im Speziellen mit der Abhängigkeit der Generierung von
hoch-harmonischer Strahlung von der im mittleren Infrarot liegenden Wellenlänge des
treibenden Lasers. Die Dynamik von Elektronen wird während der Wechselwirkung mit
dem Laser von diesem auf einer atomarer Zeit- und Längenskala kontrolliert. Die dabei
erzeugte Strahlung wird unter anderem zur Synthese von hoch-frequenten, kohärenten
Pulsen verwendet, welche sich durch eine Dauer von oft weniger als eine Femtosekunde
und einer räumlichen Auflösung im Mikrometer-Bereich auszeichnen. Wir betrachten
die Abhängigkeit der emittierten Leistung von der Laser-Wellenlänge auf großen Skalen,
wobei unsere Resultate sehr gut mit jüngsten Experimenten übereinstimmen. Auf kleinen
Skalen, im Bereich von nur einigen Nanometer, finden sich überraschend regelmäßige Os-
zillationen in der emittierten Strahlungsleistung. Diese können durch die Interferenz
von Elektronen, die zu verschiedenen Zeiten ionisiert werden und danach gemeinsam zur
Strahlungsleistung des Atoms beitragen, erklärt werden. Die hier beobachteten Oszilla-
tionen sind eng mit der bereits etablierten Theorie über die Schließung von Ionisation-
skanälen (“channel closing effect”) verbunden, welche ursprünglich für die Wechselwirkung
von Systemen kurzreichweitiger Potentiale mit Dauerstrich-Lasern entwickelt wurde. Ab-
weichungen von der Theorie des “channel closing effect” werden von uns als Einfluss des
langreichweitigen Coulomb-Potentials eines realen Atoms erklärt.

Weiters untesuchen wir geführte Transmission von geladenenen Teilchen durch nicht-
leitende Nanokapillaren. Dieser erst vor kurzem gefundene Effekt verspricht Präparierung
und Ablenkung von Teilchen-Strahlen mit einem Durchmesser im Bereich von Mikrom-
etern, ohne dabei auf konventionelle Teilchen-Optik zurückzugreifen. Wir präsentieren
eine klassische Transporttheorie zur Beschreibung der geladener Teilchen in Nanokapil-
laren und betrachten dabei die Wechselwirkung von langsamen, hochgeladene Ionen im
Energiebereich von einigen tausend Elektronenvolt (eV) und Elektronen mit Energien von
einigen hundert eV mit der Oberfläche eines Nicht-Leiters im Inneren einer Nanokapil-
lare. Wir vergleichen unsere Rechnungen mit den Ergebnissen der jüngsten Experimente,
wobei qualitative und teils auch quantitative Übereinstimmung erzielt wurde.
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Abstract

We investigate two phenomena which are currently considered as possible tools in the quest
of controlling matter on short time and length scales: firstly, we discuss high harmonic
generation (HHG) during the interaction of ultrashort laser pulses with an atom. In laser-
atom interaction, electronic motion may be steered on atomic time and length scales.
The radiation simultaneously generated may be used for the synthesis of coherent, high-
frequency pulses with a duration in the sub-femtosecond range as well as with a spatial
resolution of the order of micrometers. We particularly explore the influence of tunable,
mid-infrared driving lasers on the HHG yield. We report on the large-scale dependence
of the HHG output of single atoms on the wavelength of the driver and find our results to
be in good agreement with recent experiments. Further analysis of the dependence of the
HHG yield on the wavelength of the driver has additionally revealed surprisingly regular
variations on a fine scale of the order of several nanometers. The origin of these oscillations
is identified as the path interference of several electron quantum paths contributing to
HHG. The present observations obtained for ultrashort laser pulses are related to the well-
known channel closing effect initially derived for the interaction of infinitely extended laser
fields with systems governed by short-ranged potentials. Discrepancies to the channel
closing picture are shown to be a consequence of the long-ranged Coulomb potential
present in a real atom.

Guiding of charged projectiles through insulating nanocapillaries is the second phe-
nomenon investigated. This effect is a promising means for the formation and deflection
of microbeams of charged particles without any need for electromagnetic lenses and elec-
trical feedthroughs. We present a Classical Transport Theory for guiding of both slow
highly-charged ions with keV energies as well as electrons with energies of several hun-
dred eV. For both types of projectiles we devise interaction scenarios with the internal
capillary walls and apply our theory to describe recent experiments. Good qualitative,
and, to some extent, also quantitative agreement is found.
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Chapter 1

Introduction

This thesis may be decomposed into two major parts: the first one covers the generation
and fine-tuning of coherent, short-wavelength radiation during ultrafast laser-matter in-
teraction. This process has paved the way for the synthesis of high-frequency radiation
with a spatial resolution of the order of micrometers and pulse durations in the attosec-
ond range. A recent review by Krausz and Ivanov [1] may serve as an overview of the
young field of “attosecond science” which could recently be established with such pulses
at hand. In the second part we present a theory as well as simulations of charged particle
guiding through insulating nanocapillaries (i.e. with diameters in the nanometer regime).
Seemingly different, both topics can be used as tools in the quest of controlling matter
on small spatial scales (the buzzword “nanotechnology” is frequently used) and, in many
cases, with high temporal resolution. For example, insulating nanocapillaries represent a
possibly novel means of forming microbeams of charged particles without electromagnetic
lenses and electrical feedthroughs. So far, steering of charged particles almost always
relies on the application of conventional lenses. Present technology already reaches a high
spatial precision. Commercially-available Focused Ion Beam (FIB) systems provide a lat-
eral resolution of only a few nanometers (nm). Temporal resolution may be introduced by
fast switching of an incident, continuous beam of charged particles. Typical methods are
the application of mechanical beam choppers, chopping with high-frequency electric fields,
or more elaborate chopping/bunching techniques. For example, today commercial time-
of-flight secondary ion mass spectroscopy (TOF-SIMS) systems reach pulse durations of
1-10 nanoseconds (ns) for ionic beams. Conventionally generated electron bunches can be
as short as several picoseconds.

Even shorter bunches of charged particles directly require an ultrashort, pulsed gen-
eration process. One example for such a process is laser-particle acceleration during the
interaction of ultrastrong lasers operating in the highly relativistic regime (intensity well
above 1020 W/cm2 ) with matter [2]. Atoms are almost immediately ionized at such inten-
sities. Electrons and ions with energies as large as several hundred MeV may be generated
as a consequence. Bunching is automatically achieved because particle emission is bound
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2 CHAPTER 1. INTRODUCTION

to the interaction time with the laser which is usually of the order of several tens of
femtoseconds (fs). Laser-acceleration of electrons is frequently performed in capillaries
filled with pre-ionized gases [3, 4], a method which increases the electron beam pointing
stability as compared to experiments performed in an unconfined gas. Beam diameters
initially correspond to the capillary diameter and beam divergences as low as 0.002 rad
can be reached. In contrast to laser-electron acceleration, laser-ion acceleration is typi-
cally realized during the interaction with solid targets [5] and so far leads to much larger
beam divergences of about ten degrees. More details on laser-particle acceleration are
given in recent reviews, see e.g. [2].

In addition to laser-particle acceleration, the development of high-power laser systems
has led to a large number of attractive novel research topics in the field of nonlinear optics.
Historically, the key to large laser pulse intensities has been the sustained compression
of pulse energy into shorter and shorter pulse durations. Commercial laser systems yield
intensities well above 1014 W/cm2 and, more importantly, today these systems reach pulse
durations as short as several femtoseconds. At such intensities and pulse durations atoms
are usually not fully ionized. Interaction of strong laser pulses with atoms or molecules is
governed by nonlinear processes, such as nonlinear polarization, multiphoton excitation,
multiphoton ionization, and tunnel ionization. The latter two processes have been exten-
sively studied in work on above-threshold ionization (ATI) (see e.g. Ref. [6] for a recent
review). The major focus in contemporary ultrafast nonlinear optics is, however, the ob-
servation of time-dependent processes which cannot be fully characterized by time-integral
- i.e. spectroscopical - measurements. Timing information of ultrafast dynamics can only
be obtained by probing on at least the same time scales. Chemical processes can be
time-resolved as well as controlled by infrared (IR) pulses with durations of 10-100 fs [7].
Time-resolved observation and control of vibrational processes in diatomic molecules can
be performed with even shorter pulse durations of the order of several femtoseconds (see
e.g. Ref. [8]). Here, the optical period, which is about 2.7 fs for an infrared-range wave-
length of e.g. 800 nm, becomes comparable to the pulse duration. In this limit the phase
of the light wave at the maximum of the pulse envelope - the so-called carrier-envelope
phase (CEP) - is crucial for the induced dynamics. The latter is governed on a sub-cycle
time scale by the exact form of the laser electric field. Laser-atom interaction thus repre-
sents a unique possibility to steer the electronic motion relative to the nucleus on atomic
time and length scales.

Sub-cycle dynamics is of particular importance in high-harmonic generation (HHG).
In this nonlinear interaction of a driving laser pulse (usually in the IR range) with matter
electrons are ionized and accelerated away from their parent atom or molecule. Even-
tually they may recollide with the parent core when the laser electric field reverses its
sign. In case of recombination the electron emits photons that carry its excess energy.
This basic process takes place inherently on sub-cycle time scales and leads to energetic
radiation bursts in the attosecond (as) range. Subsequent bursts with the periodicity of
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half the driver’s optical cycle (the sign of the laser field is irrelevant) form a comb-like
radiation spectrum. In the latter “harmonic” peaks located at odd integer multiples of
the driver’s frequency are observed, giving rise to the term “high-harmonic generation”.
Filtering the high-frequency part of a HHG spectrum enables the syntheses of ultrashort,
coherent light pulses with energies in the extreme ultraviolet (XUV) range. Because
of such unique light pulses HHG nowadays represents the workhorse of ultrafast optics.
XUV pulse durations and, related to that, today accessible time scales approach about
hundred attoseconds (as) [9]. Production of XUV pulses may be achieved with intensities
that are large enough to induce nonlinear processes [10]. State-of-the-art applications of
HHG in general and XUV pulses in particular involve time-resolved spectroscopy [11],
time-resolved holography [12], imaging of a molecular orbital [13], and direct imaging of
an infrared laser light wave (“attosecond streaking”) [14].

HHG is usually performed in a jet of dilute gas emerging from a nozzle. Some HHG
schemes, however, rely on generation inside a gas-filled capillary in which the driving
laser pulse and the thereby generated harmonics jointly propagate. Such a capillary has
a diameter of the order of micrometers and serves as a waveguide for the infrared laser,
leading to well-defined spatial propagation modes. These modes introduce important
consequences for propagation: in an empty waveguide they propagate with a phase ve-
locity larger than the speed of light. For the combined problem of propagation through a
partly-ionized atomic gas these modes modify the overall dispersion of the driving laser.
It has been demonstrated that e.g. the gas pressure in the capillary may be tuned such
that the driving laser and a given harmonic frequency propagate with the same phase
velocity. So-called phase-matched propagation is then realized: the HHG yield grows
over the whole interaction distance. With a setup like this, large enhancements in the
output can be realized [15], facilitating potential applications of the XUV radiation. In
both HHG in a gas jet as well as inside a capillary, the high-frequency radiation emerges
spatially highly collimated with a typical divergence of below 0.1 degrees (see Sec. 2.8).
This offers good lateral resultion for probing which, more importantly, comes in combi-
nation with the time structure in the sub-fs range. A well-collimated coherent beam can
be e.g. used for lenseless imaging of microscopic objects with a resolution close to the
wavelength employed (diffraction limited) [16].

The capillaries employed in ultrafast laser-matter interaction are usually not smaller
than several hundred micrometers in diameter. The scope of guiding of charged particles,
however, nowadays reaches from capillaries of micrometer size [17] down to capillaries
with diameters in the nanometer range [18]. The aspect ratios of all those devices are
typically similar. Moreover, guiding of slow highly charged ions (HCI) with an energy
in the keV range has also been demonstrated for macroscopically large, millimeter(mm)-
sized, tapered capillaries spanning in their width millimeters to micrometers from entrance
to exit [19]. Such devices may facilitate the formation of HCI microbeams [19, 20] with a
size of ! 1 µm. For ions with somewhat larger incidence energy (!MeV) an application
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in the irradiation of biological material has already been realized [21].
The field of guided transmission of charged particles has been initiated by Stolter-

foht et al. who firstly observed guiding of slow, highly charged ions through polyethylene
terephthalate (PET, “Mylar”) nanocapillaries [18]. Since the first observation a variety
of systems with different geometry and/or different insulating materials have been in-
vestigated, such as SiO2 [22, 23], Al2O3 [24, 25], and glass [17]. The qualitative picture
observed seems to be similar in all cases and has led to the following scenario of HCI
guiding: during the charge-up phase, HCI hit the internal capillary wall and deposit their
charge. These charges are transported along the surface and into the bulk of the target
material. Projectiles entering the capillary subsequently are deflected due to the Coulomb
field of the deposited charges and may eventually be transmitted. Guiding (stable trans-
mission conditions) sets in as soon as a dynamical equilibrium between projectiles hitting
the capillary wall (charging) and transport into the bulk or to the capillary exits (dis-
charging) has been established. This scheme could be recently confirmed by numerical
simulations [26]. An even more recent development is the observation of guided transmis-
sion of electron beams through insulating Al2O3 nanocapillaries [27]. The observation of a
strong inelastic component of transmitted projectiles [28], however, points to a clearly dis-
tinct mechanism of guided transport. In this context a scenario different to HCI guiding
has been devised and successfully applied to the description of the experiment [29].

Charged particle guiding is a complex process involving the interplay of a large number
of charged particles with a solid. Established in a dynamical equilibrium between incident
current, discharging, and transmission the total system does not show any timing on ul-
trafast (atomic) time scales. Instead, the time-dependence of system observables typically
reflects the rather long discharge time constants of the insulating material, usually of the
order of minutes or even hours. In sharp contrast to the intrinsic temporal resolution
of laser-matter interaction, any time resolution on time scales shorter than the macro-
scopic (dis-) charging must come from the incident beam itself. Conventional methods of
how time resolution may be introduced to a continuous beam of charged particles have
been mentioned above. For the shortest bunches of charged particles currently available
we have referred to relativistic laser-matter interaction [2]. Although a combination of
charged particle bunching and guiding might be possible in the future, today collima-
tion and/or focusing of charged particles to microbeams can be regarded as the most
promising aspect of the present guiding effect. We emphasize that for the latter no elec-
trical feedthroughs are needed and this can make such a tool attractive for technological
applications.
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Outline and focus of this work

Controlling charged particles and photons on short time and length scales is the broad
theme of this thesis, out of which selected aspects will be covered in detail. In the area of
ultrafast laser-atom interaction and XUV pulse generation we will focus on the physics of
high-harmonic generation needed as a prerequisite for the synthesis of ultrashort pulses.
We will start with a review of basic laser-atom interactions and the approximations em-
ployed in this work (chapter 2). In this context we will also introduce the framework of
macroscopic propagation of the driving laser in a gaseous medium and give estimates for
typical spatial properties of the laser beam and the generated XUV radiation. Chapter
3 describes the exact solution of the non-relativistic interaction of the laser with a sin-
gle atom, based on a numerical integration of the time-dependent Schrödinger equation
(TDSE). Approximate methods will be frequently compared to the exact results in order
to facilitate their interpretation.

In the following we will particularly focus on the opportunities of an experimentally
novel range of driving laser wavelengths, i.e. the mid-infrared (chapter 4). So far, the
vast majority of high-power driving lasers relies on a Ti:sapphire gain medium providing
broadband, ultrashort pulses around a center wavelength of λc ≈ 800 nm. Recent ac-
tivities in laser development intend to establish driving lasers at larger wavelengths, in
particular around 2 µm (e.g. [30]). Moreover, with the application of the (non-collinear)
optical parametrical amplification [31], such novel laser systems will not only explore the
mid-infrared range but will also offer a much larger tunability with respect to λc . In
the context of HHG the idea of employing larger wavelength stems from increasing the
maximum energy being radiated, which depends quadratically on λc . Employing a mid-
infrared driver, the first generation of harmonics in the water-window (above ! 300 eV)
has already been reported [32]. A different aspect is the macroscopic propagation of
the driving pulse and the generated harmonics. A recent analysis assuming optimized
propagation conditions suggests mid-infrared drivers to be advantageous for XUV pulse
generation [33]. Furthermore, phase-matching of the driver and a particular harmonic
frequency is easier to obtain and thus more effective in the mid-infrared range [34]. Along
those lines, fine-tuning of HHG by variation of the driver wavelength as well as the single-
atom HHG efficiency for mid-infrared drivers become topics of major interest (see Refs.
[35, 36, 37, 38, 39] for some recent work). In chapter 4 we therefore address both of
these issues in detail. In particular, we demonstrate the importance of quantum path
interference in the HHG process (see section 4.2). Interference is capable of introducing
modulations of the HHG yield on a fine wavelength scale, i.e. on a scale of the order of
only several nanometers. This offers the possibility of tuning the HHG output already in
the framework of single atom response. Such a scheme is presumably easier to implement
than (resonant) two-color driving schemes recently discussed [40, 41] and observed [42]
which lead to a large HHG enhancement as well. Aside from the advantages of increased
control over HHG efficiency, an investigation of the role of quantum path interference in
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HHG gives more insight in their physical relevance. In fact, considering more than one
quantum path becomes of large importance when employing mid-infrared driving lasers.
In addition to the HHG yield we also investigate the ionization rate averaged over the
pulse duration as a function of the mid-infrared driver’s wavelength (section 4.5). This
observable shows oscillations as well which are surprisingly similar to the ones in the HHG
yield and can also be related to path interference.

In chapter 5 we focus on a discussion of the basic physics of guiding of highly charged
ions through insulating nanocapillaries. We present a Classical Transport Theory de-
veloped for the description of the guiding effect [26]. This approach has served as an
important contribution to establishing the present scenario of HCI guiding as a conse-
quence of a self-organized charge-up. The model obtained is applied to PET nanocapil-
laries with a diameter of 200 nm. We show essential results and put an emphasis on the
time-dependence of observables.

An extension of our Classical Transport Theory to the guided transmission of electrons
is introduced in chapter 6. We extensively discuss the interaction of electrons with a sur-
face and apply the framework developed to a description of electron transmission through
nanocapillaries. Our approach is able to describe key findings of the experiment for both
Al2O3 and PET nanocapillaries [29]. The most important mechanisms to establish guided
transmission of electrons are found to be elastic and inelastic scattering at the internal
wall surface as well as at the bulk solid. Contrary to the case of HCI guiding, charge-up
and electrostatic deflection of projectiles are only two out of several ingredients needed
to establish electron guiding. Based on our model we predict guided transmission of slow
electrons also for metallic capillaries.

We conclude our presentation in chapter 7 with a summary and an outlook on possible
extensions of the present work.

Units and general definitions

Unless otherwise stated, atomic units (a.u.) are used throughout this thesis. In atomic
units, Planck’s constant, the modulus of the charge and the mass of the electron and the
radius of Bohr are ! = |e| = me = a0 = 1. The speed of light is c ≈ 137.



Chapter 2

Review of laser-atom interaction

In this chapter we review the framework in which strong-field laser-atom interactions are
commonly described. Definitions of typical laser pulse shapes are given and the validity
as well as limitations of the approximations employed in this work are discussed. For
facilitating the interpretation of the exact solution of the TDSE simpler models of HHG
and ATI based on (semi-) classical considerations are presented.

2.1 Ultrashort laser pulses

A laser pulse is a coherent light wave, i.e. it can be described unambiguously by a classical,
oscillating electric and magnetic field vector with a defined amplitude and phase. In the
following we want to define how such a pulse is described mathematically, with emphasis
on pulses with extremely short duration.

2.1.1 Gauge

A laser field propagating in free space can be described by its vector potential Ã(r, t)
having the form of wave propagating in z-direction,

Ã(r, t) =

∫

dωÃ(r,ω) exp (iωt − ikz) . (2.1)

Here, k = ω/c and c denotes the phase velocity of the propagating laser field, being the
speed of light. Ã(ω) are the frequency components at frequency ω which can be obtained
by Fourier transformation (see Eq. A.1).

The electric field F(r, t) is given by the vector potential plus a scalar potential ΦC(r, t),

F(r, t) = −
1

c

dÃ(r, t)

dt
−∇ΦC(r, t) . (2.2)

7
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The potentials Ã(r, t) and ΦC(r, t) are not unique. In fact, a physically identical situation
can be described by differential potentials introduced by a gauge transform (see [43]),
which offers an additional choice for restricting the functional form of the potentials. In
the frequently used Coulomb gauge one requires the relation ∇ · Ã(r, t) = 0 , which,
in turn, defines ΦC by the charge density ρC only: ∇2ΦC = −4πρC . In absence of
free charges, which will be assumed henceforth, ΦC = 0. Within this work we choose a
definition of the vector potential that absorbs the factor 1/c, A(r, t) = Ã(r, t)/c, leading
to

F (r, t) = −
dA(r, t)

dt
. (2.3)

Here and in the following we restrict our discussion to linearly polarized fields A(r, t) =
A(r, t)ẑ, if not otherwise stated.

2.1.2 Magnetic field

The magnetic field of the laser light wave is given by the vector potential as

B(r, t) = ∇× Ã(r, t) . (2.4)

With the ansatz of a plane wave (Eq. 2.1), the latter expression can give an estimate
for the magnitude of the magnetic field associated with the propagating laser field which
reads |B| = |F |. The amplitude of both the magnetic and electric field is thus equal.
However, as magnetic fields exert a force ∝ (v × B)/c and v ≈ 1 a.u. ' c for atoms in
the ground state, the magnetic force is roughly smaller by a factor of c than the electric
force F .

The motion due to the magnetic field is restricted to the propagation direction of
the field and introduces a displacement of the electron relative to starting point. For
HHG, even small displacements are crucial. A simple estimate reveals that magnetic
forces become relevant in HHG only for intensities larger than 1017 W/cm2 . The range
of intensities discussed in this work is far below this value. Magnetic forces will thus be
neglected within this work.

2.1.3 Dipole approximation

As long as the lateral dimension of the system considered is much smaller than the wave-
length λ = c/ω of the laser field, F (r, t) does not very much spatially and, consequently,
the r-dependence can be dropped. This is referred to as the dipole approximation. In
the case of interaction of an IR laser (λ ≈ 800 nm) with an atom (dimension ≈ 0.1 nm)
this approximation is by far fulfilled. In fact, it even holds for optical fields in the ultra-
violet to extreme ultraviolet range (λ ≈ 100 − 10 nm). If the atom is strongly perturbed
during an interaction with a laser, electrons can be driven far away from the nucleus. As



2.1. ULTRASHORT LASER PULSES 9

long as the largest excursion is of the order rmax < λ, the dipole approximation will still
be applicable. The laser parameters treated in this work comply with these restrictions.
Therefore, we will henceforth refer to the laser electric field by F (t) only.

2.1.4 Laser electric field

In case of a linearly polarized laser field the electric field F (t) can be written in dipole
approximation as

F (t) = F0f(t) cos (ωct + φCEP ) . (2.5)

Here, F0 denotes the field amplitude, f(t) is the envelope function and λc = 2πc/ωc the
central wavelength corresponding to the central frequency ωc. The expression above can
be regarded as an ideal, infinitely long carrier wave with defined frequency ωc, modulated
in time by the envelope f(t). φCEP denotes the carrier-envelope phase which becomes
important only when the pulse duration is of the order of a few cycles of the field (“optical
cycles”). Pulses with φCEP = 0 are frequently called cosine-like pulses while φCEP = −π/2
are called sine-like pulses. In this work, the field amplitude F0 is used to define the peak
pulse intensity I0 by the expression F 2

0 = I0 (see appendix Sec. A.3 for more details on
the definition of intensity). The conversion of intensity in SI-units (W/cm2 ) to the field
amplitude in atomic units is F0[a.u.] = 5.3380248 · 10−9

√

I0[W/cm2]. Without loss of
generality we choose the polarization axis to be identical to the z-axis.

We define T to be the total length of the pulse while for practical purpose (e.g. in an
experiment) the length given by the full width at half-maximum (FWHM) of the electric
field or the intensity is more convenient. We choose to employ τp as the FWHM of the
electric field throughout this work. Commonly used pulse shapes (envelope functions)
are:

• Gaussian pulse: f(t) = exp
(

−4 ln 2t2/τ 2
p

)

• sin2 pulse: f(t) = sin2
(

πt
2τp

)

• Flat-top pulse with linear ramp on/off: f(t) = t/tramp for 0 ≤ t ≤ tramp, f(t) =
(T − t)/tramp for T − tramp ≤ t ≤ T , and f(t) = 1 otherwise.

all of which are defined for 0 ≤ t ≤ T while f(t) = 0 otherwise. Figure 2.1 shows the
given pulse shapes for a FWHM of four optical cycles.

The finite duration introduced by the envelope functions leads to a change of the
frequency spectrum (Fourier transform) of the pulse. Centered around ωc the spectrum
becomes the broader the shorter the pulse duration is chosen. For a Gaussian pulse,
the FWHM of the frequency components is given by ∆ω = 2.77/τp, qualitatively similar
relations hold for different envelope functions.
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Figure 2.1: Laser electric field for different pulse shapes and a FWHM of four optical cycles.
Red: Gaussian, green: sin2, and blue: Flat-top (cf. text).

In contemporary experiments, pulse durations down to the single cycle limit can al-
ready be reached for infrared (IR) pulses near a wavelength of 800 nm. Pulses can be
phase-stabilized [44], and, indeed, dependence of physical observables such as e.g. the
left/right information of ATI electron emission directions on the φCEP has been mea-
sured [45].

2.1.5 Significance of laser vector potential

Maxwell’s equations allow solutions propagating in free space only if
∫ +∞

−∞

F (t)dt = 0 or (2.6)

∫ T

0

F (t)dt = 0 .

Equivalently, the electric field of the laser pulse can be solely described by its vector
potential A(t) (Eq. 2.3). Equation 2.3 automatically fulfills the requirement of Eq. 2.6.
For arbitrary ultrashort pulses with a duration of only a few (about 3 to 4) optical cycles,
it is thus advantageous to define the vector potential rather than the electric field in
order to avoid unphysical effects. However, for certain electric field pulse shapes such as
a sin2-pulse with T being an entire number of optical cycles, Eq. 2.6 holds. This gives
direct access to the electric field, which is the actual physical quantity. For longer pulses,
Eq. 2.6 is fulfilled with sufficient accuracy in any case, therefore we usually directly fix
the electric field F (t) unless otherwise stated. If F (t) is fixed, the vector potential can be
calculated from

A(t) = −
∫ T

t

F (t′)dt′ . (2.7)
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A typical value for the vector potential is then A0 = F0/ωc. The requirement of Eq. 2.6
can be translated to A(0) = A(T ) = 0. Even if A(0) = 0 is not exactly guaranteed,
ionized electrons experience by definition A(T ) ≡ 0 at the end of the pulse when physical
observables are deduced. Unphysical behavior [46] is thus avoided.

From the point of view of ionization, the significance of the vector potential can be
explained intuitively: If an electron is born outside a short-ranged potential at time ti
with initial momentum ki, at the end of the pulse (at A(t = ∞) = 0) it will acquire a
momentum of k(t = ∞) = −A(ti)+ki according to the classical equations of motion. This
(kinetic) momentum (or the energy E = k(t = ∞)2/2) is observable in the experiment.

For an electron initially at threshold (zero energy, ki = 0), the energy associated with
the motion in the laser field is dubbed “ponderomotive energy”, Up, reading

Up =
A2

0

4
=

F 2
0

4ω2
c

. (2.8)

It corresponds to the averaged energy in an oscillating field, while the maximum energy
is given by 2Up. A typical value for Up at a wavelength of 800 nm and intensity I = 1014

W/cm2 is Up ≈ 6 eV.

2.2 SAE approximation

The most common system used to test the accuracy of calculations in theoretical atomic
physics in general, as well as for laser-atom interactions in particular, is hydrogen. It has
only a single electron, its wavefunction can be calculated analytically [47]. Furthermore,
non-relativistic quantum theory is by far sufficient for describing the structure of the
unperturbed atom. On the other hand, for practical work in experiments multi-electron
atoms, i.e. rare-gas atoms like He, Ne, or Ar are usually used.

The ability to - at least qualitatively - describe laser-atom interaction of multi-electron
atoms with theories based on only a single electron is explained by the energy structure
of atoms. For example, the ground state (3p6) of argon has an energy of about -15.8 eV,
while the next-lower state, the 3s-state is already bound with an energy of roughly 28.8 eV.
Laser photon energies treated in this work range from 0.62 eV (wavelength 2000 nm) to
1.55 eV (1000 nm). For relatively weak laser fields, ionization of core electrons thus
requires at least nine additional photons, rendering such a process highly unlikely. In
strong laser fields the ionization probability even depends exponentially on the binding
energy, which makes the dynamics of the weakest bound electron by far more important
than the dynamics of the core electrons. A simple estimate based on the analytic quasi-
static tunneling ionization rate of hydrogen (see Eq. 2.10 in section 2.3) at an intensity
of I = 1014 W/cm2 yields a rate of 7 · 10−5 for a ground state energy of -15.8 eV, while
it is already as low as 3 · 10−13 for a state being bound deeper by 13 eV. Although these
numbers just represent rough estimates it is clear that the dynamics is practically governed
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by the outermost electron only. A more detailed comparison of the SAE approximation
to exact dynamics is given by Fig. 2.2. Here, the SAE model potential employed was
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Figure 2.2: Comparison of a HHG spectrum from helium in the SAE approximation with the
exact solution obtained by a full solution of the two-electron TDSE (cf. text),
courtesy of J. Feist et al. [48]. a) close-up near the central wavelength of the
driver, b) close-up near the cut-off.

given by Tong [49] and the intensity and wavelength is 5× 1014 W/cm2 and λc =750 nm,
respectively. The full solution of the two-electron TDSE for helium in the ground state
shows excellent agreement with a corresponding simulation in the SAE approximation, in
particular near the cut-off of the spectrum (Fig. 2.2 b) ). Amplitude, position, and shape
of the harmonics at the cut-off are well reproduced within the SAE approximation. Only
at low energies, the latter is somewhat inaccurate. Here, all the electrons contribute to
the total polarizability of the atom. The largest discrepancy is found at the frequency of
the driver itself where the linear polarizability of the multi-electron atom can not always
be reproduced reliably. In the intermediate part of the HHG spectrum both, for energies
larger than the ionization potential, calculations agree well with each other (not shown).

2.3 Multi-photon vs. tunneling ionization

When laser light hits an atom in its ground state with energy −Ip it will transfer energy,
primarily to the electronic system. In the framework of the SAE-approximation (Sec.
2.2) it is sufficient to restrict the discussion to the outermost electron, the active electron.
The laser can be described by its electric field (Eq. 2.5). The essential parameters are
the central frequency ωc, which is the mean energy of the photons associated with this
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field, and the field strength F0. In quantum mechanics the interaction with the atomic
system is described by the Hamiltonian H(t) = H0 + r̂F (t), where H0 is the Hamiltonian
of the unperturbed system (without laser). If the perturbation r̂F (t) is weak, it can
be treated in the framework of perturbation theory [47]. One can easily show that first
order perturbation theory corresponds to the absorption of a single photon from the field,
the occupation of the target state is ∝ F 2

0 or ∝ I. Perturbation theory of the nth-order
corresponds to the absorption of n photons, being ∝ F 2n

0 or ∝ In. Processes with n > 1 are
not linear with respect to intensity (and with respect to the perturbation) and are usually
dubbed nonlinear processes. Due to this power law, such so-called n-photon processes
are only relevant for large field strengths which are yet easily accessible by modern lasers.
The first nonlinear process driven by a low frequency laser was already demonstrated in
1961 by Franken et al. [50], today even coherent XUV radiation can be intense enough to
induce nonlinear processes [10].

If absorption of one or more photons transfers enough energy to reach the ionization
threshold, one speaks of ionization. Figure 2.3 a) sketches such a multi-photon ionization
process. Ionization by one or more photons is a genuine quantum process. Classically, it
can not be understood. The potential in which the electron is moving is perturbed only
very weakly and on a fast time scale 1/ωc ! tk associated to the laser light. Here, we
have introduced tk being the (Kepler) time scale on which the classical electron revolves
around the nucleus.

For field strengths that are large enough, the perturbed potential can allow the electron
to either ionize “classically allowed” over-the-barrier (barrier suppression ionization) or
semi-classically tunnel through the lowered barrier (tunnel ionization). A cartoon of the
process of tunnel ionization is given in Fig. 2.3 b). For such a process to be viewed (semi-
)classically it is moreover necessary that the perturbed potential changes only slowly
on the time scale of the initial (ground) state. This condition is easy to fulfill at long
wavelengths, e.g. in the infrared where the optical cycle Tcyc = 2π/ωc is much longer than
tk. A popular choice to set a limit for such a semi-classical, quasi-static ionization region
is the Keldysh parameter γ, reading

γ =

√

Ip

2Up
. (2.9)

γ < 1 signifies the tunneling regime. The “limit” between the two regimes is given
by γ = 1 which can be found around I = 1.15 · 1014 W/cm2 for the case of hydrogen
and radiation wavelengths of about 800 nm. Note that this limit is somehow artificial.
Signatures of multi-photon processes can be found for γ < 1, while tunneling ionization
already describes the ionization process for γ > 1 well. In fact, it can be shown that
the expressions for describing a multiphoton ionization process as well as for tunneling
ionization in an alternating field can be both deduced from the same starting point when
taking either in the limit of γ + 1 or γ ' 1 [51]. A popular interpretation of the Keldysh
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Figure 2.3: Multi-photon (Fig. a) ) and tunnel ionization (Fig. b) ). Tunnel ionization takes
place on a time scale much smaller than the optical period (quasi-static), the
photon-character is only retained in case of multi-photon ionization.

parameter is that it compares the time the electron spends under the barrier to the optical
cycle. For γ ' 1 tunneling is much faster than the optical period, allowing for a quasi-
static treatment. On the other hand, ionization is extended in time over many optical
cycles for γ + 1, underscoring a photon-like interpretation.

Quasi-static tunneling can be easily incorporated into simple, classical models once
approximate expressions relating the electric field to the tunnel rate are found. Two
frequently used tunneling formulas that are also employed in this work are described in
the following.

For hydrogenic atoms in the ground state (effective nuclear charge of Zeff ) and an
ionization potential (negative binding energy) of Ip = Z2

eff/2, an analytic formula for the
quasi-static tunneling has been found [52]

ΓH =
4Z5

eff

|F (t)|
exp

(

−
2Z3

eff

3|F (t)|

)

=
4(2Ip)5/2

|F (t)|
exp

(

−
2(2Ip)3/2

3|F (t)|

)

. (2.10)
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A generalized theory applicable to arbitrary atoms in the general state with quantum
numbers (n, l,m) has been developed by Ammosov, Delone, and Krainov [53] and is
therefore dubbed ADK theory. We discuss only atoms with the magnetic quantum number
m = 0 because ionization for m ± 1 is much lower for laser fields linearly polarized along
the axis defined by m = 0. ADK theory defines effective quantum numbers in addition
to (n, l,m). Firstly, n∗ = Zr/

√

2Ip with Zr = 1 being the charge of the atomic residue
for single ionization. For example, argon (Z = 18, ground state 3p6) has Ip = 0.58, hence
n∗ = 0.9285 ≈ 1. Furthermore, l∗ = n∗ − 1 ≈ 0. The ADK tunneling rate ΓADK is then
given by

ΓADK =
22n∗

(2l + 1)

n∗Γ(n∗ + l∗ + 1)Γ(n∗ − l∗)
Ip

(

2(2Ip)3/2

|F (t)|

)2n∗−1

exp

(

−
2(2Ip)3/2

3|F (t)|

)

. (2.11)

Here, Γ(z) = (z− 1)! is the gamma function. In the limit of n∗ → 1 and l∗ → 0 the above
expression reduces to the hydrogenic case (Eq. 2.10).

2.4 Strong field approximation

Let us once more review typical energies involved in laser-atom interaction: as long as the
electron is still bound its motion is strongly governed by the atomic core potential with its
ground state energy given by E0 = −Ip. On the other hand, after an ionization process the
dynamics of the free electron is given by the electric field, in which the average energy is
the ponderomotive potential Up, and by the long-range part of the atomic core potential.
Provided that Up ! Ip, the influence of the latter after ionization can be neglected in first
approximation. Furthermore, during the free motion of the electron in the laser field the
latter can be considered to be dominant if absorption of an additional photon ωc does not
change much, hence one requires Up ! Ip + ωc.

This simplified picture is commonly used in laser-atom interactions and referred to
as strong field approximation (SFA). Disregarding the atomic potential after ionization
makes an analytical treatment of the electronic motion possible, both in a classical and -
together with some other approximations - also in a quantum mechanical approach (see
Sec. 2.7 below). Hence, these assumptions greatly facilitate the discussion of the dynamics
and additionally provide important guidelines near the limit of their validity (Up ≈ Ip).
For the case of an hydrogen atom subjected to a laser pulse in the IR range (near 800 nm)
the intensity needs to be larger than 2 × 1014 W/cm2 in order to fulfill Up ! Ip and thus
justify the application of the strong field approximation. The condition Ip + ωc clearly
holds in the IR range.
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2.5 Classical picture of HHG

Along the lines of the discussion in Sec. 2.4 a (semi-)classical model of HHG can be
introduced. We analyze the motion of a free electron with coordinate z in a linearly
polarized laser field with electric field F (t) and vector potential A(t) being released from
the nucleus (assumed to be in the origin) at time ti. This ionization process can be due
to tunneling and thus represents a quantum process needed as a prerequisite of a classical
theory.

The equation of motion and its solution with the initial condition v(ti) = 0 are

z̈(t) = −F (t) = Ȧ(t) and v(ti) = 0 (2.12)

→ ż(tf ) = v(tf ) = A(tf ) − A(ti) (2.13)

The velocity v(t) = ż(t) can also be defined via k + A(t) = v(t), where k is the time-
independent canonical momentum, being an integral of motion. Note that for the initial
condition chosen k = −A(ti).

The amplitude of the classical motion (“quiver” amplitude α) is given by α = A0/ω =
F0/ω2. For strong fields, the amplitude is much larger than the dimension of the atom
in the ground state, α + 1. On that scale, the position of an electron directly after
ionization from the ground state is the position of the nucleus, z(ti) ≈ 0. Corrections
from the picture of tunneling ionization (“tunnel exit”) are small.

HHG takes place when the electron recollides with the nucleus, returning to its initial
state by emission of “coherent bremsstrahlung”. In the vicinity of this point recombination
and the emission of photons become possible. Consequently, for the excursion z we require
that

z(tf ) − z(ti) = 0 =

∫ tf

ti

A(t′)dt′ − A(ti) · (tf − ti) . (2.14)

This is the recollision condition for an electron on a classical trajectory in the laser field.
For a given tf (or ti) it is a transcendental equation for ti (or tf ), which can be solved
only numerically or graphically. Note that the equation may have more than one solution.
The energy of the recolliding electron is given by

Erecoll =
(A(ti(tf )) − A(tf ))

2

2
(2.15)

where ti(tf ) is determined by the recollision condition Eq. 2.14. The largest energy possible
can be found by maximizing Eq. 2.15 under this constraint. Its value is given by 3.17Up,
which is realized by a trajectory with τf/Tcyc = 0.65 (cf. 2.4).

The basic physics can thus be summarized in the so-called three step model [55],
sketched in Fig. 2.5. In the first step (red), an atom is ionized via tunneling ionization.
The freed electron is subsequently accelerated in the laser field and may rescatter with
the parent ionic core (green). During recombination to the ground state a high-energy
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Figure 2.4: Recollision energy (Eq. 2.15) as function of flight time τf = tf − ti. The color
symbols show the numerical solutions based on a 8 cycle flat-top pulse (1st to
5th solution for a given recollision time), while the solid line shows the result of
Lewenstein et al. [54] obtained for an ideal, sinusoidal field.

photon is emitted (blue). Due to the periodicity of the process with half the laser period,
harmonic peaks with a spacing of twice the laser frequency are generated. In this model
the maximum energy (“cut-off” energy) of the radiation is the recollision energy of the
electron plus the ionization potential,

Ec = Ip + 3.17Up . (2.16)

For each energy ωH below Ec, two trajectories are possible with flight time τf < Tcyc. In
every subsequent half-cycle again two solutions of Eq. 2.14, hence two trajectories, exist.
Their recollision energies are lower than those of the shortest two trajectories, the largest
energy possible approaches 2Up for τf → ∞. This is illustrated by Fig. 2.4 showing the
first five solutions of Eq. 2.14 (characterized by Erecoll) as a function of the flight time τf
for the case of a flat-top laser pulse.

2.6 Classical picture of above-threshold ionization

The ionization process, which corresponds to the first two steps of HHG, can be inves-
tigated in the framework of classical physics as well. For this discussion we neglect the
possibility of subsequent recombination at the parent ion. Monte Carlo methods based
on classical trajectories launched after (non-classical) tunneling (e.g. [56]) may indeed
well describe numerous aspects of strong field photo-ionization, such as photo-electron
momentum distributions. However, determining classical trajectories subject to both the
potential of the atom as well as the laser field requires numerical solutions of the equations
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Figure 2.5: Cartoon of the three-step model of HHG [55]. In the first step (red), an atom is
ionized via tunneling ionization. The freed electron is subsequently accelerated
in the laser field and may rescatter with the parent ionic core (green). During re-
combination to the ground state a high-energy photon with energy ωH is emitted
(blue).

of motion. For very strong laser fields, where in the spirit of the SFA the atomic potential
can be neglected from the moment of ionization on, calculations and interpretation of the
dynamics are more straightforward. As already outlined in Sec. 2.1.5 electrons will be
accelerated in the laser field and, provided no rescattering at the nucleus takes places,
their final momentum is then given by the vector potential at the time of ionization A(ti)
and the initial momentum ki only, k(t = ∞) = −A(ti) + ki. For tunneling ionization
ki ≈ 0. Hence, the largest energy acquired by the electrons values 2Up. Note that similar
to HHG the periodicity of the process, here with period of Tcyc, introduces peaks with a
spacing of ωc in the photo-electron spectrum. In the case of ultrashort, near-single-cycle
laser pulses this periodicity is weakened and peaks will be broadend (Fourier reciprocity).

2.7 Quantum Strong Field Approximation

2.7.1 The Lewenstein model

Based on the idea of the strong field approximation (SFA) outlined in Sec. 2.4, Lewenstein
et al. have derived quantum models for both HHG [54] and ATI [57] that extend the
classical picture. In the following we will briefly review the quantum SFA theory.

We consider an hydrogen-like atom in its ground state, characterized by the ground
state energy −Ip (effective nuclear charge

√

2Ip). According to [54], three approximations
are essential for a quantum SFA theory of HHG:
i) we assume that the dynamics of the bound electron is given by the ground state only
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and thus neglect any excited bound states. The initial (ground) state is assumed to be
unchanged by the laser field during time evolution.
ii) along the lines of the SFA we neglect the potential of nucleus in the final state (after
ionization) completely, leaving only a free electron in a laser field to be described.
iii) furthermore, ground state depletion is neglected.
With these assumptions the amplitude b()k, tf ) of the final state |k + A(tf )〉 (a Volkov
state) can be written as

b()k, tf ) = i

∫ tf

0

dti exp−iSV (#k,ti,tf )+iIpti F (ti)D()k + )A(ti)) . (2.17)

D()k) is the dipole matrix element with respect to the hydrogenic ground state (Eq. 2.18).
Being a matrix element between a plane wave 〈)k| and the ground state |0〉 this expression
neglects the effect of the Coulomb potential on the electron released. The dipole matrix
element reads

D()k) = 〈)k|z|0〉 = −i∂kz〈)k|0〉 = i
27/2(2Ip)5/2

π

)k

(2Ip + k2)3
. (2.18)

Very frequently, in such an approach this matrix element is also employed for an arbitrary
atom. Within this work we will also make use of this approximation if not otherwise stated.
Finally, the phase acquired by the time evolution of a free electron in an electric field (Eq.
2.17) is given by the Volkov phase,

SV ()k, t1, t2) =
1

2

∫ t2

t1

()k + )A(t′))2dt′ . (2.19)

High-harmonic generation results from the coherent interaction of a previously ionized
continuum wavepacket with a bound state (usually the ground state) of an atom. Key
quantity is the dipole moment d = −〈ẑ〉. It can be written as [54]

d(tf ) =

∫

d3k〈0|z|k + A(tf )〉b(k, tf ) + c.c. = (2.20)

2R
∫

d3k

∫ tf

0

dtie
−iSV (#k,ti,tf )−iIp(tf−ti)D∗()k + )A(tf ))F (ti)D()k + )A(ti)) . (2.21)

To arrive at this result we have neglected dipole transitions within the continuum and, in
general, we have assumed that the SFA (disregarding the atomic potential after ionization)
is applicable. Ground state depletion, which has been neglected in the present derivation,
can be in fact accounted for at a later stage, as we will see below.
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2.7.2 Saddle-Point analysis

Solving the integral over )k in Eq. 2.21 in three dimensions may be cumbersome. In
order to further simplify and gain more insight into the problem, the Stationary Phase
Approximation (SPA) is commonly applied [54]. In this approximation it is assumed that
due to the rapid oscillations of the phase SV + Ip(tf − ti), the integral over )k has its
strongest contributions near its stationary points given by ∇#kSV , around which the phase

is expanded up to the second order in )k. All other terms under the integral, on the other
hand, are assumed to vary only slowly with respect to )k.

Consequently, for linearly polarized fields )A = Aẑ the stationary phase condition se-
lects the return momenta kP (ti, tf ), which are characterized by the release and rescattering
times (ti, tf ), i.e.

kP (ti, tf ) = −
1

tf − ti

∫ tf

ti

A(t′)dt′ . (2.22)

Eq. 2.22 is equivalent to the recollision condition for a classical, free electron (Eq. 2.14).
Interestingly, the SPA recovers essentially classical trajectories as the most important con-
tribution to HHG. The Volkov phase along this quantum path is denoted by SP (ti, tf ) =
SV (kP , ti, tf ). For d, we arrive at

d(tf ) = 2R
∫ tf

0

dtie
−iSP (ti,tf )−iIp(tf−ti)D∗()k + )A(tf ))F (ti)D()k + )A(ti)) . (2.23)

Ivanov et al. have shown that the integral over time can be itself tackled in the framework
of the SPA, leaving for each release time ti a finite sum over possible trajectories (or “path”
P ) [58]. Furthermore, they show how to break down Eq. 2.23 explicitly into the product
of three amplitudes, describing the ionization (aion(ti)), the free evolution (aprop(ti, tf )),
and the recombination (arec(tf )), respectively. This directly reflects the classical three-
step model. The expression for aion(ti) that would follow from Eq. 2.23 is substituted
by an ionization amplitude accounting for ground state depletion and the ionization rate
is given by quasi-static tunneling. This is advantageous because ionization rates based
on tunneling formulas like Eq. 2.10 reproduce full numerical calculations much better
than SFA ionization amplitude (see Eq. 2.17). In summary, the expressions for the dipole
moment d read

d(tf ) =
∑

P (ti)

1√
i
aion(ti) · aprop(ti, tf ) · arec(tf ) + c.c. (2.24)

aion(ti) =

√

dn(ti)

dt
(2.25)

aprop(ti, tf ) =

(

2π

tf − ti

)3/2 (2Ip)1/4

|F (ti)|
exp(−iSP (ti, tf ) − iIp(tf − ti)) (2.26)

arec(tf ) = D∗(k(tf , ti) + A(tf )) (2.27)
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The electron flight time is given here by τf = tf − ti. In Eq. 2.25 n(t) represents the
ground state occupation probability being calculated from the quasi-static tunneling rate
Γ as n(t) = n(t = 0) · (1 − exp(−

∫ t

0 Γ(F (t′))dt′)) ≈
∫ t

0 Γ(F (t′))dt′. This expression
accounts for ground state depletion. By Fourier transforming d(t), the HHG spectrum in
the framework of SFA can be obtained.

This model works remarkably well for large parts of the HHG radiation spectrum, i.e.
from the plateau region to the cut-off, as illustrated by Fig. 2.6. Position and amplitude
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Figure 2.6: Comparison of a HHG spectrum obtained by a SFA model [58] and an ab-initio

integration of the TDSE. λc is 1000 nm and the intensity is 1.6 × 1014 W/cm2 .
In this regime the SFA describes the high-frequency response sufficiently well.
Note that the SFA data has been multiplied by a constant factor for comparison.

of the cut-off are well reproduced, and such is the overall structure of the plateau below
the cut-off. The HHG spectrum of this model fails for energies lower than the ionization
potential. In this region bound states govern the electron dynamics and thus the HHG
spectrum. The yield based on SFA calculations, where bound states are neglected, is
observed to decrease dramatically. We will consider, however, only harmonics with en-
ergies larger than Ip. The model for HHG described in Eq. 2.24 can therefore be safely
applied. In the following, exactly this framework is employed whenever we are referring to
an SFA calculation of HHG. We emphasize once more that the present approach relates
electronic quantum paths to corresponding classical trajectories via the application of the
SPA. The phase SP (ti, tf ) picked up along those trajectories (or paths) is equivalent to a
phase introduced in semi-classics, therefore we frequently refer to the present SPA-based
model as a “semi-classical” approach. Note that one important benefit of the SPA as
compared to the “exact” expression in Eq. 2.21 is that the individual contributions of the
respective path P to the dipole moment can be analyzed by taking only the summand
dj(t) = d(t)| [P = Pj].
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2.7.3 Shortcomings of the SPA

The above description suffers from the following drawback: When applying the SPA to
the time and momentum integral (Eq. 2.23), the stationary points in time are given by

∂ti(SP (ti, tf ) + Ip(tf − ti)) = 0 (2.28)

→
1

2
(k + A(ti))

2 + Ip = 0 . (2.29)

The latter equation has no real solution as Ip > 0. For Ip = 0, Eq. 2.29 delivers a
constraint for the velocity at release time k + A(ti) = v(ti) = 0. In the strong field limit
SV ≈ Up + Ip, this result holds approximatively. Hence, the considerable success of the
SPA in the description of HHG experiments is based on the condition Up + Ip.

In the case of large values of Ip, however, Eq. 2.29 can be solved allowing for complex
values of ti only. The imaginary part is usually interpreted as the tunneling time (the time
the electron spends in the classically forbidden region below the potential). Generally,
Im(tf − ti) ' Re(tf − ti), it is therefore only a small correction becoming negligible in
the strong field case.

2.7.4 Coulomb corrections to the SFA

In the quantum SFA model for HHG as well as ionization the final expressions lack any
influence of the Coulomb potential. Impact on accuracy and possible by-passes of the
problem depend on which of the three steps of HHG are considered.

Ionization

The ionization amplitude in SFA is correct only in the exponential dependence on the
field strength but inaccurate the prefactor. Ionization rates predicted are therefore too
low. A remedy to the problem is to substitute F (t) ·D(k+A(t)) by an amplitude deduced
from a tunnel ionization rate

√

Γ(F (t)) based on the full atomic potential, in our work
for example Eq. 2.10. (see e.g. [59] for a discussion). In fact, we employ exactly this
approach also in the model for HHG (Eq. 2.25).

Recombination

Recombination is governed by the matrix element at the time of recombination tf , D(k +
A(tf )). The correct matrix element is actually not given by a plane wave |k〉 in the initial
(i.e. pre-recombination) state but by a Coulomb function |El〉 with energy E. This is
not considered in this work. However, the approximative plane wave matrix element is
accurate enough for the large energies considered in the plateau and cut-off regions of the
harmonic spectra.
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Free propagation

The Coulomb potential is also acting during the free propagation of the ionized electron
in the laser field. In the framework of an eikonal-approximation a correction due to
the presence of the potential is accounted for only with exponential accuracy, i.e. as an
additional term in the phase,

SEI(t) =

∫ t

0

VEI(r(t
′))dt′ . (2.30)

Here it is assumed that the trajectory r(t) remains unchanged by the action of the
Coulomb force. This correction will be applied in Sec. 4.4 for an improved comparison to
the exact solution of the laser-atom interaction.

2.8 Spatial properties of harmonic radiation

Conventionally, HHG is performed in a dilute gas of atoms, typically in form of a µm-
to mm-sized gas jet emerging from a nozzle. The medium is not opaque to the infrared
driving laser which thus propagates in the gas. The laser focus can be considered to be
situated in the center of the gas jet for simplicity of the discussion. Deviations from this
position are, however, frequently used in the experiment to improve the phase-matched
generation of an individual harmonic.

As long as ionization in the medium by the driving laser stays low propagation of the
driver is only influenced by the linear refractive index and its corrections to the next order.
On the other hand, with strong ionization a large density of free electrons - a plasma - is
created. We introduce the electron plasma frequency ω2

p = 4πne. Here, ne = Pionna with
ne and na being the number density of the free electrons and atoms, respectively. The
polarization introduced by free electrons of constant density can be described by Drude’s
model [43] as

Pel(ω) = χel,D(ω)F (ω) = −
neF (ω)

ω2
. (2.31)

Light waves with frequencies below the plasma frequency ωp can not propagate in the
plasma and are reflected. For infrared lasers, this limits the electron density to ne ≈
2.6 · 10−4 = 1.7 · 1027 m−3 which corresponds at a 100% level of ionization (ne = na) and
room temperature to a gas pressure of 7 MPa. Naturally, experiments stay far below this
value and are performed in the range of several thousand Pa. We assume ωp ' ω and
thus disregard reflected waves completely.

The central question of interest is, however, the propagation properties of harmonic
radiation generated. As their generation process is phase-locked with the specific electric
field of the driving laser we have to consider the joint propagation of driver and harmonics.
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We will first start by recalling quantities well known from linear optics. The complex
refractive index ñ for a non-magnetic medium (µ = 1) is

ñ(ω) =
√

ε(ω) =
√

1 + 4πχ(ω) (2.32)

with

χ(ω) =
P (ω)

F (ω)
=

Pa(ω) + P (ω)lin

F (ω)
= χ(ω)a + χ(ω)lin . (2.33)

Here, we have split the polarization of the medium P (ω) into the sum of a part, P (ω)lin =
χ(ω)linF (ω) linear in the field F (ω), and a part resulting from the (possibly nonlinear)
atomic response, Pa(ω). In case of laser propagation and HHG inside a capillary of
“hollow waveguide” an additional term linear in F (ω) would account for the dispersion
introduced by the waveguide. We restrict our discussion to propagation in an unconfined
gas and omit this term in the following. The polarization of the atoms can be rewritten
in terms of their dipole moment Pa(ω) = nad(ω, F ). When employing the expansion of
the square-root,

√
1 + x ≈ 1 + x/2, we arrive for ñ(ω) at

ñ(ω) ≈ 1 + 2π
nad(ω, F )

F (ω)
+ 2πχ(ω)lin . (2.34)

d(ω, F ) is the Fourier-transform of the the dipole moment d(t, F ) depending on the elec-
tric field F . Note that a number density na corresponds to a pressure p via p = nakT .
Henceforth we are always assuming T = 300K when giving pressures instead of particle
densities.

The term d(ω, F ) incorporates the - possibly - nonlinear response of the neutral atoms.
In χ(ω)lin, on the other hand, all linear propagation effects defined by P (ω) = χ(ω)F (ω)
can be included. For example, neutral atoms contribute to χ(ω)lin ∝ na(1 − Pion). In
particular, effects introduced by free electrons may be incorporated in χ(ω)lin (see Eq.
2.31).

2.8.1 First-order propagation equation

The propagation of high-intensity pulses in matter is treated by Maxwell’s equations in
combination with a model for the polarization response of the medium P(x, t′).
As long as the electric field F(x, t′) is linearly polarized we can assume that for an atomic
gas the polarization P(x, t′) will also be linearly polarized. Having F(x, t′) = F (x3, t)e⊥

and P(x, t′) = P (x3, t)e⊥ we can formulate a scalar wave equation [60] which reads after
a Fourier transform to frequency space

(

∂2
x3

+ ∆⊥ +
ω2

c2

)

F (x,ω) = −
4πω2

c2
P (x,ω) (2.35)
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where ∂x3 refers to the partial derivatives with respect to x3 and ∆⊥ stands for the
transverse components of the Laplace operator.

We now substitute the ansatz [61]

F (x3,ω) = U(x3,ω)e−ix3ω/v (2.36)

into Eq. 2.35, where the phase velocity v values c/nm. The ansatz of Eq. 2.36 splits
up wave-like solutions into a fast-varying part and a slowly-varying complex envelope.
Neglecting the second-order spatial derivate of U(x3, t) and back-substitution gives

∂x3F (x,ω) = −i
v

2

( ω

c2
+
ω

v2

)

F (x,ω) − i
v

2ω
∆⊥F (x,ω) − i

2πωv

c2
P (x,ω) . (2.37)

This is a first-order propagation equation which can be solved numerically with much less
effort than the full scalar wave equation (Eq. 2.35) that is of second order in x3.

The above approximation is applicable as long as changes of the electric field induced
by the polarization of the medium over a distance comparable to the central wavelength
λc are small. It is equivalent to the elimination of backward propagating wave solutions
[60] because the ansatz of Eq. 2.36 with a slowly varying envelope U(x,ω) only allows
for propagation in one direction. Using a first-order propagation equation is in particular
valid for under-dense plasmas [62], where ω2

p ' ω2. This is easy to understand as electro-
magnetic waves with frequencies ω < ωp can not propagate in a plasma with an electron
density larger than ne. In such a case the wave will be reflected or damped inside the
plasma.

Coming back to the propagation equation, Eq. 2.37, we now make a coordinate trans-
formation to a coordinate frame moving with velocity v = c/nm, τ = t − x3/v , x3 = x3.
This results in frequency space in the substitution f(ω) → f(ω)e−iω/v·x3 . Hence,

∂x3F (x,ω) = −i
v

2

( ω

c2
−
ω

v2

)

F (x,ω) − i
v

2ω
∆⊥F (x,ω) − i

2πωv

c2
P (x,ω) . (2.38)

Choosing v = c as velocity of the moving coordinate system we arrive from Eq. 2.38 at

∂x3F (x,ω) = −i
c

2ω
∆⊥F (x,ω) − i

2πω

c
(χ(ω)lin · F (x,ω) + Pa(x,ω)) . (2.39)

Solving the propagation equation

In order to solve the propagation equation (Eq. 2.39) we employ the split-step method
[63], which is a standard method for solving nonlinear, partial differential equations. At
each frequency ω, we decompose the equation into two simpler ones:

∂x3F (x3, x⊥) = (D̂ + N̂)F (x3, x⊥) → (2.40)

∂x3F
′
(x3, x⊥) = N̂F

′
(x3, x⊥) (2.41)

∂x3F
′′
(x3, x⊥) = D̂F

′′
(x3, x⊥) (2.42)



26 CHAPTER 2. REVIEW OF LASER-ATOM INTERACTION

and solve both independently for a stepsize ∆x3. If Eq. 2.41 is solved the solution serves
as initial values for Eq. 2.42.

Under the assumption that Pa(x3, x⊥) = Pa(F (x3, x⊥)) ≈ Pa(0, x⊥) within a small
step ∆x3 the “non-linear” Eq. 2.41 is solved within the interval [0, x3] by

F
′
(∆x3, x⊥,ω) =

(

F (0, x⊥,ω) +
Pa(0, x⊥,ω)

χ(ω)lin

)

e−i2πχlin
ω
c ∆x3 −

Pa(0, x⊥,ω)

χ(ω)lin
. (2.43)

On the other hand, Eq. 2.42 reads in full

∂x3F
′′
(x3, x⊥,ω) = −i

c

2ω
∆⊥F

′′
(x3, x⊥,ω) (2.44)

The initial values of the partial differential equation in Eq. 2.44 are the solutions F
′
(∆x3, x⊥,ω)

from Eq. 2.43. Various methodsfor solving for F
′′
(x3, x⊥,ω) exist in literature. We employ

the implicit Crank-Nicolson scheme [63] that is stable for all choices of step sizes ∆x3 and
∆x⊥.

2.8.2 Gaussian beams and diffraction

In case of propagation in vacuum (Pa = 0 and χlin = 0) one solution of the propagation
equation are the so-called Gaussian beams. They can be written as

F (x3, x⊥, t) = F (0, 0, t) × (2.45)

w0

w(x3)
exp

(

−
x2
⊥

w2(x3)

)

× exp

(

−ikx3 − i
kx2

⊥

2R(x3)
+ iΦguoy

)

with k = ωc/c and the so-called confocal parameter z0 = πw2
0/λc. We have also defined

w2(x3) = w2
0(1 + x2

3/z
2
0) as well as the Guoy phase

Φguoy = tan−1(x3/z0) (2.46)

which introduces an overall phase shift of π between the incident and the outgoing phase-
front of the beam.

Interpretation of Eq. 2.45 is straightforward: Apart from a curved wave front with
curvature R(x3) = (x2

3 + z2
0)/x3 the beam resembles a plane wave and is radially of

Gaussian shape with a width w(x3) varying over the propagation coordinate. The width
is zero in the origin (the focus). The beam spread depends on the wavelength and is
controlled by the parameter z0 = πw2

0/λ. This represents the diffraction of the light wave.
The angular divergence due to diffraction can be written as

tan θdiff =
w0

z0
=

λ

πw0
. (2.47)
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λ is smaller for the high harmonics generated than for the driving laser leading to a much
smaller diffraction . Additionally, the harmonics are created in a region w0,H ' w0 due
to the strong dependence of the generation process on the local intensity ∝

∫

dtF (r, z, t)2.
For HHG in a loose-focusing geometry (see Fig. 2.7) this leads to an angular divergence
for the harmonics as small as θdiff ≈ 0.01◦ − 0.03◦ in the far-field (see Sec. A.4). When
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Figure 2.7: Spatial distribution of pulse energy for the driver as well as the generated harmon-
ics (20-50 eV) after propagation through 1 mm of hydrogen in a loose-focusing
geometry (w0 = 120µm). For the harmonics the far-field (Eq. A.13) was com-
puted in a distance of d = 10 mm from the medium. Laser parameters are
λc =1000 nm and I0 = 1.6× 1014 W/cm2 , the dipole moment was computed in
the framework of the SFA.

applying the HHG beam to a target in a distance of d = 10 mm from the generation
medium we therefore have a spatial resolution being of the order of several tens of µm.
Moreover, this fine spatial resolution has to be viewed in combination with the ultrafast
timing on a femtosecond scale.
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Chapter 3

Exact solution of the TDSE

3.1 Time-dependent Schrödinger equation

In chapter 2 we have introduced the concept of the dipole approximation and have dis-
cussed that only the laser electric field is relevant for laser-matter interactions at the inten-
sities considered in this work. Furthermore, in Sec. 2.2 it was shown that for processes like
HHG and ATI, single-active electron (SAE) calculations are sufficiently accurate. This
allows us to develop a fully quantum mechanical description by employing a Hamiltonian
that is rather simple but includes all relevant effects.

One has the freedom of choice in which gauge the Hamiltonian and thus the time-
dependent Schrödinger equation (TDSE) is formulated. According to a discussion in [64],
the velocity gauge generally fits the dynamical problem of an atom in a laser field best
and converges better at high laser intensities. In velocity gauge, the TDSE is written in
spatial coordinates of the electron r and the coordinates of the center of the atom x as

i
∂

∂t′
ΨV (r,x, t′) =

[

1

2
(−i∇r + A(x, t′))2 + Veff (r)

]

ΨV (r,x, t′) (3.1)

Note that the dependence on x comes only on a macroscopic scale; on the scale of an
atom A(t′) depends only on time (dipole approximation). For Veff (r) = 0 stationary
states of the system are the Volkov states which are spatially identical to plane waves (see
Sec. 2.4). Such free (ionized) electrons are well described by their canonical momentum
k which does not change during the interaction with the laser field. Time-evolution from
ti to tf introduces a time-dependent phase only, i.e. the Volkov phase (Eq. 2.19). Only
the velocity v(t) = k + A(t) reflects the time-dependence of the field.

In length gauge, however, the TDSE reads

i
∂

∂t′
Ψ(r,x, t′) =

[

−
1

2
∆r + Veff (r) + r · F(x, t′)

]

Ψ(r,x, t′) (3.2)

29
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Note that the wave function in velocity gauge ΨV (r) is in general different from the wave
function in length gauge, while physical observables (expectation values) are naturally
independent of gauge. The wave functions can be transformed into each other by the
unitary gauge transform ΨV (r) = exp(−iA(0, t) · r)Ψ(r) [64]. Contrary to the case of
free electrons, the length gauge is the appropriate choice for describing bound states
in the field. This is obvious by observing that the gauge transform given above would
introduce a time-dependent oscillatory phase factor usually not present for bound states.

In the range of laser parameters (I0 < 5 · 1014 W/cm2 ) we are interested in, where
at least the atomic ground state somehow retains its unperturbed character, the time-
dependent Schrödinger equation in length gauge can be solved with sufficient accuracy.
We employ an algorithm developed originally by X.-M. Tong and S.-I Chu, which will be
described in the following.

To begin with, we change to a coordinate frame moving with velocity c, t = t′ − x3/c.
We rewrite Eq. 3.2:

i
∂

∂t
Ψ(r, x3, t) =

[

−
1

2
∆r + Veff (r) + r cos θ · F (x3, t)

]

Ψ(r, x3, t) (3.3)

The coordinate system of the electron is chosen in such a way that the z-axis of the coor-
dinate system of the electron (coordinate z = r cos θ) is aligned with the linearly polarized
electric field. The x3-coordinate (atomic position) enters this equation only via the input
field F (x3, t). On the spatial scale of an atom, this x3-dependence is dropped (dipole
approximation, see Sec. 2.1.3). It is important only when describing the propagation of
the electric field within a macroscopically extended medium, hence when changing the
atomic positions on a length scale of several wavelengths. In the following derivations,
the x3-dependence is dropped in order to improve readability.

3.2 Split-operator method

For calculating the time evolution of the wavefunction, the Hamilton operator is split into
a static term and a term dependent on t:

Ĥ(t) = −
1

2
∆r + Veff (r) + r cos θ · F (t) = Ĥ0 + F (t)r cos θ (3.4)

In order to solve the TDSE one needs to evaluate

Ψ(r, t) = Û(t)ψ(r, 0) = T̂ exp

(

−i

∫ t

0

(

Ĥ0 + F (t′)r cos θ
)

dt′
)

Ψ(r, 0) (3.5)

with a time-ordered exponential T̂ exp(...). A (conceptionally) straightforward way to
solve the TDSE is to expand the above exponential into a perturbation theory series of
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interdependent integrals (Dyson series)

Û(t) = 1 − i

∫ t

0

dt′Ĥ(t′) −
1

2

∫ t

0

dt′
∫ t′

0

dt′′Ĥ(t′)Ĥ(t′′) + . . . . (3.6)

If the time-dependent field perturbing the system is weak, the first order perturbation
may be enough to describe the response of the system, as it is the case for single-photon
processes. For strong fields, however, the convergence of the above time evolution operator
Û(t) may be slow. Direct numeric evaluation of the m-th term with nt time steps results
in a numerical effort proportional to (nt/2)m.

A more efficient method for the time propagation of the wavefunction is the split-
operator method. This method has already been introduced by Feit and Fleck in 1988
[65]. Time propagation of the wavefunction is achieved by evaluating Eq. 3.5 repeatedly
for time steps ∆t small enough for the integrand Ĥ(t) to be approximated as being
constant. This is the case when ∆t < tk = 2πn3 where tk is the (Kepler) orbital period
of a Rydberg electron in the state with energy Enl. Of course, ∆t must additionally be
small enough to resolve possible small-scale variations of the driving field F (t).

Not only is the time evolution U(t) divided into many small time steps ∆t with
U(t) ≈ U(tf ,∆t) · · ·U(t1, t)U(t0,∆t) which needs to be done in any discretization scheme.
In particular, one time step U(ti,∆t) is split into [66]

U(ti,∆t) ≈ U0(∆t/2) B(ti,∆t) U0(∆t/2), (3.7)

where
U0(∆t/2) = e−iĤ0∆t/2 (3.8)

describes the unperturbed electron propagation, i.e. without the laser-atom interaction.
The effect of the laser-atom coupling is taken into account by the boost operator

B(ti,∆t) = ei∆p(ti,∆t)ẑ ∆p(ti,∆t) =

∫ ti+∆t/2

ti−∆t/2

F (t′) dt′ ! ∆tF (ti) , (3.9)

which transfers the momentum ∆p (a kick) to the electron.
The separation in Eq. 3.7 allows to calculate the first step of the time evolution U0(∆t/2)
in energy representation because the time evolution of the basis functions Φnl(r) with
defined energy Enl,

Ĥ0Φnl = EnlΦnl , (3.10)

is then a simple multiplication of a phase factor exp(−iEn∆t/2). We denote the time-
independent basis by Φnl(r) while the time-dependent coefficient of the total wavefunction
is Ψnl(t). Consequently, Ψ(r, t) =

∑

n,l Ψnl(t)Φnl(r).
On the other hand, the boost operator B(ti,∆t) is efficiently evaluated in coordinate-
space, where the representation of the wavefunction Ψ(r, t) is diagonal. Again, the eval-
uation of the operator involves only a multiplication by a phase factor.
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In summary, the total time evolution for a time step ∆t is performed by propagating the
wavefunction Ψnil(t) for a half time step ∆t/2 in energy-space:

Ψnl(t + ∆t/2) = e−iĤ0∆t/2 Ψnl(t) (3.11)

Then the wavefunction Ψnl(t +∆t/2) is transformed to coordinate-space Ψ−(r, t +∆t/2)
and propagated for a time step ∆t under the influence of the atom-field coupling alone:

Ψ+(r, t + ∆t/2) = ei∆p(t+∆t/2,∆t)ẑ Ψ−(r, t + ∆t/2) (3.12)

Finally, the wavefunction after the application of the boost operator Ψ+(r, t + ∆t/2) is
transformed back again to energy-space and propagated for another half time step ∆t/2
equivalent to Eq. 3.11,

Ψnl(t + ∆t) = e−iĤ0∆t/2 Ψ+
nl(t + ∆t/2) . (3.13)

The total expression of the form

Ψnl(t + ∆t) ≈ U0(∆t/2) B(∆t) U0(∆t/2)Ψnl + O(∆t3) (3.14)

gives rise to an error in the third power of ∆t per time step [65]. More sophisticated split-
operator methods as discussed e.g. in Ref. [67] show an error of O(∆t4), but we found
this third-order method to be sufficient as the step size in time is limited by requiring a
good resolution in F (t) as well.
A sufficiently small time step for typical laser parameters (λc ≈ 1000 nm, I = 1014

W/cm2 ) is ∆t ≈ 0.25 a.u.. Such a time step is almost one order of magnitude larger than
the time step necessary for simpler numerical time evolution schemes with a different
choice of U(ti,∆t). The “leap frog” algorithm which needs time steps of ≈ 0.01 a.u.
may serve as one example. The split-operator method is thus very efficient for a long
time propagation of a wavefunction, provided the problem to be solved is linear as in the
present case of the atomic TDSE. To calculate HHG by a femtosecond laser pulse then
leads to several thousands time steps (nt ≈ 103 − 104). The numerical effort involved
scales then as ntn2

max · lmax where nmax, lmax are the largest quantum numbers n, l taken
into account.

3.3 Pseudo-spectral method

The indices nl of the wavefunction in energy representation Ψnl(t) (Eq. 3.10) can only
take discrete values corresponding to the discrete energy-eigenvalues Enl for E < 0. In
order to describe the continuum in energy above E = 0, the latter is approximated by
dense lying discrete states Ψnl. This approach is called the pseudo-spectral method for
representing a continuum. The discrete states emerge when an infinite potential (hard
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Figure 3.1: Potential (blue) and energy levels (red) for one-dimensional hydrogen with a box-
size (hard-wall boundary) of rmax = 200 a.u. The continuum is decomposed into
a finite number of discrete states, being sufficiently dense for low energies.

wall) is introduced at rmax as indicated in Fig. 3.1. For large energies where the influence
of the potential Veff (r) is low, energy-eigenvalues can be approximated by a hard-walled
well of infinite height and width rmax,

Enl =
1

2

(

πn

rmax

)2

(3.15)

∆Enl = n

(

π

rmax

)2

(3.16)

Hence, the density of states of the discretized “continuum” states is controlled by the
parameter rmax. How dense the states need to be in order to represent the continuum
depends on the laser field strength and frequency.

Employing no a-priori assumptions on Veff (r) and rmax, the energies Enl must be com-
puted numerically. Symmetries of the Hamiltonian facilitate the calculation: The eigen-
functions Φnl = Φnl(r, cos θ,φ) = Φnl(r, cos θ) are independent of φ for the Hamiltonian
chosen (Eq. 3.3), due to the dipole approximation and the restriction to linearly polarized
electric fields. Employing standard procedures [47], the θ-dependence can be separated
with the aid of the spherical harmonics Yl(cos θ), reading Φnl(r, cos θ) = φnl(r)/rYl(cos θ).
The radial eigenfunctions φnl(r) together with their eigenvalues Enl are calculated numer-
ically on an appropriate radial mesh ri ∈ [0, rmax]. For an efficient numerical treatment
of a Coulomb-like potential Veff (r), which is diverging for r → 0, a nonlinear mesh-point
distribution is advantageous. Far away from the nucleus, a sparse mesh is still sufficient
while a denser mesh is needed at the core where large momentum transfers (represented
by spatially rapidly oscillating wavefunctions) can occur. We typically use a mesh where
the radial spacing is larger by a factor of 20 for r → 0 when compared to r ≈ rmax.
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For a detailed description of technical issues of the numerical method as symmetriza-
tion and discretization of the radial Schrödinger equation, as well as the quadrature
algorithm see the original publications by Chu et al. [66, 68, 69, 70, 71].

3.4 Grid dimensions and boundaries

Discretization of coordinate and energy space for numerical calculations is unavoidably
linked to some finite spacing ∆E = En+1 − En and ∆r of the grid, as well as to some
maximal values Emax and rmax (“basis size”) that can be represented. Of course, these
parameters have to be chosen such that all relevant physical processes can be represented
on the finite numerical grid. For large intensities and long wavelengths, numerical evalu-
ation of the Schrödinger equation is quite demanding even on modern computer systems,
despite of the sophisticated technique used. It is therefore necessary to “economize”
computing time and find the smallest basis that returns results of acceptable accuracy.

For a simple estimate of the basis size, the parameters defining the discretization of
the radial Schrödinger equation, i.e. the number of radial grid points N and energy levels
ns ≈ N/2 [66, 68], the maximum in energy Emax, and the maximum in radius rmax can
be related to the case of a rectangular hard wall potential (see Eqs . 3.16 and 3.16 in Sec.
3.3). N and rmax have to be chosen such that the largest energy expected during the time
evolution is smaller than Emax. Quite naturally, it is at the same time required that the
spacing of the states is smaller than the energy of one laser photon of the driving laser,
∆E(Emax) < ωc. The number of angular momenta lmax needs to be also related to the
number of photons taking part in the process, as each photon is able to supply an angular
momentum of |l| = 1. Hence, lmax ∝ Emax/ωc which can reach large numbers for the case
of long-wavelength (e.g. infrared) driving lasers.

For calculating HHG, which is related to acceleration of an electron near the core, the
considerations given above are already sufficient to obtain an estimate for the basis size
needed. The largest energy to be described is given by the cut-off energy, Emax = Ec =
Ip + 3.17Up. For an intensity of 1014 W/cm2 and λc = 1000 nm (Up = 0.34 a.u.), values
needed are at least Emax > 1.6 a.u., lmax > 36, N > 150, and rmax > 70 a.u.. Numerically,
using values twice as larger is typically necessary to obtain well converged results.

At the grid boundary rmax outgoing (ionized) wavepackets are reflected. This un-
physical behavior (the grid boundary is artificial!) can be circumvented by applying an
absorbing boundary described by the function fd(r) at each time evolution step which
prevents the wavepacket of reaching the grid boundary. For that purpose we use a cos2-
function that evaluates to 1 at r = rcut and goes to 0 at r = rmax, reading

fd(r) = cos2

(

π

2

(r − rcut)

(rmax − rcut)

)

. (3.17)

Such a function is smooth to the 2nd order. The drawback is of course the loss of norm
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(probability) associated with the damping. If the value of the damping integrated over
time is recorded during time evolution, however, the ionization probability can be given
reliably.

On the other hand, if the (doubly-differential) photo-electron spectrum shall be com-
puted the grid dimensions need to be large enough to hold the relevant portions of the
wavefunctions over the whole time evolution. Hence, rmax =

√
2Emax ·T and Emax > 5Up.

For an intensity of 1014 W/cm2 , λc = 1000 nm and a pulse duration of four optical cy-
cles (T ≈ 550 a.u.), values needed are at least Emax > 1.8 a.u., lmax > 40, N > 1500,
and rmax > 1100 a.u.. Such a problem is therefore numerically much more costly than
calculating a HHG spectrum.

3.5 One-electron potentials

A useful property of the pseudo-spectral method is that any rotationally symmetric po-
tential Veff (r) can be used. Therefore not only hydrogen-like atoms and ions can be
computed by our algorithm but also all those atoms that can be treated by the “Single
Active Electron” approximation (SAE) [57] with sufficient accuracy.
In the SAE approximation we assume that all tightly bound electrons of the lower-lying
shells of the atom do not take part in the interaction with the laser field. Only the outer-
most - the “active” - electron is assumed to be relevant and its dynamics is calculated by
the time-dependent Schrödinger equation using an effective radial potential Veff (r) that
accounts for the influence of the other electrons. This influence consists in particular in
the screening of the nuclear charge Z.

Note that such effective potentials can not account for all effects in a multi-electron atom.
Such potentials are often optimized to reproduce one observable of interest. In case of
HHG it is important to reproduce the energy spectrum and in particular the ionization
potential correctly (see chapter 2).

3.5.1 Hydrogen

For hydrogen, the potential Veff (r) is exactly known, it is just the bare Coulomb potential
−1/r. The ground state and the first excited states can be expressed numerically with
an accuracy of more than 12 digits for a standard basis size. l is degenerate to the same
precision. Higher states show a transition to the rectangular potential eigenvalues and
have eventually positive eigenenergies. Figure 3.1 shows one-dimensional hydrogen (only
l = 1 states) with rmax = 200 a.u. as an example.
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3.5.2 Argon

Argon (Ar) has in total 18 electrons, the ground state with ionization potential Ip =
15.76 eV is a 3p6 state. It can be treated quite reliably in the Single-Active-Electron
approximation. A much higher energy is required to excite the second electron (Ip =
27.62 eV for Ar+). If one electron is excited and the second one remains in the ground
state, the potential experienced by the single active electron can be modeled.
We employ the following one-electron potential [72]

Var(r) = −
1

r

[

1 + A · e−Cr + (17 − A) · e−Br
]

(3.18)

with the parameters A = 5.4, B = 3.682, and C = 1. Employing this potential, the
eigenenergies of the states are given by Table 3.1. Deeply bound states (1s, 2s, 2p, and

State numerical experimental
3p −0.58137 −0.5792
4s −0.15423 −0.1548
4p −0.09711 −0.0982

Table 3.1: Ionization potentials out of the lowest lying states of argon in the Single-Active-
Electron approximation with the potential given by Eq. 3.18. Experimental data
is taken from the NIST database [73].

3s) are supported by this potential, but are occupied in the real atom. Consequently,
they should not contribute to the dynamics in the framework of the SAE approximation.
During the time-evolution we avoid occupation of these states by assigning to them a
random phase.
Argon is frequently employed in experiments due to its easy handling. The value of the
ionization potential IP is close to the one of hydrogen, which is the only atom for which
also (semi-)analytic approaches to laser-atom interaction exist.

3.6 Power spectrum

Once the time-dependent wavefunction is determined, the power spectrum - the most
important quantity for HHG in the single-atom picture - can be deduced. In this context
we consider a single atom showing a dipole moment of d(t) = 〈Ψ(t)|ẑ|Ψ(t)〉 and assume
sinusoidal variation of d(t). Classically, a unit charge with dipole acceleration az = d̈
pointing only in z-direction then emits radiation with a power of [43]

P (ω) =
ω4

3c3
d2

0,ω =
1

3c3
a2

0,ω . (3.19)
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For a short pulse with duration T one needs to use the Fourier components ã(ω),

P (ω) =
2ω4

3c3T
d̃(ω)2 =

2

3c3T
ã(ω)2 . (3.20)

A detailed discussion on the definition of radiated power can be found in the appendix
A.2.

The property of the Fourier transform F{}

F{
∂2f

∂t2
} = −ω2F{f} (3.21)

allows to calculate the power spectrum either by employing 〈Ψ(t)|ẑ|Ψ(t)〉 or 〈Ψ(t)|âz|Ψ(t)〉.
This is usually referred to as length (L) or acceleration (A) form of the power spectrum.
For an Hamilton operator reading Ĥ = p̂2

2 + V (r) + F (t)ẑ with ẑ = r cos θ the two forms
can be written in the Heisenberg picture as

• Length Form (L):

d(t) = 〈Ψ|ẑ|Ψ〉 = 〈Ψ|r cos θ|Ψ〉 (3.22)

• Acceleration Form (A):

az(t) = 〈Ψ|
∂2ẑ

∂t2
|Ψ〉 = −〈Ψ|[Ĥ, [Ĥ, ẑ]]|Ψ〉 = 〈Ψ|− cos θV ′(r) + F (t)|Ψ〉 (3.23)

with:

[Ĥ, ẑ] = −ik̂z [Ĥ, [Ĥ, ẑ]] = (cos θV ′(r) − F (t)) (3.24)

Both forms should lead to the same result. This invariance is an excellent test for nu-
merical convergence because the acceleration form are calculated from the wavefunction
close to the origin, whereas the length form takes more remote coordinates into account.
The power spectrum of the length form contains the Fourier transform of (with constant
velocity) escaping electron wave packets. For ionizing laser intensities and large rmax (see
Sec. 3.4) this contribution becomes dominant in the Fourier transform. It may even mask
the response of the atom in the power spectrum that originates from electron wave packets
localized (bound) at the atom.
Therefore, the acceleration form of the power spectrum should be used for highly ionizing
pulses, especially for analyzing the cut-off region. On the other hand, the acceleration
form tends to be less accurate for the lowest harmonics (1st-3rd harmonic) because of the
loss of norm enters in its calculation. We are interested only in the plateau and cut-off
region of the HHG spectra, thus we present power spectra in the acceleration form if not
otherwise stated.
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3.7 Photo-electron spectrum

After the time-integration of the TDSE up to the end of the pulse when F (T ) equals to zero
one arrives at the final wavefunction Ψend =

∑

n,l Ψnl(T )Φnl(r), given either in momentum

space with knl =
√

2Enl or in coordinate space. If only insignificant portions of the
wavefunction have been absorbed by at the grid boundaries the total ionization probability
can be written as P =

∑

n,l |Ψnl(T )|2Θ(Enl). Otherwise, the probability can also be
deduced from the bound state population P = 1 −

∑

n,l |Ψnl(T )|2Θ(−Enl). However,
for obtaining (doubly-)differential information on energy and/or angular distribution of
photo-ionized electrons it is, of course, necessary to resolve as much of the wavefunction
of the photo-electrons as possible on the grid.

The photo-electron energy spectrum is the most straight-forward differential quantity
to be obtained. The pseudo-spectral method provides us directly with the spectrum (at
discrete values), given by

dF

dE
(Enl) =

|Ψnl(T )|2

Enl
. (3.25)

As soon as the electric field is switched off, the energy becomes an integral of motion for
the Hamiltonian considered and (n, l) as well as Enl are “good” quantum numbers. The
photo-electron energy spectrum can be computed immediately.



Chapter 4

Quantum path interference in HHG

4.1 Global wavelength dependence of HHG

The dependence of the HHG yield on λc has become an issue of major interest [35, 36, 38,
39, 74, 75]. It has long been believed that the spreading of the returning wavepacket would
result in a λ−3 dependence of the HHG efficiency [54] as long as ground state depletion can
be neglected [76]; experimental findings [77] provided partial support. Recently, however,
Tate et al. [35] have reported a different wavelength-scaling of HHG between 800 nm
and 2 µm calculated with the time-dependent Schrödinger equation (TDSE) for Ar and
a strong-field approximation (SFA) for He. They found the yield to be described by a
power law ∝ λ−x with 5 ≤ x ≤ 6.

We analyze the very same problem within the framework of the single-active electron
approximation. We define the HHG yield Y as described in Sec. A.2 (Eq. A.9), i.e. by
integrating the modulus-squared of the dipole acceleration in an energy range [ωlo,ωup],
divided by the pulse duration. This definition has the dimension of radiated energy per
unit time (power) and thus represents a useful quantity to compare the yield also from
pulses with different duration. For a simple estimate - in analogy to the work of Tate et
al. - we use a power law fit

Y ∝ λ−x
c (4.1)

to describe the large-scale behavior of the HHG yield with the wavelength.
For a convenient comparison to previous work [35] we use a sine-like laser pulse (Eq.

2.5 with φCEP = π/2) and a flat-top pulse envelope with half an optical cycles ramp-on
and ramp-off if not otherwise stated (see Sec. 2.1.4 for a definition of the envelope function
f(t)). When increasing λc we keep the number of optical cycles constant, hence, the total
pulse duration increases as well.

Figure 4.1 shows the HHG yield between 20 and 50 eV for a pulse of 8 cycles duration
[36]. It is observed that the HHG yield decreases stronger with the driver’s wavelength
than a simple estimate might suggest. In agreement with previous work [35] we find

39
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Figure 4.1: HHG yield as a function of λc in the energy range from 20 to 50 eV for a pulse
with a duration of 8 cycles and I = 1.6 × 1014 W/cm2 . a) hydrogen, b) argon.
Solid black lines represent a power law fit to the data (Eq. 4.1). The thin red
line shows the fine-scale variation of the HHG yield for hydrogen.

that for argon the yield can be described on a large scale by a power law (Eq. 4.1) with
x ≈ 5.5 ± 0.5. For H, the exponent is slightly lower and yields x ≈ 5.3 ± 0.5. A striking
property of the wavelength dependence of Y is that it - quite unexpected - strongly
fluctuates. These fluctuations are, in fact, surprisingly regular, the oscillation period is
of the order of several nanometers near λc =1000 nm and decreases with increasing λc .
Although fine-scale variations of the HHG yield are here presented only for hydrogen, they
can be observed for other atomic species, in particular argon, as well. Such a behavior
calls the applicability of a simple power law into question, at least when one has a fine-
tuning of the HHG yield in mind. On large scales, for example when estimating the effect
of switching from λc =1000 nm to λc =1500 nm, a power law remains valid.

An extension of the integration limits in the definition of Y (Eq. A.9) sheds some light
on the question why Y decreases so strongly with λc . When defining the yield in the range
from 20 to 230 eV, it essentially covers the whole harmonic spectrum being generated, as
the classical cut-off energy is around 200 eV for the largest wavelength considered. Note
also, on the other hand, that for low wavelengths of about 800 nm the range 20-50 eV
covers the whole spectrum as well due to the much lower cut-off energy. Solid lines in Fig.
4.2 reveal that this re-defined, so to speak “total” yield (i.e. integrated over all energies ω)
can be described again by a power law, but now with x ≈ 3.1 (Ar) and x ≈ 3.8 (H). This
observation is now much closer to a λ−3 dependence originating from simple estimates of
wavepacket spreading [54]. Consequently, the HHG yield is obviously partly determined
by a “distribution” effect when observed within a given, constant range. The expansion
of the whole spectrum to larger cut-off energies (Ec ∝ λ2) re-distributed the HHG yield
and leads to a stronger decrease in amplitude than what wavepacket spreading only (λ−3)
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Figure 4.2: HHG yield as a function of λc in the energy range from 20 to 230 eV (covering the
largest cut-off energy considered) compared to the range 20-50 eV, all parameters
as in Fig. 4.1. a) hydrogen, b) argon. Solid lines represent a power law fit to the
data (Eq. 4.1).

would imply. A cartoon visualizing these findings is presented in Fig. 4.3.

The present results have been very recently received support by experiments with Xe,
where an analysis uncovering the single atom response in an energy range of 16 to 32 eV
has revealed an exponent of x ≈ 6.3 ± 1.1 [75]. This value is close to our result for
Ar, x ≈ 5.5 ± 0.5, which is obtained for an energy range of 20 to 50 eV. At the same
time, theoretical work [78] suggests a quite different picture. Here, an analytical, single-
electron approach to HHG valid for short-ranged potentials [79] is combined with the
true photorecombination cross sections of the multi-electron atoms employed. Focusing
on the HHG yield near the cut-off only, Ref. [78] finds that the yield decreases more
weakly for rare gases (x ≈ 4.6 for He and x ≈ 3.9 for Ne) as compared to hydrogenic
atoms. Moreover, Ref. [78] reports that the wavelength dependence of the HHG yield
may actually be insignificant for Ar or even show a large-scale, peak-like enhancement
near 1.2 µm for Xe. These surprising results are attributed to multi-electron effects such
as additional resonances in the photorecombination cross section which are not present
in a SAE approach. Although ab-initio two-electron calculations of HHG for helium have
provided no evidence for a significant deviation from the SAE picture (cf. Fig. 2.2), further
investigation of atoms with more than two electrons will be necessary in this context.

For comparison to the present TDSE results for hydrogen, Fig. 4.4 a) shows the large-
scale wavelength dependence of HHG yield obtained in the framework of the SFA. The
SFA compares nicely to the trend ∝ λ−5.3 which was previously found in the TDSE
analysis. With the SFA model at hand we can now investigate the relative importance of
individual trajectories, in particular at long wavelengths. We define the relative weight
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Figure 4.3: Illustration of the distribution of HHG yield with increasing λc . While the total
yield (i.e. integrated over all energies ω) scales roughly like λ−3, the higher cut-
off energy Ec ∝ λ2 leads to a drop of the spectral amplitude at a given energy
by about λ−5.

rj of the jth trajectory by,

rj =
F(dj(t))

F(
∑j

i=1 di(t))
. (4.2)

In words, we compare the yield of the jth trajectory to the total yield obtained by sum-
mation of all trajectories of equal or lower order j. Interestingly, the contribution of long
trajectories (an example is shown in Fig. 4.4 b) ) strongly increases with λc . This finding
has been pointed out already by Tate et al. [35], however, the origin of this phenomenon
was yet unclear.

It can be understood by a fairly simple picture: Consider a (recolliding) electronic
wavepacket of Gaussian shape with spatial width σ = σk · τf . Here, σk is the initial
momentum spread after (quasi-static) tunneling, it is related to the tunneling time and is
independent of the wavelength [59]. In case of motion in an electric field the wavepacket
will be centered around a classical trajectory characterized by the quiver amplitude α =
F0/ω2

c . The spread relative to the position is given by

∆x

〈x〉
=
σk · τf
α

(4.3)

after time evolution by the flight time τf . Using τf ∝ λ one arrives at a relative
spread ∝ 1/(F0λ). If the relative importance of wavepacket spreading decreases with
λc contributions of trajectories with long excursion times that are usually suppressed be-
come more prominent.
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Figure 4.4: Large scale behavior of the HHG yield in SFA. a) shows the HHG yield including
only four (red solid), and all (green dotted) quantum paths, the solid black line
represents the trend λ−5.3 (see Fig. 4.2 a) ). b) shows the relative strength rj

(Eq. 4.2) of a particular quantum path, j = 4, which increases with λc .

4.2 Fine scale oscillations

Zooming into the fine-scale fluctuations in Fig. 4.1, surprisingly regular oscillations are
observed. Interestingly, the regularity manifests strongly only in energy-integrated data,
while a color plot as a function of both λc and energy of the radiation (Fig. 4.5) shows
only weakly pronounced ridges along lines of constant λc .
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Figure 4.5: HHG yield as a function of both λc and radiation, same as Fig. 4.1. The upper
panel show the quantity after integration over the given energy range.

Recently, we have been able to explain these oscillations in the integrated yield Y by
quantum path interference of the electronic trajectories [36] involved in HHG (see Sec. 2.5
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for a review of the role of “classical” trajectories in HHG). For this purpose we employ
an SFA model for the time-dependent dipole moment d(t) of the radiating atom given
initially by Ivanov et al. [58]. It relies in its core on classical electronic trajectories in the
laser field which are given by the classical recollision condition (Eq. 2.14). The dipole
moment d(t) is expressed in terms of three amplitudes reflecting the basic 3-step model
[55] of HHG, summarized in Fig. 2.5. The exact expression are given in Eqs. 2.24, 2.25,
2.26, and 2.27. The model employed in the following deviates from previous work only
in the introduction of an “effective” ionization potential Ĩp which replaces Ip only in the
phase factor accumulated during free propagation of the electron (cf. Eq. 2.26). This
substitution leaves the structure of the HHG power spectrum largely unchanged.

The appealing advantage of employing a trajectory-based SFA model lies in the pos-
sibility of including or excluding a particular set of trajectories, which gives insight into
the underlying processes and the importance of a given electronic trajectory. Figure 4.6
a) shows a comparison between the SFA model and the results obtained by numerical
integration of the TDSE. The agreement in terms of modulation period and modulation
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Figure 4.6: HHG yield as a function of λc , same as Fig. 4.1. a) comparison TDSE and SFA,
b) SFA showing build-up of small-scale interference structures with increasing
number of quantum orbits. Note that in a) an effective ionization potential of
13.04 eV was used for better comparison (to be discussed in Sec. 4.4), introducing
an horizontal shift to the SFA curve.

amplitude of the HHG yield is astonishingly good. In Fig. 4.6 b) the SFA result is given for
different total numbers of contributing electronic trajectories or “quantum paths”. While
a single quantum path does not lead to any structures in the wavelength-dependent HHG
yield, including more than five quantum paths gives practically converged results. Note
that an effective ionization potential of 13.04 eV is used in Fig. 4.6 a). Using this “ad-
hoc” value for Ip leads to an improved agreement with the TDSE result as compared to
the agreement obtained with the true Ip. Employing the latter, which corresponds to
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standard SFA, yields practically the same modulation period and modulation amplitude
of the HHG yield. When introducing small corrections to Ip, only a horizontal shift with
respect to the TDSE result is visible and essentially the same conclusions can be drawn.
Employing an effective ionization potential in the context of quantum path interference
has been previously suggested by various authors (see, e.g. Refs. [80, 81, 38]) as such
horizontal shifts appear when comparing to SFA results.

The interference structures in Fig. 4.6 appear on a scale of roughly 20 nm, which is
much smaller than the Fourier width of the ultrashort pulses employed. Recall that a
pulse duration of eight optical cycles corresponds to a Fourier width ∆λ of about 100 nm
for λc =1000 nm (∆λ/λc ≈ 0.1). This - at a first glance surprising - fact reflects the origin
of the oscillations being an interference structure bound to the well-defined time structure
of the ultrashort laser electric field and the corresponding electronic trajectories. A similar
example of observing regular structures after averaging over a large energy interval has
been discussed extensively in literature in the context of “periodic orbit spectra”, see e.g.
[82].

4.2.1 Stability with pulse duration

We have recently analyzed the dependence of interference structures on the pulse duration
[74]. Two simple effects can be expected: with decreasing pulse duration the number of
possible trajectories decreases as well, hence the oscillations will eventually become less
pronounced. On the other hand, the peaks of the oscillation may become sharper with
increasing pulse duration due to an increasing number of trajectories contributing. This
is counterbalanced by, firstly, wavepacket spreading, rendering trajectories with a long
excursion time negligible and, secondly, by ground state depletion. For long pulses the
ground state can be sufficiently depleted to “switch-off” HHG on the trailing edge of the
pulse. Figure 4.7 presents HHG yield for hydrogen and flat-top pulses with durations of
4, 8, and 16 optical cycles, obtained by the full solution of the TDSE. The results are
well in agreement with the above considerations. For a 16-cycles pulse at the present
intensity (1.6 × 1014 W/cm2 ) ionization reaches already 63%. Only minor changes are
to be expected for an even longer pulse due to the large ground state depletion. Such a
behavior could be confirmed by SFA calculations as well.

4.2.2 Stability with pulse envelope

An important issue, especially with respect to experimental observability, is the robust-
ness of the present results with changes of the pulse shape (pulse envelope). The exact
pulse shape is experimentally hard to control. Moreover, the flat-top envelope function
employed so far is - although convenient for semi-analytical analysis - very uncommon in
the experiment. We have therefore investigated the stability of our present results with
respect to different pulse shapes employing the full solution of the TDSE [74]. It turns
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Figure 4.7: HHG yield as a function of λc , calculated by solving the TDSE, same as Fig. 4.1
but for pulse durations of 4, 8, and 16 optical cycles. The oscillatory structure
gets more and more pronounced with increasing pulse duration.

out that whenever the effective pulse duration, namely the FWHM of the electric field
envelope τp, is comparable interference patterns are very similar (see Fig. 4.8).

4.3 Intensity dependence and channel closings

To date a parameter relatively easy to control experimentally is the intensity of the driv-
ing pulse. At the same time, changing the driver’s wavelength conventionally involves
modifications of the laser resonator and/or the gain medium which represent a major
change of the experimental setup. Along those lines, most experiments as well as theo-
retical investigations of HHG have so far focused on the intensity dependence. Indeed,
oscillation of the HHG yield similar to those described in Sec. 4.2 have previously been
reported in terms of the dependence on the intensity of the driving laser I0 ∝ F 2

0 , both
experimentally [83, 84] and theoretically [85, 86]. Borca et al. [85] and Milošević and
Becker [86] have shown that HHG is enhanced at channel closings (CC), i.e., if

R =
Ip + Up

ω
, (4.4)

is an integer. Channel closing in this context refers to the threshold for multiphoton
ionization in a laser field. Note that the pondermotive potential Up can be a function of
λc and/or the intensity I0, Up = Up(λc, I0). Hence, enhancements can be induced either
due to variation of λc , of I0, or both parameters simultaneously.

Most of these theoretical studies have employed zero-range potentials or the SFA which
both neglect the influence of the long-ranged potential on the ionized electron. Further-
more, previous analysis has often made use of infinitely long pulses and neglected ground
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Figure 4.8: HHG yield as a function of λc , calculated by solving the TDSE, same as Fig.
4.1 but for pulse envelopes corresponding to a flat-top, Sin2, and Gaussian pulse
shape. In contrast to all other data presented in this section, data was normalized
here to the effective pulse duration τp, which represents the FWHM of the electric
field envelope, instead of the total duration T . Here, τp = 7 optical cycles for
all pulse shapes.

state depletion. The latter is likely to introduce artefacts not being present in contempo-
rary ultrashort (i.e. few-cycle) driving pulses. Nevertheless, the present oscillations and
enhancements due to channel closings seem to be related, especially when we recall the
source of quantum path interference being the semi-classical phase SP . In fact, the ex-
pression Ip + Up in Eq. 4.4 is identical to an order-of-magnitude estimate of SP for large
intensities and quantum paths with low energy.

In order to investigate the relation of our present results with the CC theory we replot
Fig. 4.1 a) as a function of R rather than λc . Additionally, we have multiplied the data
by λ5.3 in order to remove the “large-scale” behavior of Y and facilitate the analysis of the
fine-scale oscillations. We observe that - as a function of the channel closing parameter R
- the oscillations are now regular not only in a narrow range of λc but over the whole data
range presented. In particular, the modulation period is clearly given by the spacing of
δR = 1. This observation is underlined by a Fourier transform of the function Y (R)×λ5.3.
The dominant frequency component of the modulation is equal to unity with an accuracy
of at least three digits. The channel closing condition Eq. 4.4 predicts essentially the
same modulation period δR = 1 for variations in either λc or I0, or both at the same time.
An additional, beat-like structure with a frequency of ≈ 20 remains to be investigated in
future work.
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Figure 4.9: HHG yield for hydrogen as a function of R, same as Fig. 4.1 a). The inset
represents a Fourier transform of the data, revealing R−1 = 1 as the by far
dominating contribution to the oscillatory structure.

4.3.1 Intensity dependence of yield oscillations

Due to the dependence of the ponderomotive potential Up(λc, I0) on both λc and I0 the
investigation of HHG yield enhancements can be extended to the two-dimensional pa-
rameter plane (λc, I0), in principle. Figure 4.10 presents as an example the HHG yield
for hydrogen in a narrow interval of wavelength (1 µm ≤ λc ≤ 1.1 µm) and intensity
(1.3 × 1014 W/cm2 ≤ I0 ≤ 1.6 × 1014 W/cm2) [37]. It displays regularly shaped ridges
each of which can be mapped onto a fixed channel closing number R. This regularity is
also reflected in the cuts through this two-dimensional data for different fixed intensities
for both hydrogen (see Fig. 4.11 a) ) and argon (Fig. 4.11 b) ). In both cases, enhance-
ments are spaced by a change δR = 1. In contrast to a presentation in terms of λc ,
one-dimensional cuts through the data of Fig. 4.10 at different I0 are almost identical
when given in terms of R. In both Fig. 4.11 a) and b) curves for the HHG yield slightly
shift in vertical direction with increasing intensity. This effect can be intuitively explained
by an increasing ionization rate (and thus increased HHG yield) at larger intensities.

4.3.2 Channel closings

Although the modulation period of Y (R(λc)) (Fig. 4.9) as well Y (R(λc, I0)) (Fig. 4.10)
can be simply interpreted by a channel closing approach (i.e. the period being determined
by a change of δR = 1), there is one major drawback. The peaks/enhancements obtained
by TDSE calculations are observed not to coincide with integer values of R. Such a
disagreement between SFA-based theories and TDSE data has been already discussed in
previous work [80, 81]. Attempts were made to resolve this discrepancy by introducing
an “effective” ionization potential Ĩp replacing Ip in the semi-classical phase, an approach
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Figure 4.10: TDSE-calculated integrated harmonic yield between 20 and 50 eV for H (8-
cycle flat-top pulse) in the (λc, I0) plane. In the contour plot (lower panel),
white lines show values of constant (Up + Ip)/ω, shifted from integer values by
+0.52, while black lines (only three are shown for clarity) represent values of
constant (Up + Ĩp)/ω with Ĩp = 10.5 eV.

we have previously employed as well (see Sec. 4.2 and Ref. [36]). Frolov et al. [38] have
recently analyzed the wavelength-dependence of HHG in terms of channel closings. They
have calculated the harmonic yield using the time-dependent effective range theory, and
shown that the peaks of the yield oscillation around λc =1000 nm coincide indeed with
integer values of R if an effective ionization potential Ĩp (e.g., 10.5 eV for H) is used in
place of Ip in Eq. 4.4. Note, however, that their method is strictly applicable only for
short-range potentials and also neglects excited atomic states.

Superimposed on the contour plot in the lower panel of Fig. 4.10 we present lines of con-
stant channel closing parameters R, equally spaced by δR = 1. While black lines represent
values of constant (Ĩp +Up)/ω with an effective ionization potential of Ĩp = 10.5 eV, white
lines show values of constant (Ip + Up)/ω (with the true ionization potential), but shifted
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Figure 4.11: Wavelength dependence of the integrated harmonic yield (20 to 50 eV) in the
range of λc ≈ 1000 − 1100 nm, expressed in terms of R, for a) H and b) Ar,
for 8-cycle flat-top pulses for different intensities indicated in the figure. In
contrast to a presentation in terms of λc , the curves for different I0 are almost
identical apart from a slight vertical off-set due to an increasing ionization rate
at larger intensities.

from integer values by +0.52. Although the ridges of HHG enhancement are described by
both iso-lines at a first glance, closer inspection shows that the curvature of iso-lines de-
fined with Ĩp deviates from the actual ridges. Apparently, accepting a seemingly constant
off-set, employing the true Ip fits the actual TDSE-calculated HHG enhancements much
better. This may not come as a surprise after the Fourier analysis of the oscillations in a
broad range of λc (800 - 2000 nm) has shown that δR = 1 holds with a very high accuracy
if the true ionization potential is used. Using a constant Ĩp, valuing e.g. 10.5 eV (instead
the true value of 13.6 eV for hydrogen) leads to a small, but significant deviation from
the δR = 1 law by about 3%.
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In conclusion, an analysis in term of the channel closing parameter R reveals that the
modulation period for enhancements of the HHG yield at variations of both λc and I0 is
given by the condition δR = 1 if and only if the true ionization potential is used. The
idea of employing an effective ionization potential Ĩp constant over a large interval of λc ,
which has been discussed in literature in order to explain enhancements at non-integer
values of R, can be excluded from our present analysis. Only in a narrow interval of λc ,
Ĩp = const. may be applied. An in-depth discussion on a generalization of Ĩp as well as
on alternative corrections to the channel closing picture will be given below (Sec. 4.4).

4.3.3 Modulation period of HHG yield

The channel closing condition offers a clear way to explain the change of the modulation
period δλ with the driver’s wavelength λc . More accurately, δλ can be defined by the
distance between to neighboring peaks δλ = λn+1 − λn at wavelengths λn and λn+1.

Although the general trend δλ ∝ λ−2
c can be readily explained also from estimating

the largest contribution to the phase picked up by the electron during free propagation in
the laser field [36], the channel closing condition δR = 1 is more accurate and intuitive.
From Eq. 4.4, δR = 1 can be rewritten in terms of a change in wavelength δλ.

δλ ∝
1

Ip + 3Up
,

→ δλ =
1240

Ip(eV) + 2.8 × 10−19I(W/cm2)λ2(nm)
nm. (4.5)

The above expression is to be interpreted as follows: Starting from a parameter set
allowing for an enhancement of HHG yield (a peak), a change by δλ will again lead to peak
in HHG yield. Consequently, this quantity is the modulation period to be determined.
Equation 4.5 reproduces the TDSE-calculated λ dependence of δλ extremely well (Fig.
4.12).

4.3.4 Comparison of different atoms with different Ip

Oscillations for the HHG yield are not solely observed for hydrogen but appear to be
a general phenomenon. We have analyzed different rare-gas atoms, in particular argon
(Ar) and neon (Ne), due to their relevance for experimental applications. Presenting
calculations in terms of the channel closing parameter R = (Ip+Up)/ω offers a nice way of
eliminating the dependence on the ionization potential Ip of the atom under consideration.
The dependence of Ip on the HHG yield via the ionization rate leads to a vertical shift
only. Additionally, possible differences can then be traced to the different shape of the
atomic potential. Figure 4.13 summarized results for HHG yield Y (R) as a function of
R for two different atoms: hydrogen and argon. The agreement is generally surprisingly
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Figure 4.12: Modulation period δλ as a function of the central driver wavelength λc for
atomic hydrogen. ": TDSE, dashed line: δR = 1 (Eq. (4.5)).
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Figure 4.13: HHG yield as a function of R, same as Fig. 4.1 but comparing H and Ar. a) show
a region near λc =1500 nm while b) presents oscillations near λc =2000 nm.

good and underlines the applicability of the channel closing picture and the relevance of
quantum path interference for arbitrary atoms. Discrepancies between the atoms become
smaller for larger wavelengths, i.e. larger Up (see Fig. 4.13 b) ), where the SFA-based
channel closing picture is expected to be an even better description.
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4.4 Coulomb corrections

4.4.1 Truncated Coulomb potential

Following the discussion in Sec. 4.3.2, it is clear that employing a constant Ĩp over a
wide range of parameters is problematic. On the other hand, the channel closing picture
has worked extremely well for describing the modulation period of the HHG yield. If one
wants to retain these findings a generalized, λc -dependent correction defined as ∆Ĩp(λc) ≡
Ĩp(λc)− Ip can be invoked in order to bring peak positions in agreement with CC theory.

In fact, the relevance of the channel closing picture is underlined by the following
numerical experiment: SFA results, which neglect the presence of any potential after the
ionization by the laser, are approximately recovered by employing the full solution of
the TDSE with a potential that is sufficiently short-ranged. In this context we perform
calculations with a truncated Coulomb potential [37], given by

Veff (r, rc) =

{

−1
r (r < rc)

− e−(r−rc)/rd

r (r > rc)
, (4.6)

where the effective range of the truncated Coulomb potential rc is varied between rc = 10
and rc = 70 a.u. and the width of the cross-over region rd is chosen to be rd = 10 a.u..
For these parameter values, the ionization potential and the first excitation energy remain
unchanged to an accuracy of ≈ 10−9 and ≈ 10−3, respectively. It should be noted that the
classical electron quiver motion amplitude is αq ≈ 32 a.u. for I = 1.6 × 1014 W/cm2 and
λc =1000 nm.
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Figure 4.14: Harmonic yield as a function of both the channel closing parameter R and the
effective range of a truncated Coulomb potential rc. Enhancements shift from
integer values of R to the right with increasing rc. Convergence to the full
Coulomb potential (upper panel) is reached only for rc ! 60 to 70 a.u..
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Interestingly, with decreasing rc the oscillatory pattern of the HHG yield shifts more
and more to the left in an almost uniform fashion. Near rc = 10 a.u. the enhancements can
be finally found at integer values of R in full agreement with the CC picture. Apparently,
the potential at r > rc is responsible for the shift observed. Note that choosing rc < 8
a.u., i.e. smaller than the tunnel exit at this intensity, would alter ionization dynamics
and should thus be avoided. This approach shows not only that effects of the true (long-
ranged) potential are responsible for discrepancies with an SFA-like theory, but also gives
an important information about the modulus of ∆Ĩp. Clearly, as the shift between the
full and the truncated potential ∆R < 1, it follows that ∆Ĩp < ω.

4.4.2 Effective ionization potential

In previous literature, different lines of arguments are invoked for employing Ĩp rather
than Ip. However, they all have in common that the existence of a strongly distorted,
continuum-like excited state εn is considered responsible for an effectively lower ionization
threshold [38, 80, 81]. In the following we explore the relevance of different choices of ∆Ĩp:

Faria et al. [80] argue that εn should be given by the state of principal quantum
number n whose radius rn ≈ 3n2/2 matches the quiver amplitude αq = F0/ω2. Together
with the Rydberg energy εn ≈ −Ip/n2 this implies

∆Ĩp ≈ −
3ω2

2F0
Ip ∝ I−1/2

0 λ−2
c . (4.7)

Accordingly, the change of the effective ionization potential, ∆Ĩp, becomes wavelength
and intensity dependent.

Employing the full solution of the TDSE provides the exact position of peaks/enhancements
of HHG yield. Let us denote the position of a peak in terms of R by Rp. Assuming CC
theory with a correction ∆Ĩp(λc) to be valid, the latter can be computed. The mismatch
∆Rp

∆Rp ≡ Rp − [Rp], (4.8)

between the actual position Rp and the nearest integer value [Rp] is related to the effective
ionization potential by

∆Ĩp = −∆Rpω . (4.9)

This mismatch is obviously almost constant in the entire range between λc =800 nm and
2000 nm (Fig. 4.15). Consequently, according to Eq. 4.9, ∆Ĩp ∝ λ−1.

Hypothesis Eq. 4.7 is not consistent with our present results. In addition, no upper
limit for ∆Ĩp according to Eq. 4.7 was discussed in literature. This may lead to the
evidently incorrect conclusion that ∆Ĩp → 3.4 eV as soon as in a low intensity and low
wavelength limit the n = 2 Rydberg state (or even the ground state!) would govern the
effective threshold invoked.
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Figure 4.15: Mismatch ∆Rp between the actual position Rp and the nearest integer value
[Rp] of a peak in the HHG yield. About 100 peaks between a driver’s wavelength
of 800 and 2000 nm are shown, the dependence on λc is apparently weak.

An alternative proposal put forward by Frolov et al. [38] relates the energy εn to the
formation of an effective continuum by broadening of the level with principal quantum
number n. Accordingly, εn is determined by the condition Γn = ∆εn, where the width
Γn (related to ionization rate) approaches the level spacing ∆εn. While in the limit of
quasi-static tunneling, the tunneling rate (Eq. 2.10) strongly depends on the field strength
F0 but only very weakly on λ. The resulting value of ∆Ĩp is estimated to be -3.1 eV for
atomic hydrogen and I = 1.6 × 1014 W/cm2 in Ref. [38]. This is inconsistent with the
observation in Sec. 4.4.1 that |∆Ĩp| should be smaller than the photon energy ω (# 1.5 eV
in the present parameter range) of the driving laser pulse.

Extracting ∆Ĩp from TDSE results by applying Eq. 4.9 allows to trace the dependence
on both intensity and wavelength as given by Figs. 4.16 and 4.17. The intensity depen-
dence is quite weak and can be descried by a power law ∆Ĩp ∝ I−0.3

0 . As discussed above
a proportionality of ∆Ĩp ∝ λ−1 is found.

4.4.3 Coulomb correction along classical trajectories

In the previous section we have seen that employing the full solution of the TDSE al-
lows for the determination of ∆Ĩp. Additionally, the analysis with a truncated Coulomb
potential of variable effective range (Sec. 4.4.2) has underscored the importance of the
long-ranged part of the potential. A more detailed investigation can be facilitated by
employing simple models rather than an all-numerical treatment.

For that purpose we reexamine the role of classical trajectories - as the essential
subclass of quantum paths - in HHG. According to the SFA model employed to describe
HHG (Eqs. 2.24 -2.27) the electron picks up a semi-classical phase along those trajectories.
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Because we have identified the long-ranged Coulomb tail to influence ∆Ĩp, we introduce
the additive phase correction ∆SP (ti, tf ) that builds up due to the interaction with the
core potential along the path P . The interaction is assumed to be a weak correction
that can be accounted for by a perturbative approach. The trajectory is assumed to be
identical to the unperturbed case, i.e. the timing information (ti, tf ) remains unchanged.
With this approximation ∆S can be written as [58]

∆SP (ti, tf ) =

∫ tf

ti

VEI(r(t
′)) dt′. (4.10)

Such an approach corresponds to an eikonal approximation to a weak perturbative po-
tential (see Sec. 2.7.4). VEI denotes the potential being accounted for. Equation 4.10
is evaluated along classical trajectories in the laser electric field F (t), confined to the
direction of polarization. Trajectories start (and end) at the “tunnel exit” z0 = Ip/F0 as
suggested by the three step model.

Clearly, the eikonal approximation fails at small distances from the nucleus where the
correction introduced by the potential is large. This difficulty can by bypassed using the
observation (Sec. 4.4.2) that at an effective potential range rc = 10 a.u. the SFA limit of
channel closings at integer values of R is reached. Consequently, we set

VEI(r) = Veff (r, rc = ∞) − Veff (r, rc = 10) (4.11)

when calculating the long-range phase correction.
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0 ,
while the solid line compares to the prediction of Faria et al. (Eq. 4.7).

It is now suggestive to express this additional phase in terms of a change in the
“effective ionization potential”, Ĩp. Accordingly,

∆Ĩp = ∆SP (ti, tf )/(tf − ti) . (4.12)

We have investigated the induced effective ionization potential stemming from the six
shortest trajectories that all lead to the same recollision energy. For that energy we take
Ec = 20 eV, a value that corresponds to a HHG radiation energy of ≈ 33.6 eV, hence
roughly in the center of energy range 20 to 50 eV under consideration. In this example,
the electric field is taken to be perfectly sinusoidal with a constant peak intensity of
1.6 × 1014 W/cm2 and is subject only to a variation of λc . For every given recollision
energy two possible trajectories (long and short) exist with a flight time τf < Tcyc. For
all subsequent half-cycles there may again be two more trajectories each which then have
revisited the parent ion Nc times (see Fig. 2.4). Extracted data is shown in Fig. 4.18 for
the four shortest trajectories (orbits) that revisit the core Nc times (here: zero and one)
before eventually recombining. It is remarkable that such a simple model can describe
the dependence of the TDSE-calculated ∆Ĩp. Not only is the trend well reproduced, but
the prediction is also rather accurate on an absolute scale. Furthermore, trajectories with
different excursion times behave surprisingly similar - save only the shortest one. This
can be understood from the fact that multiple-returning trajectories quickly approach the
limiting trajectory of electronic quiver motion, hence they approximately “feel” the same
influence of the atomic core potential when normalized to the trajectory flight time τf .
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Figure 4.18: Ĩp (left-hand axis) and ∆Ĩp (right-hand axis) as a function of driver wavelength
[37], employing Eq. 4.12 and the potential of Eq. 4.11. Intensity is I = 1.6 ×
1014 W/cm2 . Lines stem from the six shortest orbits recolliding with 20 eV
and revisiting the core Nc (here: zero and one) times before recombination (as
indicated). For each energy and each Nc, a short and a long orbit exists. ":
TDSE data (see also Fig. 4.16).
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4.5 Oscillations in the ionization yield

Investigations in the previous sections have been devoted to the HHG response of the
atom. The basic interaction, however, is the “first” step of HHG: the ionization process.
Only a small fraction of ionized electrons eventually recombine with their parent ion while
the largest portion will simply contribute to the photo-electron spectrum and the total
ionization yield Pion. In the following we will explore our results in view of the ionization
rate as a function of λc and intensity of the driver and compare to HHG results.

4.5.1 Correspondence to HHG

In order to arrive at a quantity independent of the pulse duration T (analogously to the
HHG yield) we define a cycle-averaged ionization rate as the ionization probability at the
end of the pulse divided by T , hence Γav = Pion/T . If only a narrow interval of λc or R
is investigated, the pulse duration T does not change much and is only a small correction
to a discussion in terms of Pion.

Figure 4.19 plots Γav alongside the HHG yield Y . Although it is well known that ion-
ization and HHG are unavoidably linked, their very similar dependence on λc is remarkable
and is found even on a fine wavelength scale. Similar to HHG (Fig. 4.9) oscillations in
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Figure 4.19: Ionization rate (blue dashed, left-hand axis) and HHG yield (red solid, right-
hand axis) for hydrogen as a function of R compared. The pulse has a duration
of eight cycles and a flat-top envelope.

the ionization rate persist over the whole range of λc =800 to 2000 nm investigated, being
permanently “locked” to the HHG yield (not shown). A Fourier analysis of Γav(R) has
revealed a principal modulation period of δRion = 1 as well, although the corresponding
Fourier peak is slightly less prevalent as for HHG (see Fig. 4.25 b) below). A common
origin of the two modulations, i.e. quantum path interference, seems evident. Although
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we show here only data for our “case in point”, the flat-top pulse, we have observed a sim-
ilar correspondence between HHG and ionization rate for all pulse shapes and durations
investigated.

Note also that the modulation amplitude of Γav(R) is only of the order of ten percent
in contrast to enhancements by a factor of three to six observed for HHG.

4.5.2 Quantum path interference in the photo-electron energy

spectrum

Modulations in the ionization rate can be also observed in the energy-resolved photo-
electron spectra. Employing the full solution of the TDSE photo-electron energy spectra
are computed by Eq. 3.25. We present photo-electron spectra of flat-top pulses with a
duration of four optical cycles (and half a cycle ramp-on/off) as a function of λc in Fig.
4.20. In the two-dimensional parameter plane (n = (E − Ip − Up)/ωc, R) oscillations are
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Figure 4.20: Photo-electron spectra as a function of both the number of absorbed photons
n = (E − Ip − Up)/ωc and λc , expressed here in terms of the channel closing
number R. The upper panel shows the integral over the energy, i.e. the ioniza-
tion probability. The pulse has a duration of four optical cycles and a flat-top
envelope, I = 1.6 × 1014 W/cm2 .

now observable in both coordinate directions. n is equivalent to the number of absorbed
photons and is introduced here to underline the similarity of photo-electron spectra for
different λc .

Subsequent photon peaks of the photo-electron spectrum change amplitude at fixed R,
while at the same time photon peaks with n fixed oscillate as a function of R as well. The
modulation period slightly depends on the photo-electron energy itself, it increases with
energy. Integration over the energy (upper panel of Fig. 4.20) yields the total ionization
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probability Pion. After this integration the modulation period turns out to be δR = 1
with a high accuracy.

For an interpretation of the numerical results we again consider the strong field ap-
proximation. We employ the SFA ionization amplitude, Eq. 2.17, but analogous to the
approach in HHG we substitute the transition matrix element F (ti) · D()k + )A(ti)) with
a tunneling amplitude aion =

√

ΓADK(F (ti)). We restrict our calculations to a one-

dimensional model, )k → k. The photo-electron energy spectrum is then obtained by

dFSFA

dE
(E = k2/2) =

|b(k)|2

k
(4.13)

and Pion,SFA =
∫ ∞

0 dFSFA/dE dE =
∫ ∞

0 dk|b(k)|2 is the total ionization probability.
Photo-electron spectra as a function of λc are given in Fig. 4.21. Modulations in both

 23  24  25  26  27  28
R

 22
 24
 26
 28
 30
 32

no
. o

f p
ho

to
ns

 0.4

 0.8

 1.2

io
n 

yi
el

d

effective Ip
true Ip

Figure 4.21: SFA photo-electron spectra (Eq. 4.13) as a function of both the number of
absorbed photons n = (E − Ip − Up)/ωc and λc , expressed here in terms of
the channel closing number R. The upper panel shows the integral over the
energy, i.e. the ionization probability Pion,SFA. Pulse parameters are the same
as in Fig. 4.20.

coordinate directions (n,R) are visible. This compares qualitatively well to the TDSE
result save the two following aspects:

Firstly, oscillations are again shifted horizontally in comparison to the TDSE results.
In fact, where a maximum is visible in the TDSE results, the SFA shows a minimum. In
close analogy to HHG the introduction of an effective ionization potential Ip → Ĩp in the
SFA phase of Eq. 2.17 restores good comparison between the upper panels of Figs. 4.20 and
4.21. Note that we use the very same Ĩp as found in the analysis of Sec. 4.4.2. Although
minor differences for distinct spatial ionization pathways can be expected, the Coulomb
potential of the remaining ionic core evidently influences the action and semi-classical
phase in a similar way as discussed in Sec. 4.4.3.
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A second deviation is that the modulation amplitude of the ionization probability
predicted by the SFA is too large. This is due to the over-simplification of the problem,
treated only in one spatial coordinate and disregarding wavepacket spreading. As a rem-
edy we introduce a phenomenological factor 1/(tf − ti) under the time integral of Eq.
2.17. This factor accounts for wavepacket spreading in the two dimensions perpendicular
to the polarization direction not explicitly included. The effect on the modulation of the
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Figure 4.22: SFA ionization yield Pion,SFA as a function λc expressed in terms of R, phe-
nomenologically including wavepacket spreading. Note the much smaller oscil-
lation amplitude (in comparison to the upper panel of Fig. 4.21) which is in
good agreement with the TDSE calculations.

ionization yield is presented in Fig. 4.22. In agreement with the TDSE calculation, the
amplitude of the oscillations is, in this case, about 10 % of the total yield as compared to
almost a factor of two obtained without wavepacket spreading (cf. Fig. 4.21). The latter
can be thus regarded as one important reason for “imperfect” interference of consecutive
ionization pathways.

The present results are very similar to the ones of Lindner et al. [87] who observed modu-
lations in the photo-electron energy spectra due to intra-cycle path interference. In their
experiment, variations in the interference structure have been induced by varying the
carrier-envelope phase φCEP . Although in our particular case changes of the exact shape
of the laser electric field are determined by changing λc instead of φCEP , the interpretation
of the underlying physics is equivalent. The phenomenon can be most easily explained by
the example of a time-double slit interference, schematically explained in Fig. 4.23. For
each final momentum of an electron, two different times of ionization are possible, even
within the same optical cycle. Interference of these electrons depends on the difference
between the phase acquired on each individual electronic trajectory. The phase difference
is largely determined by the “time-double slit” spacing τ which, depending on the exact
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Figure 4.23: Path interference for photo-electron energy spectra, schematically. In the frame-
work of SFA the final momentum acquired by an electron born at time ti is given
by k = −A(ti). This condition is fullfilled twice per optical cycle, contributions
born at times denoted by • and can interfere. The time-double slit spacing
τ is modified by variation of λc via Tcyc.

shape of the laser electric field, can be influenced by variation of either λc or - for short
pulse - of the carrier-envelope phase φCEP .

4.5.3 Ultrashort pulses: φCEP effects

Indeed, for short pulses (sin2-envelope) the φCEP should govern the interference as it
determines the exact shape of the light field and thus the spacing between two interferring
paths [87]. The difference between sin- and cosine pulses can be quantified by employing
an effective ponderomotive potential Up,eff = F 2

m/4ω2, defined by the the maximum of the
field Fm instead of F0. For a sine pulse, Fm is smaller than in the case of a cosine-pulse
(where Fm = F0), leading to a difference in Up,eff . This introduces a shift in the R-
coordinate reading ∆RCEP = ∆Up,eff/ω. For the present parameters ∆RCEP = 0.2285,
which is in very good agreement with the TDSE as well as SFA results (see Fig. 4.24).
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Figure 4.24: Cycle-averaged ionization rate calculated by solving the TDSE for a 4 cycles
(FWHM) sin2-pulse, I0 = 1.6 × 1014 W/cm2 . Sin-like and Cos-like data are
shifted by roughly ∆RCEP due to a φCEP -induced effective ponderomotive
potential.

4.6 Global wavelength dependence of ionization

For completeness, we also present the TDSE calculated ionization rate Γav (averaged over
the pulse duration) for hydrogen for a wide range of wavelengths, namely for λc =800
reaching up to 2000 nm. We find that oscillations in the average rate are present over
the entire range investigated (Fig. 4.25). A Fourier transform of Γav(R) × λ0.5 (Fig.
4.25 b)) shows that the oscillations are dominated by the period R−1 = 1, however, not
as pronounced as in the case of HHG yield (cf. inset of Fig. 4.9).

On a large wavelength scale, the TDSE result for Γav is well fitted by the proportion-
ality λ−x with x = 0.5. When we recall our results for the HHG yield Y ∝ λ−x with
x ≈ 5.3, which we have contrasted with an estimate of Y ∝ λ−5 based on the distribution
of yield over the plateau of the spectrum (cf. Fig. 4.3), one might conclude that the de-
crease in the ionization rate may be responsible for an exponent x larger than five found
by TDSE calculations. Further investigations in this context are needed and might reveal
the contribution of each of the three steps of HHG to the overall scaling of HHG yield
with λc .

In comparison to the TDSE results we also present quasi-static tunneling ionization
which is frequently employed for strong field ionization. The ionization rate obtained by
employing Eq. 2.10 indeed shows a very similar trend as a function of λc . Interference
effects are, of course, not accounted for by tunneling rates. On an absolute scale, Eq.
2.10 overestimates the ionization by 15 to 40% as compared to present TDSE result.
This accuracy is nevertheless sufficient for safely applying quasi-static tunneling within
an SFA model of HHG (Eq. 2.24). In quantitative descriptions the small inaccuracy in the
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Figure 4.25: a) Ionization rate Γav for hydrogen obtained by numerically integrating the
TDSE (red solid) and by tunnel ionization (blue dashed, determined by em-
ploying Eq. 2.10) as a function of λc for an 8 cycle flat-top pulse, I =
1.6 × 1014 W/cm2 . The black solid line represents a power law fit to the
TDSE data with an exponent of x = −0.5. Figure b) shows the Fourier trans-
form of Γav(R) × λ0.5, revealing R−1 = 1 as the dominating contribution to
the oscillatory structure (cf. inset of Fig. 4.9).

absolute value of the tunneling rate is only one out of many quantities such as e.g. intensity
and interaction volume which are not exactly known. Qualitatively, experimental HHG
spectra are well described.
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Chapter 5

Guiding of Highly Charged Ions

In the following chapters we investigate guided transport of charged particles through
insulating nanocapillaries with a diameter of the order of several hundred nanometers.
We will start by reviewing the classical transport theory (CTT) that we have recently
developed for describing charged particle transport in a capillary. In the present chapter,
we particularly discuss the interaction of highly charged ions (HCI) with the insulating
surface of the inner walls, followed by a presentation of some outstanding results for HCI
guiding that have been recently discussed extensively in literature. Here, we will once
more focus on the aspect the temporal behavior of guided transmission and on the time
scales involved. An extension of the discussion and the method employed to electrons as
projectiles is given in the next chapter (chapter 6).

5.1 Charged particle transport in a nanocapillary

We consider charged projectiles with charge state q and energy E impacting onto a cap-
illary target with an (tilt) angle θin with respect to the surface normal and the capillary
axis. A schematic view of projectile trajectories inside the nanocapillaries considered is
given in Fig. 5.1. Capillaries with a length L and width 2a have typically aspect ratios
2a : L of 1:150 - 1:50, corresponding to geometric opening angles θ0 ≈ 0.25◦ − 1◦. The
dielectric material is characterized by a static dielectric constant of εr. Front and back
sides of a capillary target are usually covered by a thin layer (several tens of nanometers)
of conducting material which prevents a global charge-up of the whole target during beam
exposure. The beam spot on the target covers typically 104 − 106 individual capillaries.
The lateral inter-capillary spacing is of the order of ≈ 10 a such that, on an atomic level,
inter-capillary interaction effects can be neglected.

67
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Figure 5.1: Schematic view of charged projectile guiding through capillaries.

5.1.1 Brief description of CTT simulation

A theoretical description and ab-initio simulation of guiding of charged projectiles poses a
considerable challenge in view of the widely disparate time scales simultaneously present
in this problem [26], spanning about 10 orders of magnitude: while projectile-surface
interaction, the microscopic charge-up, and charge transport all occur on an atomic (i.e.
sub-fs) time scale, the time between two projectiles entering the same capillary is already
of the order of 0.1 sec for typical experimental parameters [18]. The macroscopic discharge
of the internal surfaces of the extremely well insulating materials may take hours or even
days. Such multi-scale problems represent a major challenge for an ab-initio simulation.
We have therefore developed a mean-field classical transport theory (CTT) [88] based on
a microscopic classical-trajectory Monte Carlo simulation for the projectile transported.
Projectile trajectories (having flight times of the order of 10−10 sec) are calculated in the
mean field of charges situated on the internal walls which move on much faster time scales.
The forces governing subsequent trajectories (Eq. 5.1) are self-consistently coupled to the
charge-up of and charge transport at the internal capillary walls (cf. Ref. [26]),

mṗ)v = )F = )Fim + )Fwall (+)Fstoch) . (5.1)

In Eq. 5.1, mp and )v represent the mass and the velocity of the projectile and )Fim accounts
for the image acceleration of the projectile by employing the classical, static limit )Fim =
q2/(4d2) · (εr − 1)/(εr + 1) r̂). d and r̂ are the distance of the projectile to and the radial
unit vector pointing towards the surface, respectively. For the HCI considered the static
limit is a good approximation due to the small velocities (v ≈ 0.1 a.u.) involved. )Fwall

follows from the electrostatic wall potential via )Fwall = −)∇Vwall. The wall potential itself
is expressed by

Vwall()r, t) =

∫

surface

da′ σ()r′, t)

|)r − )r′|
+

∑′

{j}

qj(t)

|)r − )rj|
, (5.2)

hence by contributions from the surface charge density σ()r, t) and bulk charges qj(t).
Dielectric screening is accounted for by appropriate initial values for σ()r, ts) and qj(ts)
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at the time of deposition ts. Recall that the time interval between two subsequent pro-
jectiles entering the same capillary is of the order of 0.1 sec. Therefore, both of the two
contributions to the wall potential need to be modified by charge transport during time
evolution between the subsequent trajectory calculations (see Sec. 5.1.3 for the discussion
on charge transport). The stochastic force )Fstoch describes (non-deterministic) scattering
of projectiles at the surface as a sequence of impulsive momentum transfers [89]. This
only needs to be accounted for in the case of electronic projectiles (see discussion in Sec.
5.1.2 and chapter 6 below).

Employing the model adopted here, we relate the microscopic projectile-surface inter-
action and projectile transport to known macroscopic properties of the materials involved
such as conductivity, dielectric constant, composition, and electronic structure. The aim
of this approach is, despite of the complexity of the processes involved, to be predic-
tive and to allow for a description of the projectile guiding without resorting to freely
adjustable parameters or additional ad-hoc assumptions [90].

5.1.2 Wall interaction at impact

For the close-contact interaction between the charged projectile and a surface we distin-
guish two kind of projectiles: electrons and ions, in particular HCI.

Upon impact on the internal capillary wall HCI undergo a sequence of charge transfer
process leading eventually to full neutralization [91]. The secondary electron emission
coefficient is low for the HCI parameters (velocity, charge state) considered in this work.
Moreover, as long as secondary electrons do not leave the nanocapillary, the aggregate
charge deposited by the HCI impact is equal to its initial charge state q. In the simulation
it is assumed that q elementary charges are Gaussian distributed on the surface with a
width of distribution rd ≈ 1000 a.u.. Note that after neutralization and charge deposition
the trajectory of the remaining neutral atom is not followed because the focus of our work
lies on the description of projectiles transported in their initial charge state.

For electrons, the interaction with a solid surface is clearly different. Electrons may
scatter at the surface leading to stochastic forces )Fstoch which influence the overall pro-
jectile trajectory. The processes involved as well as their theoretical description will be
discussed in chapter 6. However, note that once charge carriers have been deposited on
the internal capillary walls, we treat the subsequent charge transport on the surface and
into the bulk on equal footing for both HCI and electron transmission.

5.1.3 Charge transport and screening

When charge carriers are deposited on the internal capillary walls, the finite conductivity
leads to charge transport at the surface and into the bulk. The materials used to man-
ufacture nanocapillaries are extraordinarily good insulators with a bulk conductivity of
e.g. σb

∼= 10−16 Ω−1m−1 in the case of PET. Charge transport along the surface, however,
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may be much faster. In the case of PET the ratio of surface and bulk conductivity is of
the order of 100 [92]. Because of the supposedly large importance of surface conductiv-
ity we treat the latter explicitly by performing a two-dimensional random walk for the
charge carriers which modifies the surface charge density σ()r, t). This random walk is
governed by the surface diffusion constant Ds [26]. The diffusion constant is related via
σb,s = n e2

kT Db,s to the experimentally determined value for the amount of charge carriers
in Mylar n ∼= 1018 m−3 [93] as well as to the conductivity. Employing the order-of-
magnitude values known for these quantities, Db should be of the order of 10−17 m2s−1

and Ds ≈ 10−15 m2s−1. We use in fact Db = 2 · 10−17 m2s−1 and Ds = 100 · Db unless
otherwise stated. In addition, the charges enter the bulk material with a probability of
Db/Ds. Further charge transport is then governed by bulk charge transport which is ap-
proximated by an exponential decay of the charges (time constant τb ≈ (2a)2/Db) where
at the same time their position is kept fixed.

For Al2O3 the density of charge carrier traps is n ∼= 1023 m−3 [94]. Together with
its bulk conductivity σb

∼= 10−12 Ω−1m−1 one arrives at Db = 2 · 10−18 m2s−1. We use,
in fact, Db = 10−16 m2s−1 corresponding to τb ≈ 200 s. This is motivated by similar
values of τb found in experiments with flat Al2O3 surfaces [95] as well as time scales of
the same order of magnitude observed in experiments with Al2O3 capillaries [27]. The
surface conductivity is given in Ref. [96] by σs

∼= 10−15 Ω−1m−1 at dry conditions, and
σb

∼= 10−8 Ω−1m−1 at larger humidity. Experimentally, some H2O adsorption is very likely,
leading to a large surface conductivity. In a first attempt we use Ds = 100 ·Db analogous
to PET, and we have verified that a variation by a factor of about 5 does not significantly
influence simulation results.

Within the framework of linear response, the bare charges q are screened by the di-
electric medium in its vicinity [90]. Denoting the bare Coulomb interaction between a
projectile and the charge deposited by VC the effective screened interaction, denoted by
VSCR, depends on the location of the deposited charge q. In the limiting case that the
charge has already diffused into the bulk, bulk screening would apply, i.e. VSCR = VC/εr.
For the electrostatic potential we use the static limit εr = ε(q → 0,ω → 0) of the di-
electric function since the characteristic time available for build-up of screening (time
interval τrep between two subsequent projectiles entering the capillary ≈ 10−1 sec) is very
large compared to the characteristic time for optical excitations, τrep + 2π/ωopt). The
dielectric screening of surface charges is determined by the induced polarization, i.e. the
“image charge” having the weight χs = (εr − 1)/(εr + 1). The effective residual charge
and hence the effective potential is given by VSCR = VC (1 − χs) = 2VC/(εr +1) [90]. Our
simulation employs the latter expression, i.e. surface screening, if not otherwise stated.
To illustrate the significance of dielectric screening, however, we will also show results
using bulk screening instead as well as calculations for bare interactions (VSCR = VC).
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5.2 Results for HCI Guiding

In a number of publications [26, 90, 97, 98] we have presented various aspects of our
work on HCI guiding through nanocapillaries. After developing a CTT for HCI guiding
[26, 97] we have focused on the angular width of the transmitted beam [98] and have
finally analyzed the effect of different levels of dielectric screening [90]. In this work we
will present quintessential as well as some particularly recent results and refer to previous
contributions for more details.

We focus on capillaries manufactured from PET (εr = 3.3); the length is L = 10 µm
and diameter yields 2a = 200 nm if not otherwise stated. This system has been explored in
the experiment most extensively. Starting from the first observation of HCI guiding [18],
data have become available for many incident energies and charge states [99]. Additionally,
characteristics of the transmitted beam have recently been measured [100, 101] with a
temporal resolution that reveals the dynamical properties of the system. The time scales
involved here are very distinct from the ones in ultrafast optics. The system evolves on a
scale of the order of minutes due to the large macroscopic discharge times of the insulating
materials employed. When observing only transmitted projectiles, time scales on which
observables might change are naturally bounded from below by the time interval between
two projectiles entering the same capillary, ≈ 0.1 sec.

5.2.1 Energy-dependence of HCI guiding

Because parameters entering our simulation can be computed from material data only
with an order-of-magnitude accuracy a comparison to the experiment over a broad range
of e.g. incidence energies is needed for an efficient testing of our model. For example, it
has been shown that incident HCI with the same E/q ratio - typically of the order of 0.1-
1 keV - lead to the same results within the experimental uncertainty [99]. This observation
is in accordance with scaling properties of classical projectile motion in an electrostatic
potential. Indeed, our self-consistent CTT simulation confirms this observation.

Quite naturally, the guiding effect for HCI decreases with increasing E/q ratio. The
larger the energy, the stronger is the deflection and thus the charge deposition required.
Large charge deposition needs more time to build up and leads to a larger discharge cur-
rent, which, in turn, needs to be compensated by a diminishing transmission current. The
total transmission rate T (θin) of Ne7+ ions though PET nanocapillaries under equilibrium
conditions (Fig. 5.2) serves as one example. Transmission extends far beyond the geo-
metrically allowed angle (≈ 1◦) and the dependence on the tilt angle is similar for both 3
and 7 keV, but guiding decreases with increasing energy.

Following Hellhammer et al. [102] the transmission rate of HCI through nanocapillaries
is fitted by a Gaussian T (θin) = T (0◦) exp(− sin2 θin/ sin2 θg). Hence, transmission can
be given in terms of the guiding parameter b = sin−2 θg or the effective guiding angle θg.
At the guiding angle the transmission function has decreased to T (0◦)/e. The original
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Figure 5.2: Transmission function T (θin) as obtained for Ne7+ ions through a PET capillary
with a diameter of 200 nm for a capillary described in Fig. 5.1 for different energies
(from Ref. [90]). • : E = 3 keV, 2: E = 7 keV. Solid lines: Gaussian fits to
the simulation [102] with θg = 5.8◦±0.1◦ (3 keV), and θg = 2.5◦±0.1◦ (7 keV).
Dashed lines offer alternative fits to the data given by T (θin) = T (0◦)/[1 +
(θin/θl)2]2 with θl = 7.7◦ ± 0.1◦ (3 keV) and θl = 3.0◦ ± 0.3◦ (7 keV).

motivation for the Gaussian ansatz was a Boltzmann type “thermalization” argument for
the transverse energy. Note, however, that also other choices of fitting functions of T (θin)
perform similarly well. An example is shown for a square-Lorentzian in Fig. 5.2.

But how exactly does guiding change with increasing energy? By assuming guiding to
be a statistical process, Refs. [99, 102] predict a linear behavior for b as a function of E/q.
Fig. 5.3 shows the guiding parameter b as a function of the scaled kinetic energy E/q. Ad-
ditionally, we illustrate the effect of dielectric screening (see Sec. 5.1.3) on guiding. While
in all the models of dielectric screening the transmission function T (θin) behaves similar
(not shown) guiding drops much faster with the energy for bulk screening than observed
in the experiment [99, 102]. On the other hand, surface screening is able to reproduce
experimental data surprisingly well over a broad range of E/q. Small discrepancies for
E/q > 1 are not yet fully understood but might be related to the very small absolute
value of the transmission rate. The unfavorable statistics makes simulations increasingly
difficult here.

In conclusion, comparison with the experiment has shown that surface screening dom-
inates the dielectric shielding of deposited charges inside an insulating nanocapillary.

5.2.2 Time-dependence of HCI guiding

Investigation of the dynamics of HCI guiding prior to equilibrium has recently attracted
increasing interest. Already in early experiments direct observation of charging effects, i.e.
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Figure 5.3: Guiding parameter b as a function of E/q of HCI (from Ref. [90]). : Exper-
imental data [99, 102]. Simulation (• ) employing three models of dielectric
shielding are shown (c.f. text), dashed lines serve to guide the eye. The dotted
line shows a linear fit to the experimental data.

increase of the transmission rate before equilibrium has been achieved [18]. In particular, it
was found that the transmission can be approximately described by T (θin, t) ≈ T (θin, 0)×
[1−exp(−(t−τs)/τc)] for t > τs. τs and τc are the saturation time at which guiding sets in
and the charging time constant, respectively. T (θin, 0) represents the equilibrium value for
the transmission rate at an angle of incidence of θin. Such a behavior is well reproduced
by the CTT simulation for the exemplary case of 3 keV Ne7+ ions incident under θin = 3◦

on a capillary with 2a = 200 nm (Fig. 5.4 b) ). The smooth charging characteristics
points to a continuous charging process that is finally balanced by beam loss. Expressed
in terms of the aggregate charge,

∫ t

0 jindt′, where jin is the incident current per capillary,
τc is connected to a value of τc ≈ 4000 ions. For a beam diameter of about 1 mm this
value corresponds to roughly 114 nC of charge deposited on the overall capillary target.
Recent experimental work [101] has found a value of about 76 nC for parameters very
similar to the ones used here (θin = 2.8◦ and Ein = 3.5 keV), while other measurements
(Ref. [100]) find τc ≈ 100 nC for parameters identical to the present calculations.

In equilibrium, a single principal charge-patch is formed around the impact region near
the entrance of the capillary (in the first 10-15% of the capillary) deflecting subsequent
projectiles (see Fig. 5.5 and Fig. 5.6). Charge is accumulated near the exit only at later
stages, i.e. for a charge deposition on the target > 200 nC. This secondary charge patch
is, in fact, rather wide spread. Its center is situated on the side of the capillary that is
opposite to the principal charge patch. Figure 5.7 shows the secondary charge-patch near
the capillary exit during its formation in time. Note that the color scale has been adapted
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Figure 5.4: Time dependence of guiding through a PET capillary with a diameter of 200
nm. Ne7+ ions are incident at an angle of θin = 3◦ with E = 3 keV. a) motion
of the (one-dimensional) center-of-mass position of the angular distribution of
transmitted projectiles. b) transmitted fraction as a function of aggregate inci-
dent charge (time). The blue dashed line represents an exponential fit to the
transmission curve, τc ≈ 4000.

to the much lower charge deposition as compared to the principal patch (Fig. 5.6).

Early simulations of HCI guiding have already suggested the possibility of forming
charge patches additionally to the main charge patch always present. Although the former
are weak as compared to the principal patch, they further deflect the trajectories well
inside the capillary. Analogously to the principal patch the secondary patch(es) build
up in time, too, and during their formation the transmitted beam is thus moving (Fig.
5.4 a) ). In equilibrium, however, the beam is collinear with the capillary axis. Additional
charge patches do not always fully decay due to charge transport. In contrast, in the long
run a weak secondary patch near the exit may support the guiding of projectiles and may
be responsible for the beam emerging collinear around the axis.

Theoretical work [26] has very early suggested the existence of two classes of “guided”
trajectories - the first class being deflected only once at the primary charge patch as well
as a second class containing those that are deflected additionally near the exit. The exis-
tence of the second class has been predicted to depend on the geometry of the capillary.
Although the time-dependence of transmitted beam profiles has not been explicitly dis-
cussed at that time, it is evident that the formation of the second charge patch supporting
the second class of trajectories is temporally delayed relative to the build-up of the prin-
cipal charge patch. Nevertheless, transient behavior of the transmitted beam prior to
equilibrium has attracted considerable interest only recently. Several groups have been
able to observe the angular motion of the transmitted beam, e.g. in the case of PET
[100, 101] as well as for 7 keV Ne7+ ions guided through SiO2 capillaries [23]. Our present
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results compare indeed well to the recent experiments of Refs. [100, 101].
Once equilibrium is reached the transmitted beam is stable and centered around the

capillary axis. We present two-dimensional angular distribution of transmitted ions in Fig.
5.8. While the time-integral distribution still shows some asymmetry originating from HCI
transmitted prior to equilibrium, restriction of the analysis to charge depositions ! 550 nC
(equilibrium) leads to a symmetric transmitted beam.

For completeness we note that angular distributions also depend on other system
parameters such as e.g. the incidence energy. An extensive analysis of the dependence
on energy as well as a discussion of the influence of inter-capillary fields on the observed
angular width can be found in Ref. [90].
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Chapter 6

Electron transport in nanocapillaries

Motivated by recent experiments we have extended the CTT simulation described in the
previous chapter to the interaction of electron projectiles with an insulator surface. Con-
trary to HCI, electrons may either scatter off the planar surface potential coherently, or,
otherwise, deeply penetrate the bulk material of the internal capillary wall. In the follow-
ing we therefore introduce the framework of electron transport in a solid. An emphasis
is put on the non-conservation of the electron number. Processes like absorption in the
solid, re-emission, and secondary electron emission will be explicitly included. The method
developed is finally applied to guiding of electrons through insulating nanocapillaries.

6.1 Electron-surface interaction

6.1.1 Interaction scenario with the internal capillary wall

The following scenario (see also schematic view in Fig. 6.1) applies when an electron
approaches the surface of the internal wall of a nanocapillary:

Even in the absence of a charged surface, electrons are attracted to the surface by
their own image force (Fim). The latter is, however, much weaker for electrons with the
energy considered in this work (! 200 eV) than for slow HCI (see e.g. Refs. [103, 104, 105]).
Therefore, the image acceleration is presently neglected in first approximation. Within the
framework of dielectric response from which the image force is deduced, also a decelerating
force parallel to the surface emerges [103, 104]. This so-called “friction force” (Ffric) is
related to the excitation of surface plasmons [106] and thus to the energy loss close above
the surface. In contrast to the image force, above-surface energy loss increases with the
velocity of the projectile and is accounted for in our approach.

At close contact with the planar surface potential electrons may be reflected coherently
in specular direction. Otherwise, they are transmitted into the bulk. In such a case
electron transport inside a solid needs to be described. As a result of electron transport
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Figure 6.1: Scenario of electron-surface interaction with the internal capillary wall.

incident projectiles can be absorbed in the solid or are re-emitted into the vacuum. Both
processes may be accompanied by the emission of secondary electrons (SEE) which leaves
a positively charged hole behind. The framework of electron transport employed in this
work will be outlined in the following section.

6.1.2 Electron transport through amorphous materials

Electron transport within the target material is modeled using a classical transport simu-
lation described in detail in [89]. In brief, electrons entering the target material with initial
kinetic energy Ein are subject to elastic scattering at constituent atomic potentials and to
inelastic scattering processes at the joint electron gas of the compound material (see also
Fig. 6.5). The binding potential of the electrons is approximated by a finite-depth well
potential, corresponding to the jellium approximation for the electron gas considered. For
metals, the electron gas is governed by the conduction band having the width EF (Fermi
energy) and the distance WF (workfunction) to the vacuum. The depth of the potential is
thus EF +WF . When applying this approach to insulators the valence band is considered
instead of the conduction band and the workfunction needs to be replaced by the gap
energy Eg.

Elastic scattering cross sections are calculated with the ELSEPA package [107]. We
use muffin-tin potentials for metallic targets and bare atomic potentials for insulator
constituents. Al2O3 is described as an amorphous compound of 40% aluminum and 60%
oxygen atoms, PET (“Mylar”, sum formula C10H8O4) as a compound of about 45.5%
carbon and 18.2% oxygen. The fraction of hydrogen atoms can be safely neglected due to
the small elastic cross section of hydrogen as compared to the other components. From
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the energy-dependent total cross sections and the fractional densities of constituent atoms
the elastic mean free path (EMFP) can be derived. In case of an elastic scattering event
the atom type is randomly chosen according to the fractional densities and the scattering
angle is determined by the energy-dependent differential cross sections for this atom.

The doubly-differential inelastic scattering mean free path (DD-IMFP) is derived from
the momentum and energy dependent dielectric constant of the bulk material ε(q,ω) by
the relation [108]

d2λ−1
in,b

dqdω
=

1

πEq
Im

{

−
1

ε(q,ω)

}

Θ[ωm(q) − ω] . (6.1)

From the DD-IMFP the angular distribution of inelastically scattered electrons is com-
puted by [109]

dλ−1
in,b

dΩ
=

1

π2

∫

dω

q2

√

1 −
ω

E
Im

{

−
1

ε(q,ω)

}

Θ[E − Ef − ω] , (6.2)

with E = v2/2 being the initial energy of the electron in both Eqs. 6.1 and 6.2. ω and q are
the energy and momentum transfers, respectively. The step function Θ assures energy and
momentum conservation in the scattering event with ωm(q) = min[v2/2−EF ; vq − q2/2].
The relation between the energy transfer ω, the momentum transfer q, and a scattering
angle θ is established by momentum conservation in the scattering plane (see Fig. 6.2),
from which the transformation of the derivative

d

dΩ
=

E

πq

√

1 −
ω

E

d

dq
(6.3)

can be deduced. In the simulation, differential inelastic scattering mean free paths (D-

Figure 6.2: Schematic drawing of inelastic scattering: q and ω represent the momentum and
energy transfers, leading to a deflection by the scattering angle θ.
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IMFP) are used for both energy loss and scattering angle distributions in order to speed up
calculations. Therefore, in rare cases a combination of ω and q that does not correspond
to energy-momentum conservation for an individual scattering event may result. Due to
their infrequence such events do not significantly influence the outcome of the simulation.
A detailed comparison to a simulation directly employing the DD-IMFP of Eq. 6.1 is still
needed. However, the realizations of the singly-differential IMFP are, of course, limited
by energy-momentum conservation.

ε(q,ω) is constructed from an extrapolation of the optical data [εb(q = 0,ω)] for the
capillary material to the q–ω plane (e.g., [110, 111]). For PET, data originates from
Refs. [112, 113, 114, 115] and for Al2O3 from Ref. [114]. For more details on method and
accuracy of fitting and extrapolation see Sec. B.1. Within this framework the IMFP for
PET is λin,b ≈ 8.5 Å at 200 eV, which agrees well with the experimentally found value
of λin = 8.8 Å [113]. For larger energies the IMFP increases and reaches 15.8 Å at E =
500 eV.

Additionally, energy loss due to surface excitation has been included in our simulation
as in [89]. They also influence the trajectory of specularly reflected projectiles, especially
when incidence angles θin and, consequently, the penetration depth of projectile electrons
are small. We use the specular-reflection model introduced by Ritchie et al. [116] together
with the representation of the surface dielectric function εs [117]

εs(Q,ω, z) =
Q

π

∫

dqz
eiqzz

(Q2 + q2
z) ε(q,ω)

(6.4)

where )q = ( )Q, qz). At z = 0, which is the position of the surface, we have εs(Q,ω, z = 0) =
ε(q,ω)−1. Using ε(q,ω) ! ε(Q,ω), i.e. neglecting dispersion along the surface normal, we
have εs = ε−1 · exp(−Q|z|), as the integral over qz is the Fourier representation of the
function exp(−Q|z|). The inverse surface inelastic mean free path λ−1

in,s can be then derived
from [108]

d2λ−1
in,s

dQdω
=

e−2Q|z|

π
v2
‖

2 Q

√

1 −
(

ω + Q2

2

)2
/
(

Qv‖
)2

Im

{

ε(Q,ω) − 1

ε(Q,ω) + 1

}

Θ [ωm(Q) − ω] (6.5)

where ωm(Q) = min{v2
‖/2−EF , v‖Q−Q2/2}. An angular D-IMFP is defined for surfaces

with the aid of (cf. Eq. 6.3)

d

d(cos θ)
=

2E‖

Q

√

1 −
ω

E‖

d

dQ
. (6.6)

Finally, one arrives at

dλ−1
in,s

d(cos θ)
=

∫

dω
2e−2Q|z|

√

1 − ω/E‖

Q2

√

1 −
(

ω + Q2

2

)2
/Q22E‖

Im

{

ε(Q,ω) − 1

ε(Q,ω) + 1

}

Θ [ωm(Q) − ω] . (6.7)
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Here we have used the relations Im {(ε−1 − 1)/(ε−1 + 1)} = −Im {(ε− 1)/(ε+ 1)} and
E‖ = v2

‖/2..
In the implementation of the inelastic surface processes the z-dependence is explicitly

calculated only for a few, usually five, values. For reasons of numerical efficiency we
rather fit λin,s(E, z)/λin,s(E, 0) by the function f(z, E) = 1 + (a1 − a2E) · |z|(b1−b2 log E)

[89] and explicitly employ only λin,s(E, 0)× f(z, E) with pre-determined values for the fit
parameters a1, a2, b1, b2 (see Sec. B.2 for more details). Note that at a given energy the
z-dependence of the inverse surface IMFP is also well fitted by an exponential, λ−1

in,s(z) =
λ−1

in,s(0) exp(−z/zs(E)), as long as z > 0.

Transport and ratio of mean free paths

During transport through the solid the total mean free path of the electron transported
is determined by

1

λtot
=

1

λel
+

(

θ(−z)

λin,b · (1 − f(z, E))
+

1

λin,s(z = 0) · f(z, E)

)

, (6.8)

with the last term in brackets being the total inelastic mean free path λin(z). Employing
the switching function f(z, E) in Eq. 6.8 ensures the correct limit of having only bulk loss
well inside the bulk [108], λin(z → −∞) = λin,b. At the same time, the θ-function assures
λin(z > 0) = λin,s.

The ratio λtot/λel (or λtot/λin) represents the probability for an (in-)elastic scattering
process to happen. Consequently, inspection of the ratio λel/λin teaches us about the
relative importance of elastic scattering as compared to inelastic processes and can serve
as a guideline of what to expect in the overall outcome of the electron transport simulation.
Figure 6.3 shows the dependence of the total IMFP as well as the IMFP attributed to
surface and bulk loss on the distance z to the surface. Note that for z → −∞ the total
IMFP converges to bulk loss. The extension of surface loss into the region z > 0 (drop to
a fraction of e−1) is about 0.7 to 1 Å. For comparison the total EMFP for both materials
is given. The ratio λel/λin is evidently more than twice as large for Al2O3 as compared
to PET which indicates that inelastic processes are much more prevalent for PET at the
energy chosen.

Energy loss above the surface

Above the surface only surface loss is present. So far, we approximate the trajectory of the
projectile near the surface by a straight-line trajectory and thus neglect image acceleration.
The path of the projectile close to the surface (z # zs) may then be approximated by
s ≈ 2zs/ sin θin. The quantity zs is determined by the distance at which the surface
IMFP has grown by a factor of e, which implies that the inverse IMFP is described by
λ−1

in,s(z) = λ−1
in,s(0) exp(−z/zs). Along the path s we employ a suitable mean surface IMFP
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λin,s(zm) deduced from the relation exp(−zm/zs) = 1/zs·
∫ zs

0 exp(−z/zs)dz. After inelastic
scattering energy and momentum are updated accordingly.

Electron emission and absorption

In any inelastic scattering process, the lost energy ∆E is eventually transferred to a
secondary electron starting at the position of the primary electron in the case of bulk
and surface loss, or with coordinate z = 0 for surface loss above the surface. The angular
emission pattern of secondary electrons is not trivial and may strongly depend on the exact
type of the physical excitation that leads to secondary electron emission (SEE). However,
the only significantly strong process to obtain large SEE energies of the order of several
ten eV is a binary collision of fast projectiles with bound electrons. The angle of emission
θe is thus chosen from the inelastic scattering angle θs according to the energy-momentum
conservation in a binary collision (see schematic view in Fig. 6.4),

θe = asin(
√

(E −∆E)/E sin θs) . (6.9)

This requires, however, that already ∆E and ∆θs have been chosen accordingly. ∆E
and ∆θs are obtained from the two individual D-IMFP used to speed up calculations, i.e.
dλ−1

in,b/d(∆E) following from an integration of Eq. 6.1 over q and the expression in Eq.
6.2. These D-IMFP also represent other inelastic processes, therefore a combination of
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Figure 6.4: Schematic view of secondary electron emission after inelastic scattering.

∆E and ∆θs incompatible with a binary collision may result. In these rare cases, θe is
chosen from an isotropic distribution instead.

Between subsequent scattering processes electrons are propagated along a straight-
line trajectory. If an electron reaches the surface of the target it needs to have sufficient
energy in the direction of the surface normal (E⊥ > WF ) in order to overcome the surface
potential and to be emitted into the vacuum. The electron is specularly reflected into
the solid otherwise. If the total energy of the electron is too low to allow for emission
into vacuum the trajectory is stopped and the electron is regarded to be absorbed by
the solid. Note that trajectories of secondary electrons are followed as well and may
contribute to the total spectrum of electrons emitted. Depending on the net number of
emitted electrons the secondary electron emission coefficient δ can be larger or smaller
than one, resulting in a charge-up of the sample that is either positive or negative.

6.1.3 Coherent surface reflection

The key novel ingredient to establish guided transmission of electrons is the glancing
scattering at the planar-averaged surface potential Vpl(z) of the capillary wall without
penetrating into the bulk. This quantum reflection due to the attractive surface potential
is completely absent in a truly classical simulation as it lacks coherent scattering at the
surface, i.e. scattering at the joint potential of many atoms sitting in the surface layer(s).
Such an effect can be phenomenologically included into the simulation as a stochastic
process. The elastic specular reflection probability Ps and momentum transfers ∆pi = 2k⊥

are determined for Vpl(z) approximated alternatively by density functional theory (DFT)
calculations of the target material and by a step function of the same height (i.e. of height
Vpl ≈ WF + EF , see also the schematic cartoon in Fig. 6.5). For DFT calculations the
program package “ABINIT” [118] is employed. We find that Ps is generally larger for
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Figure 6.5: Schematic representation of (approximated) surface potentials and energy struc-
ture of the solid surface considered: We described the electronic structure of the
solid as a single band of width EF (for insulators the width of the valence band
is used). The depth of the potential well for z → −∞ is Vpl ≈ WF + EF . For
insulators the workfunction WF is replaced by the gap energy Eg.

insulators than for metals as their surface potential is steeper (less electron spill-out).
For the step potential, Ps can be given analytically by

Ps,step =

∣

∣

∣

∣

k1 − k2

k1 + k2

∣

∣

∣

∣

2

(6.10)

where k1 = k⊥ =
√

2E⊥ and k2 =
√

2(E⊥ + Vpl). For a general, z-dependent potential, Ps

is computed numerically by a standard Runge-Kutta integration of the one-dimensional
stationary Schrödinger equation. As an example, calculated values for Ps are shown
in Fig. 6.6 as a function of E⊥ and θin (incidence angle with respect to the surface
assuming Ein = 250 eV). A crystalline structure with a CH2 group at the PET surface was
assumed [119]. For aluminum oxide, a the crystal structure of corundum (“α−Al2O3 ”)
was assumed [120]. To a good degree of approximation, Ps(E⊥) can be fitted by, Ps(E⊥) =
exp(−b·asin(

√
a · E)) with a = 0.005, b = 33.3 for PET and a = 0.268, b = 5.54 for Al2O3 .

In the limit E⊥ → 0, Ps converges to unity.
For a more realistic description of specular reflection one needs to consider the lim-

itations of coherence in projectile-surface scattering. Small changes of the amount of
momentum transferred from the surface to the projectile (due to e.g. phononic vibrations
of the surface atoms or electron-electron scattering) at different positions along the sur-
face lead to a reduction of the width of the coherent wave packet after scattering. The
resulting wave packet width is then related to the average momentum transfer and to the
elongation of the illuminated surface and does not significantly depend on the variations
of the momentum transfer [121]. In a first attempt we account for the finite coherence of
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coefficient (cf. text).

the outgoing wavepacket on a phenomenological basis. We allow for a Gaussian distribu-
tion around the specular reflection value θout with a FWHM of 0.1 ·θout which corresponds
to results obtained recently by a full treatment of the problem of [121].
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6.2 Instantaneous electron transmission

Our approach to guided electron transmission through insulating nanocapillaries allows,
in principle, for transmission of electrons even without time delay due to charge-up. By
scattering at the surface or electron emission inside the bulk (either “re-emission” or
SEE) projectiles can be transmitted for angles of incidence θin larger than the geometric
opening angle. Moreover, as for most parameters and target materials we observe a SEE
coefficient of δ > 1 charge-up of the capillary internal wall is expected to be of opposite -
positive - polarity. Consequently, charge-up dynamics will suppress guided transmission
of projectiles rather than enhance it. The limiting case of vanishing charge-up, which
represents also the limit of a “fresh” capillary (t → 0), is thus an interesting case in point.
Furthermore, computational complexity is much reduced for such a time-independent
analysis. We will therefore start the investigation of guided electron transmission by
neglecting the dynamical charge-up. In a first attempt we even neglect the velocity-
dependent image force in order to arrive at a simple and easy-to-solve model. As a test
case scattering at a single planar surface is considered as well.

6.2.1 Planar surface scattering as test case

Experimental data available for electron impact on a planar PET surface [113] provide
a test for the reliability of the collision kernel. Electrons with kinetic energies of 500 eV
were directed on the target surface under an angle of incidence θin = 40◦ with respect to
the surface. The measured spectrum of scattered electrons (Fig. 6.7) agrees remarkably
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Figure 6.7: Energy spectrum for 500 eV electrons incident on PET under θin = 40◦ with
respect to the planar surface. The solid line shows experimental data [113], the
dashed line results from our electron transport simulation [29].

well with our simulation thus lending credence to our treatment of multiple elastic and
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inelastic scattering as well as the collision cascades of penetrating trajectories.
Similar good agreement is found in case of a planar Al2O3 surface with 200 eV electrons

incident under 40◦ with respect to the surface (Fig. 6.8). These encouraging results
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Figure 6.8: Energy spectrum for 200 eV electrons incident on Al2O3 under θin = 40◦ with
respect to the surface. The solid line shows experimental data [113], the dashed
line results from our electron transport simulation.

suggest that our present method is well capable of describing electron-surface scattering
at a surface of an insulator, as needed for a proper treatment of guided transmission
through nanocapillaries.

6.2.2 PET capillaries

As a first example we investigate PET capillaries (εr = 3.3) with a width 2a = 200 nm and
length L = 10µm. Electrons with an incidence energy of 500 eV (energy spread of about
20 eV) are considered. This system has recently been studied both experimentally by Das
et al. [28] as well as theoretically [29]. In a first approach we neglect, apart from charge-up,
also the image acceleration of the projectiles. These two approximations tremendously
facilitate the computation as projectile trajectories between subsequent scattering events
are simply straight lines ()F = 0 in Eq. 5.1). As we will see below, such an approach is
sufficient for describing many features of guided electron transmission, both qualitatively
and, to some extent, also quantitatively. In the limit of a “fresh” capillary (t → 0), where
charge-up can not yet be present, the approximation reduces to the neglected image force
only. Because it is not yet clear whether surface excitations do indeed exist for a polymer
like PET, we so far employ only bulk loss in the present example.

Within this approach, we observe that both elastic and inelastic contributions emerge
near θout = 0◦ and are thus “guided” (see two-dimensional distribution of the exit angle
and final energy of the projectiles in Fig. 6.9). However, the term “guiding” may be, in
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Figure 6.9: Normalized energy spectrum (lower panel) as well as a distribution of exit angles
and final energy (θout, E) (upper panel) for transmitted electrons incident with
500 eV under θin = 3◦ with respect to a PET capillary’s axis. The energy and
angular spread of the incident beam are 20 eV and 1◦ FWHM. Solid blue trian-
gles show experimental data [28], solid lines result from our electron transport
simulation without charge-up and image force.

fact, misleading as projectiles do indeed interact with the inner wall of the capillary. For
θin = 3◦ most projectiles that are eventually transmitted are subject to an average of 2.5
scattering events upon collision with the internal wall. At least one of those scattering
events (on average 1.7) is a specular reflection at the surface without penetration into the
bulk material. Similar numbers (an average of about 2 collisions) apply for projectiles
transmitted strictly elastically. Although small-angle atomic scattering in the bulk allows
for elastic “guiding”, in principle, the transmission rate would be much weaker if elastic
specular reflections at the joint surface potential are neglected. Due to its favorable
angular emission pattern this type of scattering plays an important role even though such
collisions represent only a fraction of the total number of collisions.

6.2.3 Al2O3 capillaries

Experiments with Al2O3 (εr = 9.5) as target material have been the first to be carried
out with electronic projectiles [27], although only quasi-elastic transmission was observed
initially. Recently, inelastic guiding has also been demonstrated for Al2O3 nanocapillaries
with 2a = 270 nm and L = 15µm [122]. The pronounced energy gap of Eg = 8.7 eV [120,
123] may have been the reason for this delayed discovery. Due to the gap only energy loss
larger than Eg is allowed which is reflected in the energy spectra for both planar surface
scattering (Fig. 6.8) as well as for transmission though Al2O3 capillaries (Fig. 6.10 a) ).
Note that for Al2O3 surface excitations are experimentally well established [124] and are



Chapter 7

Summary and outlook

In this thesis we have investigated selected aspects of how charged particles can be con-
trolled on short time and length scales. A prominent example for steering of electronic
motion on atomic time scales is ultrafast laser-atom interaction (“ultrafast optics”). The
techniques developed in this field bring e.g. control of molecular reactions within reach.

Within the wide field of ultrafast optics, we have focused on the properties of the
coherent, high-frequency radiation generated during the interaction of ultrashort, strong
laser pulses with atoms, putting an emphasis on the dependence on the wavelength of
the driving laser. In particular, we have investigated the mid-infrared range, which is
experimentally accessible for a short time only. Employing an ab-initio approach, i.e. by
solving the time-dependent Schrödinger equation for a single (the most weakly bound)
electron, we have shown that both the high-harmonic generation (HHG) yield as well as
the ionization probability feature surprisingly regular enhancements as a function of both
driver intensity and wavelength of the driver. Enhancements can be as large as a factor of
eight. The present work may thus serve as a basis for further optimization and fine-tuning
of the HHG output. On a wavelength scale the modulation period can be considerably
smaller than the Fourier width of the ultrashort pulses employed. The modulation can
be related to constructive interference of electronic quantum paths with long (i.e. longer
than an optical cycle of the driver) excursion times that contribute to the HHG yield [36].
Such quantum paths correspond to (semi-)classical trajectories which can be investigated
more easily.

Although the length of the pulses investigated only range from a single to a few
optical cycles, the present modulation is related to the well-known channel closing effect
derived for infinitely extended laser fields (see e.g. [86]). Despite this similarity, we find
significant differences: enhancements are shifted from positions predicted by an analysis
of channel closings for zero-range potentials. This discrepancy has been discussed in
previous literature and a variety of explanations has been offered. We have shown that
this effect is related to the long-ranged Coulomb potential affecting the phase of the
electronic wavepacket during free evolution. Numerical data obtained over a wide range
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of driving pulse parameters support this findings [37].

Apart from the fine-scale oscillations of the HHG yield we have also analyzed the
scaling of the yield in a fixed energy interval of 20 to 50 eV over a wide range of driving
laser wavelengths λc . In agreement with previous work [35] we arrive at a scaling ∝ λ−x

c

and an exponent of x ≈ 5.5±0.5 for the HHG yield of argon within the framework of single-
atom response. Very recently, experiments with neon have reported results close to the
present value [75], while theoretical work focusing on the HHG yield near the (wavelength-
dependent) cut-off finds significantly lower values of x for rare gas atoms [78]. Further
investigation will be necessary in this context.

Oscillations in the ionization channel being very similar to those in the HHG yield are
observed as well. They, too, can be related to path interference and are found for both
the total ionization probability as well as in the energy-resolved photoelectron spectrum.
It is straightforward to identify semi-classical trajectories leading to such interference
oscillations. However, the weight of the contribution of a particular trajectory to the
total ionization yield still needs to be investigated in future work.

In ultrafast laser-atom interaction, as discussed in this work, the dynamics of the
electrons (and nuclei) are governed by the external field of a coherent laser pulse with a
duration in the femtosecond range. Although the time scales involved are extraordinar-
ily short, this is conceptionally not so different from conventional particle optics where
charged projectiles are steered by electromagnetic fields. By contrast, we have devoted
a large portion of our research to a phenomenon that allows for mesoscopic control over
highly-charged ions (HCI) without relying on external electromagnetic fields. This tool
has come within reach after the first observation and subsequent further investigation of
HCI guiding through insulating nanocapillaries. The guiding effect becomes manifest in
HCI projectiles being transmitted through a capillary in the initial charge state without
close interaction with the internal wall. For the description of this process, we have pre-
sented a Classical Transport Theory (see e.g. Ref. [26]) which uses order-of-magnitude
estimates of material data and requires no additional free parameters or ad-hoc assump-
tions. Our self-consistent projectile trajectory simulations for PET nanocapillaries have
confirmed phenomenological models of HCI guiding based on electrostatic deflection of
projectiles and agree well with the experiment. The present approach works well for in-
cident currents common in many experiments (typically 0.1-1 nA/mm2) but will result
in either Coulomb blockade or insufficient charge-up as soon as the current is varied over
several orders of magnitudes. The range of incident currents leading to stable projectile
transmission is related to the conductivity of the material employed and may thus vary
for different capillary targets.

An investigation of guided transmission of electronic projectiles through nanocapillar-
ies has been performed as well. Here, we account for the interaction of electrons with
a solid where penetration is accompanied by scattering, energy loss, absorption of the
projectile and/or emission of secondary electrons [29]. Due to the clearly different inter-
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action process transmission properties for electrons as projectiles are distinct from what
is observed with HCI. In this context guided transmission is enabled by small-angle scat-
tering at and below the surface of the internal wall and charge-up is found to be of minor
importance. Transmitted projectiles suffer considerable energy loss. Our approach thus
offers a first explanation for recent experimental results [28, 122].

Charge-up is found to be significantly different from HCI guiding. Its influence be-
ing frequently negligible for larger tilt angles, charge-up suppresses transmission through
an untilted nanocapillary. This effect can be attributed to the attraction of projectiles
towards the internal wall after a positively charged patch on the internal wall (caused
by secondary electron emission) has developed. Above-surface loss is found to be crucial
for a full description of transmission through untilted capillaries because it represents the
dominant inelastic process for θin → 0◦. At larger angles of incidence this inelastic process
is rather unimportant. Irrespective of the projectile, the time structure of charged particle
guiding is linked to the charge-up. Therefore, observables such as the transmission rate
evolve on the same time scale, being of the order of minutes. When charge-up is negligible
even a time-independent approach is sufficient.

Future developments in the theoretical description of electron guiding may include an
in-depth analysis of the interplay between scattering and charge-up, which will strongly
depend on the material properties. For that purpose structural properties of the surface
and bulk material (e.g. structure on the surface) need to be known in more detail. In this
context also the influence of surface adsorbates and contamination should be considered.
Both may alter the (differential) scattering probabilities for electron-surface interaction.
Electrical (surface) conductivity may deviate from clean materials and thus change the
characteristics of charge-up.

Furthermore, dielectric response of the surface to an approaching charged projectile
needs to be considered more profoundly in order to extend present results for electron
guiding that have been obtained without accounting for image forces. For fast projectiles
such as electrons with the energies considered, the image acceleration towards the surface
is indeed much weaker as compared to slow HCI. In first approximation, it can be ne-
glected for the incident projectiles. For slow secondary electrons created during inelastic
projectile-surface interaction, however, the image force is much stronger and approaches
its static limit. Explicitly accounting for the velocity dependence of dielectric response
would lead to an improved description of guided transmission. Due to the present ap-
proach of neglecting image acceleration, the length of grazing-incidence trajectories and
thus the above-surface energy loss (“friction force”) may currently be overestimated. In
future work the friction force exerted on a fast electron should therefore be included on
the same level of approximation as the image acceleration.

At the same time, the effect of the image potential needs to be treated within the
framework of coherent quantum scattering at the surface. Close to the surface, classical
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theories for the dielectric response are not sufficient and lead to unphysical divergences.
An ab-initio approach (e.g. a time-dependent density functional theory calculation) for
the system consisting of a charged projectile approaching a surface may be advantageous
and allow for the determination of the correct, velocity-dependent limit of the image
potential when crossing the surface. This quantity is responsible for the impact angle of
the projectile. Contrary to the case of HCI projectiles, where trajectories are stopped
upon impact, the impact angle of electronic projectiles is crucial for determining the
subsequent scattering characteristics.



Appendix A

A.1 Fourier transform on a bounded domain

For numerical calculations, a real-valued function f(t) is usually defined only in a bounded
domain, i.e. t ∈ [0, Tm], Tm is the largest time represented on the mesh. The total pulse
length is defined by T , which can be smaller than Tm. We define the Fourier transform
of the function f(t) denoted by F(f(t)) = f̃(ω) as following:

f̃(ω) =
1√
2π

∫ T

0

f(t) exp (−iωt) dt (A.1)

Note that f̃(ω) carries the dimension of f(t) and the dimension of time. The original
function can be retrieved by the inverse transform F−1(f̃(ω)) = f(t) by

f(t) =
2√
2π

∫ ∞

0

f(t) exp (+iωt) dω (A.2)

which sums only over positive frequencies. The zero frequency component is a measure the
average value of f(t) in the given domain. For brevity, sometimes the tilde may be dropped
(f̃(ω) = f(ω)). A frequently used property of the Fourier transform is ḟ(ω) = −iω×f(ω)
where ḟ denotes the derivative of f(t) with respect to time.

On a numerical, discrete mesh with N points and Tm/N = ∆t, we have t = j∆t

f̃(ωk) =
Tm

N
√

2π

[

∑

j

f(j∆t) exp

(

−i
2π

N
j · k

)

]

. (A.3)

Here, ωk = 2π/Tm · k. This integral can be efficiently computed by the Fast Fourier
Transform algorithm [63]. Note that |f̃(ω)|2dω becomes numerically

|f̃(ω)|2dω =
T 2

m

N22π

2π

Tm

[

∑

]2
=

Tm

N2

[

∑

]2
(A.4)

when accounting for the dimension carried by the physical quantities. It has the dimension
of a signal energy (not power!), an is linearly increasing with the signal length.
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A.2 Definition of radiated power

The radiated energy per unit time (power), averaged over one or more radiation periods,
of a Hertz dipole d(t) moving sinusoidally (dω(t) = d0,ω sin(ωt)) is given by [43]

Pω =
2

3c3T

∫ T

0

d̈ω(t)2dt (A.5)

Pω =
ω4

3c3
d2

0,ω =
1

3c3
a2

0,ω (A.6)

Because the dipole acceleration a(t) is given d̈ω(t) = aω(t), we have used the relation
d0,ω = a0,ω/ω2.

For arbitrary short pulses we can now start with Eq. A.6, employ a priorly spectrally
filtered acceleration af (t) (having Fourier components only between ωlo and ωup) to write
the yield Y of these components

Y =
2

3c3T

∫ T

0

af (t)
2dt =

2

3c3T

∫ ∞

−∞

af (t)
2dt , (A.7)

because af (t) = 0 outside t ∈ [0, T ]. We recall also Parseval’s theorem of Fourier theory
∫ ∞

−∞

f(t)2dt =

∫ ∞

−∞

f̃(ω)2dω (A.8)

which states “conservation of signal energy” when changing from the time to the frequency
domain. Employing the above theorem we arrive at

Y =
2

3c3T

∫ ωup

ωlo

|ã(ω)|2dω . (A.9)

This expression still has the dimension of energy per unit time, as requested.

A.3 Definition of pulse intensity

When the function f(t) is an electric field F (t), Parseval’s theorem (Eq. A.8) has indeed
the dimension of an energy (per unit area). Hence, pulse energy per unit area is

Epulse

A
=

∫ ∞

−∞

F (t)2dt =

∫ ∞

−∞

|F̃ (ω)|2dω = 2

∫ ∞

0

|F̃ (ω)|2dω (A.10)

Negative and positive frequencies are equivalent. Average (over the total pulse length T )
pulse power per unit area (i.e. intensity) would be (compare to Eq. A.9)

Iav ≡
1

T

∫ ∞

−∞

F (t)2dt =
2

T

∫ ∞

0

|F̃ (ω)|2dω (A.11)



A.4. FAR-FIELD TRANSFORMATION 103

Peak pulse power per unit area (I0) assumes a sinusoidal field with constant amplitude
F0, which would lead to I0 = F 2

0 /2. However, in the system of atomic units, the intensity
is defined disregarding the factor 1/2, reading

I0 ≡ F 2
0 . (A.12)

A.4 Far-field transformation

After propagation through a medium of length L the electric field F (L, x⊥,ω) can be
computed numerically. Integration over the transverse coordinate and Fourier transform
yields the near-field Fnear(L, t).

The far-field at distance d under the angle of observation β Ffar(L + d, β) accounts
for the propagation up to the observation point. It reads [43]

Ffar(L + d, β,ω) = i
k

d

∫

d2x⊥F
′′
(x3, x⊥,ω)ei

x2
3k

2d J0(x⊥βk) (A.13)

with k = ω/c. Fourier transform of the above expression yields Ffar(L + d, β, t).



104 APPENDIX A.



Appendix B

B.1 Fitting and extrapolating optical data

For obtaining the loss function Im(−1/ε(q,ω)) we need an analytical ansatz for the ex-
trapolation of experimental data. The most simple ansatz is one or more damped plasmon
pole(s) with frequency ωp and width γ, reading ε(ω) = ε1 + iε2 = 1 − ω2

p/(ω
2 + iωγ).

Remembering εs = ε−1 this leads to

Im (g(ω)) = Im

(

εs − 1

εs + 1

)

= −Im

(

ε − 1

ε + 1

)

= (−)
2ε2

(ε1 + 1)2 + ε2
2

(B.1)

ε1 =
(ω2 − ω2

p)ω
2 + ω2γ2

(ω4 + ω2γ2)
and ε2 =

ω2
pωγ

(ω4 + ω2γ2)
→ (B.2)

Im (g(ω)) =
2ω2

pωγ

(ω2
p − 2ω2)2 + 4ω2γ2

=
ω2

sωγ

(ω2
s − ω2)2 + ω2γ2

(B.3)

(B.4)

with ωs = ωp/
√

2. The real part reads (using Eqs. B.2)

Re

(

ε(ω) − 1

ε(ω) + 1

)

=
(ε2

1 − 1) + ε2
2

(ε1 + 1)2 + ε2
2

=
ω2

s(ω
2
s − ω2)

(ω2
s − ω2)2 + ω2γ2

(B.5)

With an ansatz for the q-dependency of ε(q,ω) = 1 − ω2
p/(ω

2 − a(q) + iωγ) and the
abbrevation ω2

a = ω2 − a(q), for the bulk loss these expressions can be extended to

Im

(

−1

ε(q,ω)

)

=
ε2

ε2
1 + ε2

2

=
ω2

pωγ

(ω2
p − ω2

a)
2 + ω2γ2

(B.6)

which means that the resonance frequency is found at ωr =
√

ω2
p + a =

√

ω2
p + sq2 + q4/4 ≈

ωp + q2/2. For the real part one finds

Re

(

1

ε(q,ω)

)

=
ε1

ε2
1 + ε2

2

=
(ω2

a − ω2
p)ω

2
a + ω2γ2

(ω2
p − ω2

a)
2 + ω2γ2

. (B.7)
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Experimentally found optical data for Im(−1/ε(q = 0,ω)) is now fitted by a sum of n
plasmon poles with amplitude Ai and the form given in Eq. B.6. Assuming a dispersion
relation a(q) = s2q2 + q4/4 with s2 ≈ qF /3 being the group velocity of the plasmon,
the knowledge of the Ai, ωp,i, and γi (see Table B.1) allows for extrapolation to the
(q,ω)-plane.
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Figure B.1: Loss function fitted to optical data given in literature. Left: Al2O3 with n = 7.
Right: PET with n = 12. For Al2O3 the gap energy Eg is denoted by an arrow.

With the aid of the relation in Eq. B.1 knowledge of Re(ε−1) (Eq. B.7) and Im(ε−1) (Eq.
B.6) enables us also to form Im (g(q,ω)). However, for insulators Re(ε(q = 0,ω → 0)) = ε0

approaches a constant value. The ansatz of a plasmon pole, usually valid for metals where
Re(ε(q = 0,ω → 0)) = ∞, thus fails here. An additive constant, however, can solve this
inconsistency.

B.2 Fitting the surface-IMFP

For increased numerical efficiency in the CTMC program we fit λin,s(z)/λin,s(0) by the
function f(z, E) = 1+(a1−a2E)·|z|(b1−b2 log E) [89] and explicitly employ only λin,s(E, 0)×
f(z, E) with pre-determined fit parameters a1, a2, b1, b2 (Table B.2). Here, also the values
for a = a1 − a2E and b = b1 − b2 log E are given, the units are a.u. for z and eV for E.



B.2. FITTING THE SURFACE-IMFP 107

Al2O3 peak no. Ai γi ωp,i

1 27.13 6.44 16.67
2 150.8 7.68 24.29
3 114.0 9.39 29.17
4 144.2 13.6 35.72
5 191.7 25.5 46.89
6 5.03 2.27 79.65
7 716.1 109.9 119.6

PET peak no. Ai γi ωp,i

1 0.02 0.27 3.93
2 0.58 0.72 5.00
3 2.99 0.71 6.79
4 -1.51 1.22 7.81
5 1.18 1.23 8.24
6 -40.57 10.1 9.55
7 22.3 7.35 9.96
8 127.4 16.4 19.98
9 239.0 21.1 25.56
10 96.2 42.1 27.45
11 85.2 197.3 328.2
12 91.9 292.6 588.5

Table B.1: The plasmon peaks fitted to the dielectric function of Al2O3 and PET.

Al2O3 PET Al2O3 at 250 eV PET at 500 eV
a1 2.074 1.574

a2 or a 3.2 · 10−3 1.2 · 10−3 1.274 0.974
b1 2.330 2.932

b2 or b 0.007 0.287 2.229 1.145

Table B.2: Fit parameters for Al2O3 and PET employed in the function f(z, E).
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List of Acronyms

ATI Above-Threshold Ionization

CC Channel Closing

CEP Carrier-Envelope Phase

CTT Classical Transport Theory

EMFP Elastic Mean Free Path

FWHM Full Width at Half Maximum

HCI Highly Charged Ion

HHG High-Harmonic Generation

IMFP Inelastic Mean Free Path

IR Infrared

PET Polyethylene-terephthalate

SAE Single-Active Electron

SEE Secondary Electron Emission

SFA Strong Field Approximation

SPA Stationary Phase Approximation

TDSE Time-Dependent Schrödinger Equation

XUV Extreme Ultraviolet
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[76] A. Gordon and F. Kärtner, ‘Scaling of keV HHG photon yield with drive wave-
length’, Optics Express, 13 (2005), 2941–2947.

[77] B. Shan and Z. Chang, ‘Dramatic extension of the high-order harmonic cutoff by
using a long-wavelength driving field’, Physical Review A, 65 (2001), 011804.

[78] M. V. Frolov, N. L. Manakov, T. S. Sarantseva, M. Y. Emelin, M. Y. Ryabikin,
and A. F. Starace, ‘Analytic Description of the High-Energy Plateau in Harmonic
Generation by Atoms: Can the Harmonic Power Increase with Increasing Laser
Wavelengths?’, Physical Review Letters, 102 (2009), 243901.

[79] M. V. Frolov, N. L. Manakov, T. S. Sarantseva, and A. F. Starace, ‘Analytic for-
mulae for high harmonic generation’, Journal of Physics B, 42 (2009), 035601.



118 BIBLIOGRAPHY

[80] C. F. de Morisson Faria, R. Kopold, W. Becker, and J. M. Rost, ‘Resonant enhance-
ments of high-order harmonic generation’, Physical Review A, 65 (2002), 023404.
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