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Kurzfassung 
Die transiente Absorptionsspektroskopie (TA) nutzt kurze Lichtimpulse, um die photoinduzierte 
Dynamik von Molekülen zu untersuchen. Gewöhnlich regt dabei ein kurzer Anregeimpuls die 
Proben an und ein verzögerter Abfrageimpuls liefert transiente Absorptionsspektren der Probe zu 
ausgewählten Verzögerungszeiten. Gängig sind Verzögerungen vom Femto- (fs) bis zum 
Millisekunden-Regime, wo Relaxationsprozesse und schnelle chemische Reaktionen ablaufen. 
Der erste Teil dieser Arbeit konzentriert sich auf kurze Verzögerungszeiten, wo sich Anrege- und 
Abfrageimpuls zeitlich überlappen. Die Interaktion der beiden Impulse im Probenmedium führt 
im ultravioletten (UV), sichtbaren (VIS) und nahinfraroten (NIR) Spektralbereich häufig zum so-
genannten „kohärenten Artefakt“ (CA). Je nach Chirp des Abfrageimpulses kann das CA Signale 
bis zu Verzögerungen von mehreren 100 fs überlappen. Nur durch genaueste Modellierung des 
CA können in diesem Bereich Informationen über die Moleküldynamik extrahiert werden. Bei 
der Erzeugung des CA dominiert im UV Zwei-Photonen-Absorption, während im VIS/NIR 
Kreuzphasenmodulation (XPM) vorherrscht. Simulationen zeigen, dass für typische, gechirpte 
Abfrageimpulse der kürzeste Anregeimpuls nicht zum kürzesten CA führt. Im Gegenteil sind für 
stärker gechirpte Abfrageimpulse längere Anregeimpulse besser geeignet. Da Simulationen und 
Experimente zu stark variierenden Artefaktformen führen, wird eine neue Parametrisierung 
entwickelt, mit der sich das CA in allen beobachteten Fällen gut apassen und korregieren lässt. 
Man kann das CA nutzen, um Beschichtungen dielektrischer Spiegel zu charakterisieren. Die 
Methode wird an maßgefertigten, dispersionskompensierten CMUV08 und PC5-L Spiegeln im 
UV und VIS/NIR getestet, und auf den neuartigen Balzers DIFLEX® Ultrabreitbandspiegel 
angewandt. Direkte Messungen der Gruppenverzögerung verschiedener Beschichtungen ergeben 
eine Genauigkeit von unter ±1 fs. Diese neue Technik wird etablierte interferometrische Verfah-
ren nicht ersetzen, führt aber zu vergleichbaren Ergebnissen und funktioniert problemlos im UV. 
Im zweiten Teil dieser Arbeit zeigen die Überlappenden Signaturen des Pyren, dass Breitband-
detektion oft notwendig ist, um ein vollständiges Bild der Moleküldynamik zu erhalten. Pyren 
gilt als möglicher Baustein für funktionalisierte Materialien in der organischen Elektronik, doch 
trotz häufiger Nutzung als Fluoreszenzmarker und Lehrbuch-Beispiel sind die Reversibilität der 
Excimerbildung und die Rolle des Triplettzustands noch unklar. Pyren und ausgewählte Derivate 
werden hier systematisch vom Femtosekunden- bis zum Mikrosekundenregime untersucht. Dank 
globaler Analysemethoden und spektraler Zerlegung werden Widersprüche in bisherigen 
Modellen aufgeklärt. Entgegen früher Modelle ist die Excimerbildung bei Raumtemperatur nicht 
reversibel. Multiexponentielle Zerfälle der Monomerfluoreszenz sind auf einen Überlapp mit der 
Excimer Fluoreszenzbande zurückzuführen. Der meist vernachlässigte transiente Beitrag zur 
Diffusionsrate beeinflusst die Dynamik zunehmend bei Konzentrationen > 1 mM. Ein 
vereinfachtes Ratenmodell wird vorgestellt, das sowohl die Dynamik des Pyren also auch die 
verbrückter Dimere beschreibt. Absorptionsspektren der S1-, Excimer- und Triplettzustände 
werden bestimmt. Trotz minimierung der O2-Konzentration in der Lösung ist Sauerstoff-
quenchen des Singlettzustands verantwortlich für einen Großteil der beobachteten Tripletts. Nach 
Abzug des Sauerstoffbeitrags liegt die Quantenausbeute für das Excimer in 10 mM Lösung bei 
98%. Hiervon gehen 3% in einen Triplettzustand über, dessen Signatur dem Monomer-Triplett 
stark ähnelt. Eine direkte Verknüpfung zweier Pyrene an der 1-Position beschleunigt die 
Relaxation drastisch. Kandidaten für die Materialforschung sind an der 4-Position verbrückte 
Verbindungen, da diese auch nach Polymerisierung eine langlebige Fluoreszenz aufweisen.  
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Summary 
Transient absorption (TA) spectroscopy utilizes short laser pulses to probe photo induced 
molecular dynamics. Commonly samples are excited by a short ‘pump’ pulse and a delayed 
‘probe’ pulse monitors the sample’s absorption change at selected pump probe delays. Transient 
spectra are recorded from the femtosecond (fs) to the millisecond regime, where intramolecular 
relaxation processes and fast chemical reactions take place. 
The first part of this thesis focuses on the shortest delays, where pump and probe pulses overlap 
in time. In the visible (VIS) and ultraviolet (UV) spectral range the interaction of pump and probe 
in the sample often leads to the observation of the ‘coherent artifact’ (CA). Depending on the 
probe chirp it can obscure molecular dynamics up to a few hundred femtoseconds. Only accurate 
modeling facilitates extraction of molecular information in this range. While in the UV two-
photon absorption is the dominant process, cross phase modulation (XPM) is determined to be 
most relevant in the VIS and near infrared (NIR). Simulations of XPM induced CAs show that in 
the most common scenario of a chirped probe, the shortest pump pulse does not yield the shortest 
CA. Instead, for increasingly chirped probe pulses longer pump pulses are preferable. As a series 
of simulations and experiments yields strongly varying shapes and widths, a novel para-
meterization is developed, allowing accurate fit and subtraction of the CA in all observed cases. 
The CA can be used to characterize the group delay (GD) of dielectric mirror coatings from the 
UV to the NIR. With recent advances in broadband coating technology, performance testing will 
become increasingly important. This novel technique will likely not replace established 
interferometric techniques, but provides comparable results and overcomes technical limitations 
in the UV. The method is tested on custom, dispersion compensated CMUV08 UV and PC5-L 
VIS/NIR mirrors and applied to novel Balzers DIFLEX® utrabroadband mirrors. An overall GD 
accuracy of better than ±1 fs was achieved.  
In the second part of this thesis the overlapping excited state signatures of pyrene exemplify that 
spectrally resolved broadband detection is often necessary to acquire a ‘full picture’ of the mole-
cular dynamics. Recently pyrene has been considered as a building block for functionalized mate-
rials in organic electronics. Despite many applications as a fluorescence marker and multiple use 
as a textbook example, the oft proposed reversibility of the excimer formation as well as the role 
of the triplet state are still debated. The dynamics of pyrene and selected derivatives are syste-
matically reevaluated from the fs to the µs timescale using state-of-the-art broadband detection. 
Taking advantage of spectral domain fitting and global analysis techniques, ambiguities in the 
current models are resolved. In contrast to earlier claims, the pyrene excimer formation is not re-
versible at room temperature. Double exponential decays of the ‘monomer’ fluorescence are due 
to overlapping monomer and excimer fluorescence bands. Commonly neglected transient effects 
of diffusion increasingly impact the fitted rate constants at concentrations > 1 mM. A simplified 
rate model is proposed, describing the dynamics of pyrene as well as linked pyrene dimers. TA 
studies yield transient spectra of the S1-, excimer and triplet states. Despite efforts to minimize 
the oxygen concentration in the solution, oxygen quenching of the singlet state proved to be the 
source of most of the observed triplets. Correcting for oxygen quenching leads to 98% quantum 
yield for the excimer at 10 mM, of which 3% form triplet states whose signatures closely 
resemble that of the triplet formed from the monomer. In pyrene dimers a direct link at the 1-
position drastically accelerates the dynamics. Units linked at the 4-position are candidates for 
advanced materials, featuring a long-lived fluorescence even after polymerization.
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1 Introduction 

Since the development of the first lasers in the late 1950’s and 60’s, the availability of shorter 

and shorter light pulses has stimulated the study of light-matter interaction on the shortest 

timescales [Tow58, Gou59, Mai60]. Molecular dynamics span a wide range of timescales 

between femtoseconds (10-15 s) and seconds. Transient absorption spectroscopy utilizes short 

laser pulses to probe dynamic absorption changes from the femtosecond to the millisecond 

regime, where intramolecular relaxation processes and fast chemical reactions take place. A 

common approach is to excite a sample with a short ‘pump’ pulse and use a delayed ‘probe’ 

pulse to monitor the sample’s response at selected delay times ∆t. On the path to resolve ever 

faster dynamics, spectroscopists are moving to ever shorter pump pulses. Today, this 

approach is even extended to the sub-femtosecond regime, probing attosecond electron 

motion in atoms [Wir11, Pab12]. 

Chapters 2 and 3 of this thesis focus on the very shortest pump probe delays, where the pump 

and probe pulses overlap in time due to their finite duration. In the visible and ultraviolet 

spectral range the interaction of pump and probe in the sample leads to the observation of the 

‘coherent artifact’. The coherent artifact often obscures early time molecular dynamics and 

only accurate modeling facilitates extraction of meaningful molecular information in the first 

tens of femtoseconds. A novel parameterization is presented that allows for accurate fit and 

subtraction of the artifact signal. Simulations reveal that the shortest pump pulse does not 

necessarily produce the shortest artifact in the most common parameter range. 

Yet, this unwanted perturbation can be put to good use in the characterization of dielectric 

mirrors designed for femtosecond applications. Chapter 3 reports direct measurement of the 

group delay with femtosecond precision using the coherent artifact from the ultraviolet to the 

near-infrared. Thanks to advances in coating technology over the past decade, the use of 

tailored dielectric mirrors with defined group delay characteristics has become customary for 

a wide range of applications, from chirped mirror compression of femtosecond pulses to 

efficient propagation of ever larger bandwidths. Consequently, the accurate characterization 

of such coatings is of utmost importance and with recent advances in broadband coating 

technology, this will become increasingly interesting as exact specifications are often kept a 

secret by vendors for fear of plagiarism. 

While results from Chapters 2 and 3 push the short end of the observable delay range, the 

final chapter exemplifies that in order to acquire a ‘full picture’ of the molecular dynamics 
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spectrally resolved broadband detection is often necessary. Despite its many applications as a 

fluorescence marker and extensive use as a textbook example [Bir70, Tur91, Dyk98, Kla09, 

Tur10], relevant aspects of the excimer dynamics of pyrene and linked pyrene dimers are still 

debated. A likely cause for apparent inconsistencies in the models are pyrene’s overlapping 

excited state signatures. In the 1960’s, fluorescence dynamics were most often probed using a 

combination of bandpass filters to select a portion of the spectrum for detection [Bir63]. 

Similar single-line techniques are still employed today [Han13]. Pyrene has sparked 

increasing interest recently, representing a potential building block for functionalized 

materials in organic electronic devices such as organic light emitting diodes (OLEDs), 

organic photovoltaics, organic field-effect transistors (OFETs), as well as lasers [Fig11, Jia04, 

Zha07, Mog06, Wan06, Lee11]. Therefore, now is the time to systematically reevaluate the 

dynamics of pyrene and selected derivatives from the femtosecond to the microsecond 

timescale using state-of-the-art broadband detection. Taking advantage of spectral domain 

fitting and global analysis techniques, this work addresses the much discussed reversibility of 

the excimer formation, often proposed to explain a multiexponential decay of the monomer’s 

fluorescence [Bir63, Zac76, Zac78, Zac84, Zac85, Zac85a, Sie87, Zac88, Sie89, Rey90, 

Zac91a, Win93, Tsu95]. While the excimer formation is widely believed to be diffusion 

limited, a simulation sheds light on previously neglected transient effects. Finally, the role of 

the triplet state in the excimer dynamics is clarified via transient absorption measurements 

and a simplified model for the excimer dynamics is proposed, which is consistently applied to 

both pyrene and linked pyrene dimers. 
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2 Managing Varying Artifact Shapes in Chirped 

Probe Transient Absorption Spectroscopy 

Transient absorption (TA) spectroscopy utilizes femtosecond (fs) laser pulses to probe 

molecular dynamics from the fs to the millisecond (ms) timescales. TA signatures often span 

bandwidths of several hundreds of nanometers, making very broadband ‘white light’ probe 

pulses a necessity if a complete picture of the dynamics is desired. Very stable white light 

pulses can be generated from bulk solid state substrates. Probe pulses obtained in this way 

usually carry a significant chirp. In TA experiments using chirped probe pulses, dynamics 

recorded at different probe wavelengths originate from different pump probe delays. The 

accurate determination of the time origin for each probe wavelength is of paramount 

importance for chirp correction and consistent analysis of the signal’s time evolution 

[Meg09]. In the ultraviolet (UV), visible (VIS) and near infrared (NIR) spectral range the 

coherent artifact (CA) can be observed around zero pump probe delay. The CA originates 

from the interaction of a strong pump pulse with the probe pulse during their temporal overlap 

in the sample. It obscures early time molecular dynamics and is therefore an undesired 

perturbation. When the CA is modeled with sufficient accuracy, the time origin 0t (λ)∆  and 

the approximate width of the instrumental response function (IRF) can be extracted from the 

fit [Tok96, Kov99, Mac00, Ras01, Zio01, Lor02, Meg09, Lap11]. To obtain 0t (λ)∆  and the 

shape of the CA without any overlapping molecular dynamics, a chirp reference measurement 

is often performed either in a cuvette holding pure solvent or in a thin solid substrate [Wil11]. 

The CA’s contribution to the time traces can then be subtracted from the dynamics in post 

processing [Sla15]. CA also carry information about pulse parameters such as the group delay 

(GD) and the pump and probe pulse durations. For this reason, models for the CA are 

constantly being improved to date [Wah16].  

On the path to resolve ever faster dynamics, spectroscopists are moving to ever shorter pump 

pulses. As pump pulses become very short compared to the chirped probe, artifact shapes 

change dramatically due to spectral interference caused by cross phase modulation. The most 

common fitting models cannot reproduce these shapes. In this chapter current models are 

reviewed and a novel parameterization is introduced, facilitating a fit of the CA with sub-fs 

accuracy in the fitted 0t (λ)∆  and accurately reproducing their varying shapes over a wide 

range of parameters. This is demonstrated by application to simulated and experimental data. 
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2.1 An Introduction to the Coherent Artifact  

Coherent artifacts are observed using a TA system featuring a white light probe pulse 

covering a spectral range from 290 nm to 700 nm. The probe is generated in 5 mm CaF2 at a 

1 kHz repetition rate. Mechanically delayed pump pulses with durations of pumpτ  ≈ 25 fs are 

employed, generated by a noncollinear optical parametric amplifier (NOPA). For each pump 

probe delay (also ‘delay time’) t∆  the probe is spectrally dispersed by a prism spectrograph 

and detected on a CCD array. The observable is the pump induced change in the transmission 

T( , t)λ ∆  of the probe pulse through a sample. The signal S( , t)λ ∆  is obtained by dividing 

T( , t)λ ∆  by the transmission when the pump is blocked by a chopper wheel 0T ( , t)λ ∆  and 

averaging over 200 pulse pairs. S( , t)λ ∆  is commonly expressed in units of optical density 

(OD). A detailed description of the setup can be found in [Meg09]. Part of the probe light is 

sent to a second prism spectrograph for referencing without traversing the sample [Bra14].  

Figure 2.1 shows an example of a TA dataset obtained from a 1 mm flow cuvette containing a 

1 mM solution of pyrene (Fig. 2.1c) in cyclohexane. The recorded change in optical density 

∆OD is shown in false color representation in Fig. 2.1b. Color coded cursors indicate probe 

wavelengths and delay times corresponding to the line outs in Fig. 2.1a and 2.1d.  

 

Fig.2.1:  Section of a TA dataset of 1 mM Pyrene in Cyclohexane, excited in a 1mm flow 

cuvette using 100 nJ at pumpλ  = 334 nm. (a) TA spectra at selected delay times, 

(b) TA signal in false color representation, red (blue) indicates positive (negative) 

contributions. (c) pyrene structure, (d) time traces at selected wavelengths. 
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Due to its generation in bulk CaF2, the probe white light is positively chirped. For this reason 

Figs. 2.1a and 2.1b show the artifact occurring at different delay times for different probe 

wavelengths: at negative delay the positively chirped probe precedes the pump. As the pump 

probe delay is scanned towards positive delay, the artifact moves from the blue to the red part 

of the recorded spectrum. The blue line in Fig. 2.1a shows only the CA. Probe spectral 

components around 320 nm overlap the pump pulse inside the sample and become modulated 

due to absorption as well as nonlinear effects induced by the pump (cf. Section 2.3). Spectral 

components at longer wavelengths precede the pump pulse and therefore do not contribute to 

the transient signal. The red line shows the transient spectrum at a later delay time, where the 

artifact has moved to a spectral interval around 365 nm. Probe spectral components at smaller 

wavelengths interact with the sample after the pump pulse. Hence, the probe spectrum in that 

range is modulated by the excited molecules and a negative ground state bleach signal is 

observed below 340 nm. At even later delay times (black dashes) the artifact has moved 

outside the spectral range shown and a positive excited state absorption (ESA) has appeared 

around 365 nm. For details on the dynamics of pyrene, refer to Chapter 4 of this thesis.  

In the delay time domain the CA modulates the signal around the respective time origin for 

the wavelength under consideration (Fig. 2.1d), obstructing the early time molecular 

dynamics. For an undisturbed look at the CA it makes sense to use samples that do not exhibit 

significant transient absorption or emission dynamics in the spectral range observed, e.g. a 

cuvette filled with pure solvent or a solid substrate of the same thickness. The artifact shape 

observed in a time trace taken at a given detection wavelength can depend on a number of 

factors, including but not limited to the material, the pump wavelength, duration and intensity, 

the probe spectrum and chirp as well as the detector design [Kov99, Lap11, Wah16, Die07]. 

Figure 2.2 shows typical delay time domain signals obtained using the setup detailed above in 

thin, plain parallel solid substrates. In Fig. 2.2a normalized signals at 470 nm detection 

wavelength for 12 nJ and 1000 nJ pump energy are shown. Most commonly, a positive central 

peak is accompanied by two distinct and not necessarily symmetric negative ‘wings’. No 

significant change in signal shape is observed when the pump energy is increased. A 

comparison of traces at a wide range of pump energies confirms this observation. It can be 

concluded that in HOYA L42 glass none of the contributing effects saturates and no new 

effects come into play within the pump energy range used. This is also true for Schott B270 

glass.  
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Fig. 2.2:  (a) Coherent artifact in 775 nm pumped CaF2 white light at probeλ =  470 nm for 

pump pulses of different energies at pumpλ = 500 nm, pumpτ  = 22 fs in 217 µm 

HOYA L42 glass. (b) Black: same as (a) with white light additionally chirped by 

transmission through a 14.5 mm Schott BK7 block (blue). (c) Coherent artifact in 

50 µm sapphire using 180 nJ pump at pumpλ  = 230 nm and UV white light 

generated by the frequency doubled CPA at 389 nm in CaF2. (d) Coherent artifact 

at selected probe wavelengths in 100 µm α-BBO induced by a 27 fs, 600 nJ pump 

at pumpλ  = 270 nm, probed by a 25 fs NOPA pulse at probeλ  = 420 nm. 

Figure 2.2b illustrates the significant shape change when the white light probe chirp is 

increased by adding a 14.5 mm BK7 block. The amplitude decreases while the artifact 

broadens significantly as its negative ‘wings’ turn into periodic fringes. In most 

measurements to date such prominent fringes have not been observed (with exception of 

reference [Wah16]) and commonly used fitting models cannot reproduce them. Highly 

chirped probe pulses occur in the deep UV, where dispersion compensation is challenging, 

and will also play a role in Chapter 3. Simulations will show that the same effect occurs when 

instead of increasing the probe chirp, the pump pulse duration is decreased (cf. Section 2.3.2), 

so artifact fringes will likely be observed more frequently in the future. Figure 2.2c illustrates 

CAs generated in sapphire in the UV spectral range. As the probe wavelength increases, the 

CA turns from an all positive shape reminiscent of a Gaussian (black) into a shape 

comparable to those in Fig. 2.2a (red). In Fig. 2.2d the effect of negligible probe chirp is 
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shown. Here, instead of a chirped white light, a compressed pulse from a NOPA was used for 

probing, resulting in a sinusoidal shape. The signal is inverted at the central wavelength of the 

probe pulse (420 nm). Note that the delay time t∆  is a relative quantity. Here the absolute 

values were chosen such that the pump interacts with the respective probeλ  around t 0 fs∆ = . 

2.2 Effects Contributing to the Coherent Artifact 

The main effects that need to be considered for the experiments presented in this work are two 

photon absorption (TPA) and cross phase modulation (XPM) which will be covered in detail 

in the following sections. Other effects such as impulsive stimulated Raman scattering (ISRS) 

in the solvent as well as perturbed free induction decay (PFID) can also contribute to the 

coherent artifact. While ISRS manifests as an oscillation at positive delay [Sil85, Pol07, 

Kov99, Meg09], Fig. 2.2a shows a slight oscillation at negative delay that could be due to 

PFID [Ham95, Nue09, Yan11].  

2.2.1 Two Photon Absorption (TPA) 

First predicted by Göppert-Mayer et al. in 1931, TPA occurs when the combined  energy of 

two coinciding photons exceeds the material’s bandgap, even though their individual photon 

energies are too small to be directly absorbed [Göp31]. When one pump and one probe 

photon are absorbed, a measurable change in transmission is induced in the spectral 

component of the broadband probe that temporally overlaps the pump pulse. TPA creates a 

purely Gaussian signal for Gaussian pump and probe pulses in a thin medium, when they are 

not broadened significantly by group velocity dispersion (GVD). For detailed derivations 

refer to [Mac00, Ras01, Lor02, Hom11]. For example, signals shown in Fig. 2.2c are clearly 

dominated by TPA. The delay time origin 0t (λ)∆  can then be easily extracted. The 

instrumental response function (IRF) for a given wavelength is a Gaussian with the width of 

the cross correlation between pump and probe and can be directly inferred from the fit.  

Experimental TPA coefficients for HOYA L42 and Schott B270 are not reported for the 

wavelengths used. A value of 3
TPA 4.33 10 cm GW−β = ⋅  is given for B270 in [Mog10] 

using two 800 nm photons and a 5 mm thick substrate. Using this value, the change in 

transmission due to TPA is estimated to ~12 mOD for a peak intensity of 300 GW/cm2 

[Hom11]. Utilizing referenced detection, the setup is sensitive to changes in transmission 

down to 0.02 mOD [Bra14], so a signal on this scale is readily detectable, especially since 

TPAβ tends to increase towards smaller wavelengths approaching the bandgap [Hom11]. 
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Fig. 2.3:  Energy diagram for two photon absorption of one pump and one probe photon. (a) 

UV pump: the pump photon energy is large compared to probe photon energies. 

(b) VIS pump: pump photon energy comparable to probe photon energies, 

bandgap must be carefully matched to allow TPA but avoid single photon 

absorption of the high energy probe photons. (c) Direct absorption of highest 

energy probe photon. 

In a medium with a bandgap energy gapE  the condition 

 gap
pump probe probe

h c h c h cE⋅ ⋅
> >

λ λ
+

⋅
λ

 (2.1) 

has to be fulfilled for TPA to occur while the medium is transparent for the individual probe 

photons. In practice the combined photon energies of pump and probe must exceed the 

bandgap significantly to obtain a reasonable signal. In 389 nm pumped UV white light this 

can be done using sapphire, α-BBO or Schott B270 glass. For more materials refer to 

[Hom11]. With a UV pump, the pump photon energy is large compared to the energy 

difference between the photons in the broadband probe (see Fig. 2.3a). Conversely, in the 

VIS/NIR spectral range appropriate materials must be selected carefully: when using a visible 

pump pulse, pump and probe photon energies are comparable and the bandgap has to be 

carefully matched in order to allow TPA but avoid single photon absorption of the bluest 

probe photons (Fig. 2.3b,c). In practice there is no single material that fulfills this condition 

for the whole visible spectral range, so several media with appropriate bandgaps are required. 

When a TPA induced artifact is to be obtained throughout the VIS/NIR, measurements in 

different materials must be stitched together. This increases complexity and measurement 

time and can lead to errors due to temperature and other fluctuations in the laboratory. 
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Moreover, the two photon absorption edges do not always coincide with half the energy of the 

one photon edge, so finding a suitable set of materials is often trial and error. For example, 

HOYA L42 glass was initially considered because its bandgap should facilitate TPA 

throughout most of the visible spectral range. Unfortunately it features an excited state 

absorption at just above 400 nm that has to be included in modeling and is not transparent 

below 400 nm. Schott B270 glass is a candidate transparent throughout the entire spectral 

range probed, but cannot sustain TPA for longer probe wavelengths. Even at moderate pump 

energies, both glasses show features deviating from a ‘clean’ Gaussian. 

2.2.2 Cross Phase Modulation (XPM) 

Most commonly, the artifact’s negative ‘wings’ are attributed to cross phase modulation (cf. 

Fig. 2.2a). First observed in 1986 by Alfano et al. [Alf86], XPM is a redistribution of spectral 

components of the probe due to a change in the refractive index n of a medium induced by the 

intense pump pulse: 

 0 2 pumpn(t, t) n n I (t)∆ = + ⋅ . (2.2) 

Here 2n is the nonlinear refractive index and pumpI (t)  the temporal envelope of the pump 

intensity. When the probe pulse temporally overlaps the pump in the medium, the modulated 

refractive index causes a redistribution of spectral intensity. This leads to a detectable change 

in probe transmission for a given spectral component, even though no net absorption of the 

probe light has taken place.  

Defining the total electric field of two copropagating plane wave packets as  

 1 1 2 2i(k z t) i(k z t)
1 2E(z, t) Re A (z, t) e A (z, t) e−ω −ω = ⋅ + ⋅  , (2.3) 

with amplitudes iA , central angular frequencies iω  and wave vectors ik . The coupled 

amplitude equations in a nonabsorbing medium can be derived using the slowly varying 

amplitude approximation [Alf89, Agr89, Kry05]: 

 ( )1 2,1 2 21 1
1 1 2 1

1

nA 1 Ai A A 2 A A 0
z v t c

ω ⋅∂ ∂ + + ⋅ + ⋅ = ∂ ∂ 
, (2.4a) 

 ( )2 2,2 2 22 2
2 2 1 2

2

nA 1 Ai A A 2 A A 0
z v t c

ω ⋅∂ ∂ + + ⋅ + ⋅ = ∂ ∂ 
. (2.4b) 
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Here 1v  and 2v  are the group velocities and 2,1 2,2n , n  the nonlinear refractive indices 

corresponding to the pump (index 1) and probe (index 2) pulses, respectively. z is the 

coordinate in propagation direction. Amplitudes iA  are defined such that 2
1 pumpA I= . 

Group velocity dispersion for the individual waves has been neglected here. 

In a coordinate frame moving alongside the probe pulse the time derivative in Eq. 2.4b 

vanishes, leaving only the z dependence. A solution to this wave equation at the output of a 

medium of length z L=  is 

 [ ]2 2 XPMA (L, T) A (0, T) exp i= ⋅ Φ , (2.5) 

with 

 
L

2 22 2
XPM 2 1

0

n L A (0, T) 2 A (0, T z d) dz
c

 ω ⋅  Φ = + ⋅ + ⋅
 
 

∫ , (2.6) 

where 2T t z v= −  is the time in the comoving frame and ( ) ( )2 1 1 2d v v v v= − ⋅  the 

group velocity mismatch (GVM). The first summand in Eq. 2.6 describes self phase 

modulation, which will be neglected for the weak probe pulse from this point on. The second 

summand describes the buildup of the phase acquired due to cross phase modulation along z.  

An approximate but intuitive expression can be inferred from Eq. 2.6 when neglecting the 

GVM and defining a fixed pump probe delay t∆  instead. The integral then reduces to a 

multiplication with the substrate length and the XPM induced phase is  

 2 2
XPM pump

n L(t, t) 2 I (t, t)
c

⋅ ω ⋅
Φ ∆ = ∆ . (2.7) 

This simplified expression will be used later on to simulate XPM induced CAs. The pump 

induced modulation of the probe’s instantaneous frequency is then [Agr89, Alf89, Lor02] 

 2 2
XPM pump

n L(t, t) 2 I (t, t)
t c t

∂ ⋅ ω ⋅ ∂
∆ω ∆ = − Φ = − ∆

∂ ∂
, (2.8) 

where 2ω  is the central frequency of the probe pulse. Figure 2.4a illustrates the frequency 

modulation of a linearly chirped probe pulse modulated by an intense Gaussian pump pulse.  

When the pump pulse travels with a significantly different group velocity due to the 

dispersion of the material’s linear refractive index, its position with respect to the probe will 

change along the medium, causing the modulated interval to broaden as indicated in Fig. 2.4b.  
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Fig. 2.4:  Schematic illustration of the modulation (red) of a linear probe chirp (blue) by a 

Gaussian pump pulse (black), (a) neglecting and (b) including the effect of group 

velocity mismatch. Modulations are drawn untypically large for clarity. Figure 

adapted from [Lor02]. 

At a peak intensity of 330 GW/cm2, the maximum frequency shift in the probe induced by 

XPM can be estimated using Eq. 2.7 with L = 200 µm and the nonlinear refractive index 
7 2

2n 2.06 10 cm GW−= ⋅  given for B270 glass in [Mog10]. The estimated maximum 

frequency shift corresponds to ±1.6 nm at 300 nm and ±3.7 nm at 700 nm. The spectral 

resolution of the setup used is ~2.25 THz in the VIS [Meg09]. At 300 nm one CCD pixel 

corresponds to 0.7 nm, while at 700 nm a shift by 3.7 nm is needed to move spectral intensity 

to the next pixel. XPM is therefore expected to yield a detectable contribution to the signal in 

the UV/VIS. 

Signal shapes resulting from cross phase modulation vary significantly depending on the 

duration of the pump and the chirp of the probe pulse (cf. Fig. 2.2b). This will be investigated 

in detail in the following section. 
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2.3 Simulating Cross Phase Modulation 

In the following the signal contribution due to XPM that is expected in a typical TA 

experiment is simulated in PTC Mathcad Prime 3.1 using equation 2.7. Using this 

approximate model, the dependence of the signal on pulse parameters is explored and finally 

the simulated data is compared to experimental data. 

TA measurements monitor the delay time dependent change in the probe spectrum after 

transmission through the sample. Neglecting propagation effects like GVM, the total temporal 

phase imprinted on the probe pulse due to XPM in the sample can be approximated by 

XPM (t, t)Φ ∆  as given in Eq. 2.7. A Gaussian pump pulse with an intensity of 300 GW/cm2 

and FWHM pulse duration 1τ  of 25 fs will be assumed, modulating the refractive index of a 

medium with 7
2n 2.06 10−= ⋅  cm2/GW and a thickness of L = 200 µm. The simulation first 

computes the discrete Fourier transformation (DFT) of an input probe spectrum 2E ( )ω  with 

a predefined phase to obtain the electric field 2E (t) . The electric field is then modulated in 

the time domain by the phase XPM (t, t)Φ ∆ . This is done for a range of pump probe delays 

t∆  in 3 fs steps, resulting in a matrix of modulated electric fields 2,XPME (t, t)∆ . 

 2,XPM 2 XPME (t, t) E (t) exp[i (t, t)]∆ = ⋅ ⋅ Φ ∆   (2.9) 

Subsequently the modulated fields are transformed back into the spectral domain via the 

inverse DFT, resulting in a matrix of transmission spectra T( , t)λ ∆ . These correspond to the 

XPM modulated TA spectra that would be observed by the CCD camera in the experiment. 

Just as in the experiment, T( , t)λ ∆  is divided by the transmission without pump (i.e. the input 

spectrum) and the negative logarithm is taken to yield the TA signal S( , t)λ ∆ in OD. 

In practice the white light probe carries a nonlinear chirp due to its generation in CaF2 and its 

spectrum is modulated. Around the CPA fundamental wavelength at 778 nm, which is used to 

generate the probe white light, the probe light is suppressed by a dielectric filter to avoid 

overexposure of the CCD (cf. Fig. 2.5). The employed dielectric also slightly modulates the 

spectral intensity throughout the VIS. For an introduction to the signal shapes and their 

dependence on the pulse parameters, two assumptions will be made in the following. Firstly, 

the probe spectrum is approximated by a flattop envelope centered at 530 nm with a FWHM 

width of 180 nm (cf. Fig. 2.5). Secondly, the probe chirp is assumed to be linear in the 

frequency domain. Hence, the probe is defined in the frequency domain via its spectrum 2S  

and a quadratic phase.   
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Fig. 2.5:  Experimental probe spectrum generated using the CPA fundamental at 778 nm in 

5 mm CaF2 (gray), approximated by a flattop spectrum centered at 530 nm 

(black). Colored lines: simulated modulation by XPM for increasing delay time 

using a chirp factor 210−β =  1/fs2. 

 2
2 2 2iE ( ) S ( ) exp ( )2 ω ω = ω ⋅ ⋅ β ⋅ ω − ω   (2.10) 

Here 2ω  is the probe’s central frequency and ωβ  a frequency domain chirp factor. The more 

commonly used slope β of the instantaneous frequency 

 2(t) tω = ω + β ⋅  (2.11) 

with the units 1/fs2 is given by 1ωβ = β  as a consequence of the similarity theorem. Typical 

values for β range between 210− and 310−  1/fs2. Note that in this convention a small chirp 

rate β  means a strongly chirped pulse and vice versa. The modulations shown in Fig. 2.5 were 

calculated using a chirp factor 210−β =  1/fs2. 

2.3.1 Dependence on Probe Chirp  

Figures 2.6a and 2.6c show simulated signals produced by linearly chirped probe pulses 

carrying moderate ( 310 10−β = ⋅  1/fs2) and strong chirp ( 32 10−β = ⋅  1/fs2). For 

comparability with experimental data, signals are plotted vs. detection wavelength. As the 

chirp is assumed linear in the frequency domain, the signals vs. wavelength are not straight 

lines. Insets show the calculated time domain probe pulses (blue) compared to the assumed 

pump pulses (red). Most commonly, the moderately chirped case is observed in chirped pulse 

TA measurements. Obviously, higher chirp causes an increase in the observed slope, as the 

same frequency interval is stretched over a longer probe pulse duration. 
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Fig. 2.6: Simulated signals due to XPM of moderately (a) and strongly chirped (c) white 

light probe in false color representation. pump 25fsτ = . Red (blue) indicates 

positive (negative) signal. Insets show calculated time domain pump (red) and 

probe pulses (blue). (b,d) delay time domain traces for selected wavelengths 

correspond to color coded cursors in (a) and (c). 

For comparability only a section of the strongly chirped dataset is shown in Fig. 2.6c. Panels 

2.6b and 2.6d show delay time domain signals for selected wavelengths spanning the entire 

probe range, leading to several crucial observations. First, t = 0∆  coincides with the probe’s 

central wavelength at 530 nm. Second, delay time domain signals are perfectly symmetric 

around their respective 0t (λ)∆  as long as the probe spectrum is constant. Third, signals 

become increasingly asymmetric at the edges of the probe spectrum. A direct dependence of 

the signals symmetry on the probe spectrum’s slope is confirmed when the probe spectrum is 

changed from a flat top to a Gaussian. 
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Fig. 2.7: (a) Simulated signal due to XPM of white light probe with very little chirp in false 

color representation. pump 25fsτ = . Red (blue) indicates positive (negative) 

signal. (b) Delay time domain traces for selected wavelengths correspond to color 

coded cursors. Amplitudes of selected curves were increased for better visibility. 

In this case only the time trace at the central wavelength is symmetric. Furthermore, at the red 

edge of the spectrum the asymmetry is stronger, leading to strongly distorted signals above 

700 nm. This can be easily explained: the probe spectrum was assumed as a flat top when 

plotted vs. wavelength. In the frequency domain, where the XPM modulation is computed, 

the intensity drop on the red edge of the spectrum is much steeper than that on the blue edge. 

This is also reflected by the computed time domain pulse shapes, which exhibit a steepened 

leading edge. Finally, the experimentally observed broadening of the delay time domain 

signal as well as the change from two negative ‘wings’ to multiple fringes is well reproduced 

by the simulation. When the chirp is negative, the detected signal simply flips, i.e. peaks 

become dips and vice versa.  

In the extreme case of an (almost) unchirped probe ( β = 1/fs2), the entire probe spectrum is 

modulated at the same time (cf. Fig. 2.7). The probe pulse is now significantly shorter than 

the pump. The CA is still symmetric in the center of the spectrum, but its amplitude is 

reduced by a factor of 10 compared to the chirped case. The large asymmetries can again be 

attributed to the spectral shape. For a Gaussian pump, the symmetric central section vanishes.  

2.3.2 Dependence on Pump Pulse Duration 

The dependence of the delay time domain signal on pump pulse duration pumpτ  is illustrated 

in Fig. 2.8a. Here the symmetric signal at the probe’s central wavelength was computed 

assuming the most common moderately chirped case with 310 10−β = ⋅  1/fs2. The delay time 

step size was reduced to 0.25 fs for this study. 
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Fig. 2.8: (a) Simulated signal at 310 10−β = ⋅  1/fs2 for different pump pulse durations 

pumpτ . Gray cursors illustrate increasing modulation frequency toward the sides 

(b) Coherent artifact amplitude (blue) and total width of modulated delay time 

interval modt∆  (red) vs. pumpτ . 

Figure 2.8b illustrates the signal amplitudes and widths of the delay time interval modulated 

by the artifact. Exact fitting will be discussed later in this chapter. At this point, a metric 

independent of a specific fit function is used: the modulated interval modt∆  is defined as the 

range where the modulation’s amplitude is at least 1/1000 of its maximum. Surprisingly, the 

shortest pump pulse does not yield the shortest CA. Around 25 fs a minimum is reached. This 

is due to the appearance of artifact fringes at short pump pulse durations. Recognizing that 

this is the same effect observed when increasing the probe pulse duration by chirping, one can 

conclude that the observed artifact fringes are not a direct result of the chirp, but arise from 

the large ratio between the two pulse durations. It follows that the fringes observed in chirped 

white light should be suppressed when using a longer pump pulse. This was confirmed by the 

simulation. The amplitude of the central peak does drop considerably as the modulated 

interval broadens, but the optimum configuration for the smallest and at the same time 

shortest artifact is assumed at a width of modt∆  = 87 fs using a 27 fs FWHM pump pulse. 

The conclusion is that if one is to obtain the shortest possible XPM induced CA for a given 

probe chirp, it does not make sense to shorten the pump pulse beyond a certain limit. 

Fortunately, 27 fs pump pulses are routinely available in our setup. Yet, already at this 

optimum pulse duration XPM should be taken into account by the fitting model used. 
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Fig. 2.9: Coherent artifact amplitude (blue) and total width of modulated delay time 

interval modt∆  (red) vs. pump pulse duration for white light carrying (a) 

negligible and (b) high linear chirp, 1β =  1/fs2 and 32 10−β = ⋅  1/fs2, 

respectively. 

A similar systematic can be observed in (almost) unchirped and highly chirped white light, as 

illustrated in Fig. 2.9a and 2.9b. respectively. While for (almost) unchirped white light the 

minimal modulated interval could be shortened to 20 fs assuming a 5 fs pump pulse, at high 

chirp the minimum width was reached at a pump pulse duration of ca. 230 fs.  

Hence, in order to obtain a temporally short artifact, both pump and probe pulses should be 

compressed whenever possible. Compression of a chirped white light generated in bulk 

material is cumbersome, as its nonlinear chirp can’t be fully compensated by a simple prism 

compressor. This requires tailored chirped mirrors. Recently, direct generation of (almost) 

unchirped white light in thin solid substrates has been envisioned [Wit15]. 

Making use of this effect, in principle one can optimize the pump compression without the 

need of an additional pulse characterization device: in linearly chirped white light, the spectral 

signatures exhibit the same features as their delay time domain counterparts (cf. Fig 2.5). 

While observing a transient spectrum recorded by the CCD camera at a fixed delay time, one 

can tune the pump compression either to obtain the maximum number of fringes, which 

corresponds to the shortest pump pulse, or instead optimize for a narrow artifact.  
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2.3.3 The Origin of Artifact Fringes 

The broadening of the artifact with increasing white light chirp seems unintuitive at first: for a 

larger chirp (i.e. a smaller chirp rate β ) the pump is interacting with a spectrally narrower part 

of the probe. For a linearly chirped probe the wavelength interacting with the pump at a given 

delay time can be calculated via equation 2.11, assuming the probe central wavelength 0λ

coincides with the pump at t = 0∆ . 

 ( ) 1
mod 2( t) 2 c t −λ ∆ = π ⋅ ⋅ ω + β ⋅ ∆  (2.12) 

An estimate for the spectral interval directly modulated by the pump is then 

 mod mod pump mod pump( t 2) ( t 2)∆λ = λ ∆ − τ − λ ∆ + τ . (2.13) 

For 210−β =  1/fs2 and 0λ  = 530 nm, mod∆λ  is ca. 15 nm for a 10 fs pump pulse.  

Artifact fringes can be understood as a spectral interference phenomenon [Wan99, Wah16]. 

Spectral components within the bandwidth perturbed can interfere with the unperturbed ones. 

When the pump pulse is much shorter than the probe, only a very narrow part of the probe 

spectrum is phase shifted at a given delay time. As a consequence, interference fringes appear 

in the spectrum over a range significantly broader than the perturbed interval. These are 

recorded by the CCD camera and inevitably translate into the delay time domain signal. 

 

 

Fig 2.10: Spectral interference of signals produced by increasingly shifted 10 fs pump 

pulses. (a) Unmodulated probe spectrum (gray) and individual spectra produced 

by first and last 10 fs pump pulse (green). Colored areas mark scanned t∆  

intervals. (b) Resulting signal for a single pump pulse (black dots) and the average 

over signals from 1000 (orange) and 2000 (blue) pump pulses delayed in steps of 

0.01 fs, centered around 530 nm. Signal amplitudes scaled for comparability.  
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When a broad spectral interval is modulated, this interference cancels out due to the 

superposition of signals. To illustrate this, the average over signals induced by increasingly 

delayed 10 fs pump pulses was calculated (cf. Fig. 2.10a). The delay time interval was chosen 

centered around t = 0∆  with a fine step size of 0.01 fs. As the scanned interval is increased 

from ±0 fs to ±10 fs, the fringes in the averaged signal wash out (cf. Fig. 2.10b) and the 

amplitude of the main peak slightly decreases. The same effect occurs when instead of the 

sum of many short pump pulses, one longer pulse is used (cf. Fig. 2.8). The period of the 

fringes shortens with increasing distance to the central peak. In the delay time domain this 

translates into a faster modulation with increasing distance to 0t (λ)∆ . Wahlstrand et al. make 

use of this interference to reconstruct the spectral phase of the probe pulse [Wah16]. Therein 

an analytical expression is derived that features a cosine with quadratic frequency 

dependence. 

2.3.4 Comparison to Experimental Data 

Finally it stands to be determined how closely the simulation can reproduce experimentally 

obtained data. In the following, experimentally obtained probe spectra will be used as input 

spectra in the simulation. The spectral phase reflecting the nonlinear chirp of the CaF2 white 

light can also be obtained from the experimental data. The spectral phase can be 

approximated by a Taylor expansion around the probe’s central wavelength [Die96].  

 n 2
s s0 c s1 c c s2 c c0

1( ) ( )( ) ( )( )2Φ = Φ ω + Φ ω ω − ω + Φ ω ω − ω +∑ 2, (2.14) 

where s1( )Φ ω  and s2( )Φ ω  represent the first and second derivatives of the spectral phase 

s ( )Φ ω  with respect to ω . In the time domain s0( )Φ ω  will merely result in a shift of the 

carrier envelope phase without affecting the pulse shape and delay, s1( )Φ ω  is a frequency 

dependent shift of the temporal pulse envelope, the group delay (GD), measured in fs. The 

second derivative represents the group delay dispersion (GDD), measured in 2fs . By 

determining the 0t (λ)∆  from the experimental time traces using the fitting model derived in 

the following section, the white light’s GD is obtained [Wah16]. Numerically integrating the 

fitted GD yields the spectral phase up to a constant corresponding to a temporal shift of the 

entire pulse. Absolute time shifts are irrelevant here, as the pump probe delay t∆  is defined 

relative to the probe pulse. In the simulation the delay at which the pump interacts with the 

probe’s central frequency is defined as t = 0∆ . The central frequency of the experimentally 

used white light is not a priori clear, especially since the spectrum’s long wavelength edge is 

truncated using a filter and therefore heavily structured. Hence, t = 0∆  is chosen such that the 
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coherent artifact manifests in the central part of the spectrum, but this choice is arbitrary. 

Three experimental datasets have been selected for comparison. For Dataset A white light 

generated from the CPA fundamental in 5 mm CaF2 and a visible 475 nm pump pulse with 

24 fs FWHM pulse duration were overlapped in a 200 µm thick Schott BK7 substrate. Dataset 

B was recorded with increased probe chirp. This was implemented by introducing a 14.5 mm 

Schott BK7 glass block into the white light’s beam path. To exemplify very small chirp, 

Dataset C was recorded in a nondegenerate NOPA pump NOPA probe experiment. The pump 

pulse was a 27 fs pulse from a NOPA at 270 nm and 600 nJ pulse energy, while the probe was 

obtained from the strongly attenuated output of a second NOPA tuned to 420 nm and 

compressed to 25 fs. The sample was a 100 µm thick α-BBO crystal. 

Figure  2.11 juxtaposes the experimentally obtained Dataset A with the simulation. The 

experimentally obtained probe spectrum and GD are illustrated in Fig. 2.11a. Fitting the GD 

close to the fundamental is cumbersome, so the curve was extrapolated in the red to cover the 

entire spectrum used (dashes). This is obviously not the whole truth, since the actual white 

light spectrum reaches significantly further into the NIR, past the fundamental at 778 nm, but 

these spectral components are usually not recorded by the CCD camera. Also, it is not a priori 

clear that the bulk generated white light can be viewed as a single linearly chirped pulse.  

Using just the observed part of the spectrum, Fourier transformation yields the time domain 

pulse shape illustrated in Fig. 2.11b. The structured red part of the spectrum is concentrated in 

the front of the pulse, since the GD is small in that spectral region. The blue components are 

delayed by up to about 1.2 ps. This perfectly matches the scanning range needed in the 

experiment to have the pump pulse interact with the entire probe spectrum, so even though 

not the whole spectrum was taken into account and the GD was fitted and extrapolated, the 

obtained probe pulse duration is realistic.  

Qualitatively, experimental and simulated TA signals illustrated in Fig. 2.11c and 2.11d look 

very similar. Even at the structured red edge the features are reproduced surprisingly well. 

Upon quantitative examination, some differences in the obtained time traces are found. 

Firstly, signals produced by the simulation are generally a factor of five larger than the 

experimental ones. Simulation shows that the amplitude of the artifact is directly proportional 

to the magnitude of the pump induced phase shift XPMΦ .  
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Fig. 2.11: Simulation using realistic probe spectrum and integrated phase from fitted group 

delay (GD) vs. experimental data. (a) Fitted GD (red, solid), extrapolated GD 

(red, dashed) and normalized experimental probe spectrum (blue). (b) Calculated 

pump (red) and probe (blue) time domain pulse shapes. (c) Experimentally 

obtained transient absorption (TA) signal. (d) Simulated TA signal. (e) 

Experimental (circles) and simulated time traces at spectral positions indicated in 

(d) for pumpτ  = 24 fs (gray), 40 fs (blue) and 50 fs (red). 
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The amplitude factors in XPMΦ  are the pump pulse intensity as well as the length L and 

nonlinear refractive index n2 of the medium (cf. Eq. 2.5). While the length and peak intensity 

are well known (183 µm, 300 GW/cm2), the nonlinear refractive index is not. The value for 

Schott B270 taken from literature was measured at 800 nm in a 5 mm thick sample and could 

easily be considerably smaller for the visible [Mog10]. Another factor that needs to be 

considered is that the spatial profile of the pump pulse is a Gaussian, and the probe spot in the 

sample is smaller than the pump spot by about a factor of four. Hence, in practice the probe 

will not experience a uniform phase shift corresponding to the peak intensity. 

Secondly, simulated signals tend to exhibit more fringes than the experimentally obtained 

ones. It was illustrated in Section 2.3.2 that the parameter responsible for the amount of 

fringes is the ratio between pump and probe pulse duration. The probe pulse duration of ca. 

1200 fs obtained from the simulation already matches the scan interval in the experiment well 

and the evolution of the CA signal is well reproduced. Therefore the simulation was repeated 

assuming different pump pulse durations pumpτ . Figure 2.11e shows time traces extracted 

from the experimental data at wavelengths indicated in Fig. 2.11c and 2.11d, compared to 

their simulated counterparts. The left and right axes are scaled for best comparability of the 

simulated and experimental signal amplitudes. The simulation assuming a 24 fs pump pulse 

(gray) clearly overestimates the artifact fringes. Increasing the pulse duration to 40 fs (blue) 

reproduces the signal shapes a lot better, especially in the blue. However, the decreasing 

signal intensity towards the red is not well reproduced. This improves when the pump pulse 

duration is further increased to 50 fs (red), but the fringes in the strongly chirped blue part of 

the spectrum are now underestimated. Also, simulations using 40 fs and 50 fs increasingly 

overestimate the total width of the modulated probe interval. This deviation becomes more 

severe towards longer wavelengths: this can be quantified using the fitting algorithm 

presented in the next section. When comparing the fitted widths of the modulation, the 

simulation using pumpτ  = 24 fs yields a value close to that of the experimental data, despite 

the more pronounced fringes. It follows that a good fit cannot be obtained by a simple 

increase in the pump pulse duration. Also, an error of this magnitude in the autocorrelation of 

the pump pulse seems very unlikely.  

As the deviation is wavelength dependent, a likely reason lies in the propagation effects 

neglected in the simulation. Group velocity mismatch (GVM) would cause a wavelength 

dependent shift of the probe pulse w.r.t the pump while propagating through the sample, 

therefore modulating a broader spectral interval. By the same argument as presented in 
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Section 2.3.3 this would cause the interference fringes to wash out. The magnitude of the 

GVM w.r.t. a reference wavelength refλ  can be estimated for B270 glass via  

 ref ref
ref

1 n 1 nGVM( ) n( ) n( )
c c

∂ ∂  λ = λ − λ ⋅ − λ − λ ⋅   ∂λ ∂λ   
 (2.15) 

where n(λ) is approximated via the Sellmeier equation using coefficients for B270 glass 

obtained from Crystran Ltd, UK [Cry16]. Multiplying the GVM by the substrate’s thickness 

of 183 µm, the total temporal shift of a given probe frequency can be calculated. At 

probe 400 nmλ = the total shift w.r.t. the 500 nm pump pulse amounts to approximately 

24 fs. This is small enough not to cause significant broadening of the CA, but at the same time 

slightly larger than the temporal shift that caused suppression of interference fringes in 

Section 2.3.3. Hence, it is just enough to explain the observed discrepancies in the fringes as 

well as the spectral dependence of the amplitude. 

 

 

Fig. 2.12:  Simulation using realistic probe spectrum and integrated phase from fitted GD vs. 

experimental data for highly chirped white light. (a) Fitted GD (red) compared to 

moderately chirped case (wine). (b) Calculated time domain pulse shape of the 

probe. (c) Simulated (blue) and experimentally obtained signal at 400 nm.(d) 

same as (c) for 500 nm and 600 nm. 
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Figure 2.12 shows the obtained TA signals at increased probe chirp (Dataset B), obtained in 

white light chirped by transmission through a 14.5 mm BK7 block and the corresponding 

simulation. The simulated scanning range has increased to 7000 fs, once more corresponding 

very well to the range scanned in the experiment. As before, the artifact fringes in the 

simulation are overpronounced. Nonetheless, the positions of maxima and minima are 

reproduced fairly accurately. 

Qualitative agreement is also obtained in the extreme case of an unchirped probe (cf. Fig. 

2.13). The simulated and experimental signals show similar features, i.e. two negative and 

two positive lobes with nodal planes at t∆  = 0 fs and at the probe’s central wavelength. In 

Fig. 2.13c the shift towards positive delay times at the blue edge of the experimentally 

obtained dataset indicates some residual chirp. In the simulation (Fig. 2.13d) zero chirp was 

assumed, i.e. no phase was added to the probe pulse. The Fourier-limited FWHM pulse 

duration corresponding to the experimentally obtained probe spectrum is 22 fs (cf. Fig. 

2.13b). The probe pulse duration obtained by autocorrelation was 25 fs, so the pulse was not 

perfectly Fourier-limited. The experimental traces occupy about twice as large a temporal 

interval as the simulated ones. Again, this broadening is likely due to a large GVM between 

the 270 nm pump and the visible probe in the 100 µm thick α-BBO crystal. The temporal 

shift calculated via Eq.  2.15 is approximately 142 fs, comparable to the experimentally 

observed width of the signals. 

While exact quantitative agreement has not been achieved, the above simulations do facilitate 

a qualitative understanding of the signals obtained under a wide range of conditions. It has 

further become clear that the coherent artifacts observed in the measurements presented 

herein are predominantly caused by XPM. In the following section fitting models for XPM 

induced coherent artifacts will be discussed.  
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Fig. 2.13:  Simulation using realistic probe spectrum vs. experimental data for an unchirped 

probe pulse. (a) Probe spectrum. (b) Calculated time domain pulse shape of pump 

and probe. (c) Experimentally obtained TA signal. (d) Simulated TA signal. (e) 

Simulated (circles) and experimentally obtained signals at wavelengths indicated 

by color coded cursors in (c) and (d). 
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2.4 Analytical Models & Parameterizations 

A suitable model for the coherent artifact (CA) is absolutely essential for the accurate 

determination of the time origin. Ignoring features like asymmetry, artifact wings or fringes 

can yield fraudulent 0t (λ)∆  which lead to errors in the subsequent analysis of molecular 

dynamics. From a reference measurement in pure solvent or a solid substrate the probe chirp 

can be inferred by way of the CA. To obtain a ‘clean’ Gaussian artifact induced by two 

photon absorption (TPA) over a broad spectral range, one must carefully choose sample 

materials to avoid contributions due to other effects. This can prove challenging as negative 

wings often occur even close to the material’s bandgap and at very low pump energies (cf. 

Fig. 2.2a). In most measurements presented in this thesis the dominating contribution to the 

artifact is cross phase modulation (XPM). While modeling TPA is certainly more straight-

forward, being able to model artifacts partly or mainly induced by XPM with sufficient 

precision comes with two big advantages: chirp reference measurements can be performed at 

any pump wavelength without the need to provide a selected set of materials with appropriate 

bandgaps. The only requirement is for the material to be transparent throughout the spectral 

range of interest. Section 2.5 will show that precise measurements of 0t (λ)∆  throughout the 

entire visible range are possible in a single scan using e.g. Schott B270 glass. Secondly, 

current fitting models often do not reproduce CA fringes, leading to a residual contribution to 

the transient absorption (TA) data that can be mistaken for e.g. electronic wavepacket motion. 

As spectroscopists are moving to ever shorter pump pulses to resolve the fastest dynamics, an 

approach taking these fringes into account is needed. Approximate analytical models of pump 

induced XPM in a chirped broadband probe pulse exist. Many consider the white light probe 

pulse as a single chirped Gaussian [Kov99, Wan99, Ekv00, Lap11, Wah16]. Others consider 

the change in intensity detected by a given detector pixel, as only a small portion of the probe 

interacts with the pump at a given delay time [Lor02]. Models become increasingly complex 

when including propagation effects like broadening due to group velocity dispersion (GVD) 

in the medium. In this case one has to rely on numerical simulations [Ekv00]. While 

analytical models allow extraction of pulse parameters [Kov99, Wah16], most practitioners 

rely on simplified parameterizations in order to extract 0t (λ)∆ . These are computationally 

less bulky and more robust in trace-by-trace fitting. In this section selected existing models 

are reviewed and a novel parameterization is introduced. 
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2.4.1 The Combined Gaussian & Derivative Model 

The most common parameterization used to fit the coherent artifact in the delay time domain 

at a given wavelength λ  is the sum of a Gaussian (0)G  and its first and second derivatives 
(1)G  and (2)G  w.r.t. the delay time t∆  [Kov99, Lor02, Meg09, Sla15]. 

 ( )
2

(i)
i 0

i 0
FGauß t A ( ) G ( ( ), t ( ), t)

=
∆ = λ ⋅ τ λ ∆ λ ∆∑  ( 2.16) 

Here the fit parameters are the time origin 0t ( )∆ λ , the amplitudes iA ( )λ , and the FWHM 

Gaussian width ( )τ λ . 1A  and 2A  carry the units s and 2s , respectively. In order to directly 

compare them to A0 they must be scaled according to  

 1 2* *
1 2 2

2A ln 4 A 8 ln 2A , A
e

⋅
= = −

τ τ
. (2.17) 

This is a practical approach that will fit contributions arising from TPA and XPM to a certain 

degree. The first derivative term facilitates the fit of asymmetric artifacts. Hence, especially 

when * *
0 1 2A >> A , A , this practical model is sufficient in many cases. Yet, the determination 

of 0t (λ)∆  can become ambiguous when the first derivative term 1A G '⋅  becomes large. 

Lorenc et al. offer a simplified but intuitive description motivating the second derivative term 

2A G ''⋅  [Lor02]. They describe a setup with slightly different parameters ( pumpτ  = 120 fs, 

grating spectrograph, fluid sample of up to 2 mm thickness in a flow cuvette), but the model 

is found to describe the data presented herein with the reasonable accuracy. Assuming a weak, 

linearly polarized probe pulse with a slowly varying envelope and a linear chirp, the time 

domain field can be decribed as  

 
2

2
2 2 22

2

2 ln(2) t 1E (t) E (0) exp i ( t t )2
 ⋅

= ⋅ − + ⋅ ω ⋅ + ⋅ β ⋅ 
τ  

   (2.18) 

where 2τ  is the FWHM duration of probe pulse and β  the linear chirp rate. The instantaneous 

frequency is then (cf. Eq. 2.7) 

 2(t) t (t)ω = ω + β ⋅ + ∆ω  (2.19) 

XPM will cause a modulation ∆ω  as given in Eq. 2.8 [Lor02]. Unless the frequency 

modulation due to XPM is so strong that the slope of (t)ω  changes sign, Lorenc et al. argue 

that the transmitted intensity T( , t)λ ∆  for a given detection wavelength λ  and pump probe 

delay t∆  is proportional to the square of the inverse slope of (t)ω  [Lor02]. 
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Fig. 2.14:  Schematic illustration of (a) the XPM induced probe GD modulation and (b) the 

resulting transmission signals with (orange) and without (red) group velocity 

dispersion. Modulation of probe chirp in (a) exaggerated for clarity. 

In other words, when the slope of (t)ω  is small, a given CCD pixel will be irradiated for a 

longer amount of time and therefore acquire more counts during its integration time. 

 

21

t( )
T( , t) (t, t)

t

−

λ

  ∂ λ ∆ ∝ ω ∆   ∂   

 (2.20) 

Here the time derivative is evaluated at the time t( )λ  corresponding to the detection 

wavelength under consideration. This is illustrated in Fig. 2.14a. Since the probe is linearly 

chirped, each spectral component λ  interacts with the pump at a different time t( )λ . For small 

frequency modulations ∆ω , t( )λ  can be obtained via 

 
2

1 2 c 2 ct( ) π ⋅ π ⋅ λ = ⋅ − β λ λ 
, (2.21) 

where 2λ  is the central wavelength of the probe. Similar arguments are used in [Tok96, 

Kov99, Lor02, Nau03]. It follows from Eqs. 2.19 and 2.20 that without a modulation by a 

pump pulse the transmission ( )2
0T ( , t 1)∆ ∝ βλ . Therefore, the TA signal 

0T( , t) / T ( , t)λ ∆ λ ∆  can be written as 

 

21

0 t( )

T( , t) (t, t)
T ( , t) t

−

λ

  λ ∆ ∂ = β ⋅ ω ∆   λ ∆ ∂   

. (2.22) 

Finally combining Eq .2.8, 2.19 and 2.22, the signal S( )λ  in OD for a given pump probe 

delay can be written as 
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 ( 2.23) 

where 2λ  is the central wavelength of the probe. S( , t)λ ∆  represents the signal in OD 

measured for a given pump probe delay t∆  and  probe wavelength λ . It should be noted that 

this model only holds for small modulations of the probe chirp. If the slope of (t)ω  is reduced 

to zero at any spectral position, the transmission is not defined at that point (Eq. 2.22).  

From Fig.2.14a and Eq. 2.21 one can infer that for a linearly chirped probe signal shapes in 

the frequency and delay time domains should be identical except for a stretching factor 

determined by the slope of the linear chirp β . Typical CA shapes are shown in Sections 2.2 

and 2.3. When β  increases, the delay time domain signal narrows because the modulation will 

affect a given probe wavelength only for a very limited delay time range while the frequency 

domain signal is stretched [Lor02]. Another crucial observation is that the artifact flips when 

β  changes sign. These properties correctly reflect systematics observed in simulation as well 

as experiment, as will be presented in Chapter 3.  

Asymmetry and fringes are not reproduced by the models discussed above. Figure 2.15 shows 

a coherent artifact generated in a 217µm Schott B270 glass by a 25 fs, 465 nm pump pulse in 

moderately and highly chirped white light (circles).  

 

 

Fig. 2.15:  (a) Coherent artifact in 183 µm Schott B270 (circles) and fits using FGauß (blue). 

pumpτ  = 25 fs , pumpλ  = 465 nm, probeλ  = 400 nm. Residual (red) offset for 

clarity. (b) Probe chirp increased by transmission through a 14.5 mm Schott BK7 

glass block. 
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Blue lines indicate fits using FGauß (Eq. 2.16). The CA wings are not reproduced with high 

accuracy. In the residual (red) a periodic deviation is clearly visible. The obvious reason is 

that this model only describes the redistribution of spectral intensity into different 

frequencies. It does not take into account phase effects like interference.  

In combination with CA asymmetries, periodic fluctuations can lead to unrealistic oscillations 

in the fitted 0t (λ)∆  which limit the measurement accuracy. It follows from the simulations in 

Section 2.3 that this model is only valid as long as the pump pulse is still long enough to not 

produce significant interference in the probe spectrum. On the path to resolve ever faster 

dynamics spectroscopists are moving to ever shorter pump pulses, so an approach taking into 

account this effect is needed. Recently, similar features were observed by Wahlstrand et al 

[Wah16].  

2.4.2 The Kovalenko Model 

A more rigorous analytical model has been proposed by Kovalenko et al [Kov99]. Neglecting 

GVD and assuming the pulses are long compared to the electronic dephasing, the delay time 

domain signal from a thin solid is derived for a given probe frequency. Starting from the third 

order polarization induced by the pump and probe electric fields, Kovalenko et al. argue that 

the probe can be described as a single nonlinearly chirped single pulse. They also discuss the 

special case of a linearly chirped probe with a slowly varying envelope and a linear chirp 

2E ( )ω  (cf. Eqs. 2.9 and 2.10). Since the pump interacts with different spectral components of 

the probe at different delay times, a so-called time zero function 0 2t ( )∆ Ω can be defined via  

 2 2
0 2t ( ) Ω − ω

∆ Ω =
β

. (2.24) 

0 2t ( )∆ Ω  describes the delay time at which a certain spectral component 2Ω  interacts with 

the pump, provided that 0 2t ( )∆ Ω is set to zero when 2 2Ω = ω  [Kov99].  

Assuming Gaussian pump and probe pulses, the XPM induced differential transmission vs. 

delay time for an unchirped pump and a linearly chirped probe takes the following form 

[Kov99]:  
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with 
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Here 1 pumpτ = τ , 2τ  is the FWHM probe pulse duration and 2Ω  the probe frequency under 

consideration. In this convention 2
2β ⋅ τ  is a dimensionless measure of the probe bandwidth 

and should be kept constant if the spectral width is to remain unchanged. Kovalenko et al. use 

differential transmission as opposed to 0T T , but for small signals these quantities are almost 

equivalent. The Gaussian envelope of Eq. 2.25a features a width dependent on the probe 

pulse’s chirp and duration. In the case of a moderately chirped probe, the combined Gaussian 

& derivative model can be deduced by expanding Eq. 2.25a. The width of the envelope then 

becomes comparable to pumpτ  [Kov99]. Delay time domain signals calculated via Eq. 2.25 

are illustrated in Fig. 2.16. 

 

 

Fig. 2.16: Signals calculated via Eq. 2.25 with parameters D0 = 0.2, τ1 = 30 fs. (a) For 

increasing chirp rates β = 4000 1/fs2 (blue),  β = 8000 1/fs2 (red) and 

β = 20000 1/fs2 (black), but constant bandwidth 2
2β ⋅ τ and 0t ( ) 0 fs∆ λ = . 

Signals plottet offset for clarity. (b) Signals at 0t ( ) 0 fs∆ λ =  and 500 fs±  for 

τ2 = 1000 fs and β = 4000 1/fs2. 



 - 32 - 

In Fig 2.16a the chirp rate β  was increased while maintaining a constant bandwidth 2
2β ⋅ τ . 

The experimentally observed emergence of fringes with increasing chirp is nicely reproduced 

by FKov. This was not explicitly shown in [Kov99]. 

Yet, there is a drawback: equation 2.25 inherently carries a special asymmetry with respect to 

the assumed central frequency 2cΩ  of the probe pulse, where 0 2ct ( ) = 0∆ Ω . The signal 

observed at a probe frequency 2c 2( )Ω − ∂Ω  equals the signal at 2c 2( )Ω + ∂Ω  when 

t - t∆ → ∆  (cf. Fig. 2.16b). Artifact simulations confirm this for the Gaussian shaped probe 

pulse assumed in reference [Kov99], but not for a flat top pulse or a realistic probe spectrum, 

where the artifact is fairly symmetric over a broad spectral range (cf. Fig 2.6).  

As a consequence, when Eq. 2.25 is to be employed as a fit function with parameters 0D , 1τ , 

2τ , β  and 0 2t ( )∆ Ω  the axis origin 0 2t ( ) = 0∆ Ω  must be adjusted for each time trace to 

account for CA asymmetries in experimentally obtained datasets. The determination of the 

correct shift is not straightforward and introduces additional errors and ambiguities. Fitting 

transient data over a wide spectral range via FKov (Eq. 2.25) is computationally expensive 

and parameters (especially 2τ ) tend to diverge. Fixing the pump and probe pulse durations 1τ  

and 2τ  for the whole dataset is not an option either, since these parameters depend on 2Ω  due 

to material dispersion not included in the model.  

For this reason, while fitting single time traces using FKov (Eq. 2.25) is possible and gives 

some insight into the characteristics of the pulses used, a more practical approach is required 

for a robust fit of entire transient datasets S( , t)λ ∆  over a wide spectral range.  

2.4.3 Combining Models for a Practical Parameterization 

An oscillating fit function is needed in order to accurately fit artifacts without leaving a 

systematic contribution in the residual. Hence, the combined Gaussian and derivative model 

introduced in Section 2.4.1 is not ideal. The Kovalenko model [Kov99] allows reconstruction 

of actual pulse parameters in an idealized case, yet aforementioned challenges render it 

impractical for the fit of experimental broadband transient data (cf. Section 2.4.2). In practice 

the main interest usually lies in the accurate determination of 0t ( )∆ λ  over a large bandwidth 

as well as a minimal residual. Drawing from the experience gained from simulations and 

existing models [Lor02, Kov99, Wah16], the simplified parameterization Fcos can be 

introduced by using a Gaussian and its first derivative, modulated by a cosine with a quadratic 

argument.  
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Fig. 2.17: (a) Coherent artifact from 183 µm Schott B270. pumpτ  = 25 fs at λpump=465 nm 

and λprobe=400 nm and fits using FGauss (blue) and Fcos (red). (b) Residuals. 
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(2.26) 

The fit parameters are 0 1 0A , A , , t , Bτ ∆ and Φ . This is only one additional parameter 

w.r.t. to the commonly used combined Gaussian and derivative model (cf. Section 2.4.1). The 

parameter B carries the unit 1/s2 and determines how quickly the fringe periodicity increases. 

When both TPA and XPM are contributing significantly, TPA will manifest as a phase shift 

of the modulation [Wan99], which can be adapted via the parameter Φ . The frequency factor 

B and phase Φ  allow reproduction of artifact fringes independent of the signals envelope. 

The first derivative term facilitates the fit of asymmetric signals irrespective of their absolute 

position relative to the central wavelength. For highly asymmetric CAs, care must be taken to 

keep the appropriately scaled *
1 0A << A  to avoid ambiguities (cf. Eq. 2.17). 

In the following the performance of the new parameterization Fcos is compared to the models 

discussed above for typical signals from probe pulses with varying chirp. Selected 

experimentally obtained time traces are fitted in Mathcad Prime 3.1 using a Levenberg-

Marquardt algorithm. Figure 2.17 clearly shows that Fcos reproduces the signal shape better 

than the second derivative in FGauss (Eq. 2.16), even for the most commonly observed 

artifact shape. The oscillating contribution in the residual is efficiently suppressed. 
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Fig. 2.18: Coherent artifact in 183 µm Schott B270 using 1000 nJ at λpump = 465 nm and fits 

using FKov (green) and Fcos (red dashes). (a) Signal at λprobe = 600 nm. (b,c) 

Probe chirp increased utilizing a 14.5 mm Schott BK7 block,  λprobe = 420 nm and 

500 nm, respectively. Bottom panels show residuals. 
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Compared to the analytical model FKov, Fcos yields an almost identical fit for a wide range 

of probe chirps (cf. Fig. 2.18). Parameters obtained by the fits in Fig. 2.18 are shown in Table 

2.1. Note that the experimental probe spectrum is not Gaussian, so the obtained probe pulse 

duration is certainly misleading. The pump pulse duration is likely overestimated due to GVM 

not included in the model. Even though the trace in Fig. 2.18b already looks quite 

asymmetric, the fitted 0t ( )∆ λ  only shifts by 0.5 fs with respect to a fit where *
1A  was fixed at 

zero, so *
1A  represents only a small correction. Here *

0 1A >> A  was not enforced explicitly 

as a constraint. This is only necessary for larger asymmetries. While the obtained chirp β  and 

probe pulse duration 2τ  from the trace in Fig. 2.18c are comparable to values obtained from 

that in Fig. 2.18b, the fitted pump pulse duration 1τ  is significantly shorter. This could be due 

to a smaller group velocity mismatch between the pump and the selected probe wavelength. 

Due to its superior adaptability to changing artifact shapes in white lights carrying different 

chirps (or varying pump pulse durations in case of constant chirp), all transient datasets 

throughout the following chapters are fitted line-by-line using Fcos (Eq. 2.26). In the 

following the fit routine will be tested section on simulated and experimentally obtained data. 

Table 2.1: Parameters for the artifacts shown in Fig. 2.18 from a fit using FKov. The time 

origin 0t∆  is compared to the value obtained via the parameterization Fcos.  

Trace τ1 (fs) τ2 (fs) β (10-3fs-2) 
∆t0(FKov) 

(fs) 
∆t0(Fcos) 

(fs) 
Diff.(fs) 

2.18a 48 524 7.0 349.0 348.2 0.8 
2.18b 78 1368 1.4 -1237.4 -1236.3 1.1 

2.18c 69 1358 1.1 -484.2 -483.9 0.3 
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2.5 The Fit Routine and its Performance 

For fits of complete TA datasets Mathcad Prime 3.1 was used. After postprocessing according 

to [Meg09] without chirp correction, the transient absorption datasets S( , t)λ ∆  are fitted time 

trace by time trace for each wavelength. First each time trace is truncated such that the signal 

occupies ca. 1/3 of the remaining trace to speed up the calculation. A Levenberg-Marquardt 

algorithm is then employed to fit the truncated time traces using Fcos (Eq. 2.26) with fit 

parameters 0 1 0A , A , , t , Bτ ∆  and Φ . To ensure stability, 1A  and B  are reset to their 

respective starting values before fitting each trace, while for all other parameters the result of 

the previous trace is used as a new starting value. Figure 2.19 shows a small section of a 

S( , t)λ ∆  dataset and the corresponding fit. Finally, the spectral evolution of each fit parameter 

is plotted and checked for unphysical discontinuities. As discussed above, the fitted time 

origin 0t ( )∆ λ  directly represents the white light’s group delay (cf. Eq. 2.14).  

For each trace the quality of the fit can be quantified via the residual’s RMS deviation. Q1, 

the RMS inside the interval where the signal was fitted, can be compared to the noise RMS 

outside the fitted window Q2. 

 RMS(signal fit)Q1
RMS(signal)

−
=  (2.27) 

 RMS(noise)Q2
RMS(signal)

=  (2.28) 

 

 

Fig. 2.19:  Fit in Mathcad Prime 3.1: section of a dataset S( , t)λ ∆  (left) and corresponding fit 

(right) in false color representation. Red indicates positive, blue negative signal. 

Data fitted time trace by time trace using the fit function Fcos (Eq. 2.26). 
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For experimentally obtained data, typically Q1 ~ 0.1 inside and Q2 ~ 0.01 outside the fitted 

window. These values signify that about 10 % of the integrated signal amplitude remain after 

the fit, while the signal to noise ratio is on the order of 100. Increased fluctuations on the time 

trace inside the fitted window likely originate from fluctuations in pump energy level and 

pump-probe overlap. Most importantly, systematic fluctuations in the residual are minimized. 

2.5.1 Performance on Simulated Data 

Different approaches come to mind when considering how to best find the true 0t ( )∆ λ  for 

increasingly asymmetric artifacts. As the GD can be defined without any uncertainty, CA 

simulations discussed in Section 2.3 represent a valuable tool to determine how well different 

fit functions are suited for fitting of the XPM induced CA. Test datasets are produced using 

the flat top spectrum shown in Fig. 2.5 centered at 530 nm with a width of 180 nm FWHM, a 

moderate chirp 2 210 1 fs−β = and a 25 fs pump pulse. The fit functions considered here are 

Fcos (Eq. 2.26), FGauß (Eq. 2.16) and a single Gaussian. Additionally, the position of the 

signal maximum and the signal’s center of mass COM are determined numerically. The COM 

is computed via 

 t
t

S( , t) t
COM( )

S( , t)
∆

∆

λ ∆ ⋅ ∆
λ =

λ ∆
∑

∑
 (2.29) 

Figure 2.20a illustrates the true GD and fitted 0t ( )∆ λ  for the moderately chirped case. The 

fitted 0t ( )∆ λ  matches the true simulated GD well except for the red edge of the spectrum. 

Figures 2.20b and 2.20c show the deviation from the true GD using different fit functions for 

moderate an high chirp. Except for the COM (green) and the position of the curve maximum 

(gray), all fit functions reproduce the true GD perfectly as long as the spectrum is flat. It is 

worth noting that with exception of 0t ( )∆ λ  all fit parameters are constant in this range. The 

COM and signal maximum position are limited by the sampling of the time trace and 

therefore oscillate as the signal moves across the delay time axis. Deviations are slightly 

worse at the red edge of the spectrum, since in the frequency domain the drop of the spectral 

intensity is significantly steeper in the red, leading to more pronounced asymmetries and 

distortions in the signal (cf. Fig 2.6). In the moderately chirped case (Fig. 2.20b) FGauss 

slightly outperforms Fcos in terms of the accuracy of the fitted 0t ( )∆ λ  at the edges of the 

spectrum. However, as was already shown in Fig. 2.17, Fcos reproduces the signal better.  
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Fig. 2.20: Fit to simulated data. (a) GD (black) and fitted 0t ( )∆ λ  (orange) using Fcos. (b) 

deviation from true GD for moderate chirp for a flattop probe spectrum. Green: 

Center of mass COM. Orange: single Gaussian. Red: Fcos. Blue: FGauß. Dotted 

lines in (b) indicate the deviation in case of a Gaussian probe spectrum. (c) Same 

as (b) for high chirp.  

Dotted lines in Fig 2.20b indicate the situation when the flattop is exchanged for a Gaussian 

probe. In this case, the error is zero only at the probe central wavelength, where the signal is 

perfectly symmetric.  

In the strongly chirped case (Fig. 2.20c), Fcos is more accurate than FGauss. Surprisingly, the 

fit using a single Gaussian turns out to be the most robust against artifact asymmetries, but it 

is obviously inadequate when the artifact is to be subtracted due to the significant residual (cf. 

Fig. 2.17). 

The conclusion here is that errors depend directly on the modulations of the probe spectrum. 

The first derivative of the Gaussian allows fitting to a certain accuracy, but strong 

asymmetries will lead to deviations no matter which fit function is used. Experimental white 

light spectra do exhibit modulations, so the error arising from these needs to be quantified. 

This will be addressed in the next section.  
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2.5.2 Performance on Experimental Data 

In order to quantify the deviation of the fitted 0t ( )∆ λ  w.r.t the true time origin due to spectral 

modulations of the probe, simulated signals using an experimentally obtained probe spectrum 

and GD can be used as demonstrated in Section 2.3.4.  

For moderate chirp, the error in the fitted 0t ( )∆ λ  is less than ±1 fs throughout most of the 

pedestal section of the probe spectrum both for Fcos (blue) and FGauß (red) (cf. Fig. 2.21a). 

The COM (green) also reproduces the time origin reasonably well, but is more sensitive to 

signal asymmetries due to modulations in the probe spectrum. Sample signals and fits are 

shown in the right panels. 

 

 

Fig. 2.21: Deviation of fits w.r.t. true 0t ( )∆ λ  for experimentally obtained probe spectra. (a) 

Moderate nonlinear chirp. Gray dash: probe spectrum. Green: COM. Red: Fcos. 

Blue: FGauß. (b) High linear chirps. Dotted lines refer to highest chirp.(c) High 

nonlinear chirp. Right: example signals & fits using Fcos (red) and FGauß (blue). 
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Figure 2.21b illustrates deviations as the chirp is increased. For 3 22 10 1 fs−β = ⋅ (dotted 

lines) and 3 21 10 1 fs−β = ⋅ (solid lines), the accuracy is even better than in the moderately 

chirped case. This graph also nicely illustrates how the modulations of the spectrum translate 

into the fitted 0t ( )∆ λ  when using FGauß (blue). As Fcos (red) models the oscillating signal 

well, it is less susceptible to this error.  

There are limits to the fitted accuracy in the case of large nonlinear chirp, e.g. when the white 

light is chirped using a 14.5 mm BK7 glass block. In Fig. 2.21c, while the signal shape is still 

reproduced very accurately by Fcos, the fitted 0t ( )∆ λ  experiences a shift from the true value 

by about 1 fs (red).  

A likely reason for this shift is the nonlinearity of the chirp. In the highly chirped case, artifact 

fringes contribute significantly over a wide spectral range. The signal in the delay time 

domain will then consist of data points stemming from spectra recorded over a wide range of 

t∆ , i.e. with significantly different chirp values. This inevitably distorts the signal in the 

delay time domain. For the determination of the time origin, it is in this case more accurate to 

not take into account the entire signal. The deviation from the true value becomes more 

significant toward the blue, where the chirp is highest. 

The accuracy of the fitted 0t∆  can also be estimated without the use of simulated data. In this 

case the real 0t ( )∆ λ  encoded in the data is unknown, but it is expected to be a reasonably 

smooth function without any high frequency fluctuations. Therefore, when a polynomial of 

high enough order is fitted to and subtracted from the experimentally obtained 0t ( )∆ λ  curve, 

ideally the residual should vanish. 

 

 

Fig. 2.22: Residual of a 0t ( )∆ λ  curve fitted to experimental data after subtraction of an 8th 

order polynomial. Blue: 0t ( )∆ λ determined using FGauß. Standard deviation: 

0.9 fs. Red: 0t ( )∆ λ  determined using Fcos. Standard deviation: 0.5 fs. 
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Figure 2.22 shows the residual from a subtraction of an 8th order polynomial from a 0t ( )∆ λ  

curve fitted to a dataset obtained in 183 µm B270 glass at λpump=500 nm. Two kinds of high 

frequency fluctuations remain: The EKSMA “HR795-835 HT300-700” filter used to block 

the fundamental after white light generation not only modulates the spectrum, but also 

introduces some measurable group delay modulations. This slightly modulates the 0t ( )∆ λ , 

especially above ~600 nm. The group delay introduced by added dispersive optical elements 

will be the focus of the following chapter. Note that the group delay introduced by this filter 

will not contribute to the final results presented there, as it contributes to both reference and 

sample measurements.  

The remaining high frequency fluctuations are caused by combination of artifact asymmetry 

and experimental noise. Their magnitude is comparable to the error seen in simulated time 

traces, but their frequency is much higher than that of the modulations in the probe spectrum. 

Using the new model Fcos, the precision of the fitted 0t ( )∆ λ  in this experimental time trace 

was increased from ± 0.9 fs to ± 0.5 fs compared to the combined Gaussian & derivative 

model (Eq. 2.16). This considerably increases the overall measurement accuracy for 0t ( )∆ ω  

from several fs to ~ 1 fs.  

Fcos may not yield the highest accuracy in the fitted 0t ( )∆ λ  in all circumstances, but it does 

feature acceptable accuracy and at the same reproduces the varying signal shapes 

impressively well over a wide range of parameters. The final section will illustrate this 

advantage. 

2.5.3 Subtracting the Fitted Artifact 

While inclusion of the CA in the model used for data analysis is usually preferable, 

sometimes it can be instructive to subtract the CA contribution to the time traces, thereby 

revealing hidden spectral features. This becomes more relevant when artifacts occupy large 

time intervals. Current models either use FGauß, or separate the fast fluctuation via singular 

value decomposition [Sla15, Wil11]. The latter proves especially tricky when the sample 

exhibits fast dynamics on the timescale of the CA modulation. In fact, signals subtracted non 

perfectly in reference [Wil11] closely resemble simulated XPM signatures.  

It has become quite clear throughout the previous chapters that Fcos yields a much better fit 

than FGauß whenever artifact fringes contribute significantly to the signal. For this reason, a 

quantitative inspection will be limited to the moderately chirped case (cf. Fig. 2.21a), where 

the improvement is least obvious.  
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Fig. 2.23: Subtraction of the coherent artifact. (a) False color representation of experimental 

data in 183 µm B270 glass (λpump=500 nm). (b) fit using Fcos. (c,d) Residuals 

from Fit using FGauß and Fcos, multiplied by a factor of 10. (e) Residuals at 

selected spectral positions indicated by cursors for FGauß (blue) and Fcos (red). 

Gray area marks one standard deviation for the residuals obtained from Fcos-fit. 

Figure 2.23 juxtaposes an experimentally obtained dataset to the fit using Fcos. Figures 2.23b 

and 2.23c show the fit residuals obtained when using FGauß and Fcos, enlarged by a factor of 

ten. When using FGauß, the amplitude of the residual is clearly wavelength dependent. This is 

due to the nonlinear chirp of the white light. In the blue the chirp is highest, causing the 

fringes not taken into account by the fit function to be more pronounced. A large wavelength 

dependent residual is unfavorable because after chirp correction it can be mistaken for a real 

transient contribution from the sample. Figure 2.23e directly compares the residual 

amplitudes at selected detection wavelengths. Even in the moderately chirped case, Fcos 

reduces the residual amplitude significantly. The residual is independent of the detection 

wavelength within measurement accuracy. A somewhat increased noise level within the 
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modulated interval is to be expected due to fluctuations in pump energy level and pump-probe 

overlap. Close inspection reveals a small oscillating contribution with a period of 

approximately 30 fs. Its amplitude is approximately 0.04 mOD, just above the noise limit of 

our referenced setup, which is about 0.02 mOD. This feature is likely due to impulsive 

stimulated Raman scattering in the sample [Sil85, Meg09]. 

Finally, as an example of a transient dataset with molecular contributions, the Pyrene data 

shown in Fig. 2.1 processed using Fcos (Eq. 2.26). Figure 2.24 shows the dataset after artifact 

subtraction and chirp correction. Subtraction of the coherent artifact reveals a ground state 

bleach signature just above 350 nm that was completely obscured by the CA (red arrow). 

The data was fitted time trace by time trace using  

 [ ]( ){ }i i i iif ( t, ) IRF(t) (t) * A exp t const CA∆ τ = ⊗ Θ − ∆ τ + +∑ . (2.30) 

Details on why a sum of exponential functions is a valid model will be provided in Chapter 4.  

 

 

Fig. 2.24: Example dataset shown in Fig. 2.1 with corrected white light chirp and subtracted 

coherent artifact. (a,c) TA signal in false color representation, red (blue) indicates 

positive (negative) contributions. (b,d) Time traces at selected wavelengths.  
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The IRF is a Gaussian with the cross correlation width CCFWHM ( )λ . CCFWHM ( )λ  

represents the wavelength dependent width of the cross correlation between the pump pulse 

and the portion of the probe observed on a given CCD pixel. The spectral resolution of the 

pump probe setup is ~ 3 THz in the VIS. Therefore, assuming a Fourier-limited Gaussian, 

every pixel detects a bandwidth equivalent to a ~150 fs pulse [Meg09]. Typically, fitted 

CCFWHM ( )λ  range between 40 fs and 80 fs. The fitted values are often used as a measure of 

the time resolution achieved in the experiment [Ras01, Meg09, Hom11]. In the moderately 

chirped case, the width of the artifact’s envelope and the cross correlation width are very 

similar [Kov99]. Hence, when using the Gaussian & derivative model to fit the CA, the width 

of the Gaussians is commonly set to CCFWHM ( )λ . In analogy, the parameter ( )τ λ  in Fcos 

was set to equal CCFWHM ( )λ  in this example. 

However, it should be noted that when artifact fringes become significant, the artifact 

envelope broadens significantly (cf. Fig. 2.8). According to the simulations, this will occur 

either when the probe chirp is increased or when a shorter pump pulse is used. While it would 

make sense for the cross correlation to broaden for a chirped probe pulse, a shorter pump 

pulse does not warrant a longer cross correlation. The best way to quantify the time resolution 

and its connection to the probe chirp and CCFWHM ( )λ  is not straightforward and still 

somewhat debated [Pol10]. From a purely Gaussian artifact the rime resolution can be 

obtained via CCFWHM ( )λ  [Pom98], but the simulations presented here suggest that the 

fitted width of the artifact is no longer an accurate measure when spectral interference 

contributes significantly. 
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2.6 Summary: Varying Artifact Shapes Require a New Parameterization 

This chapter illustrated the importance of cross phase modulation in the modeling of the 

coherent artifact in the VIS/NIR. Depending on the probe chirp, artifacts can exhibit 

interference fringes, obscuring molecular dynamics over up to several hundreds of fs. 

Simulations suggest an optimum pump pulse duration for a given probe chirp, yielding an 

artifact with minimum width. For the parameters typical of the setup used herein this 

optimum is at ca. 27 fs, a pump pulse duration readily achieved with a NOPA and prism 

compressor.  

The artifact asymmetry correlates with modulations in the probe spectrum. Analytical models 

for the cross phase modulation induced coherent artifact assuming idealized pump and probe 

pulses are therefore ill-suited as fit functions for experimentally obtained artifact signals. The 

novel parameterization presented in this chapter removes this constraint. It yields comparable 

or better accuracy in the determination of the time origin as the commonly used Gaussian & 

derivative model, while reproducing the signals much more accurately. 

The new parameterization will likely improve future data analysis, especially due to its very 

accurate reproduction of the varying artifact shapes for a range of experimental parameters. In 

the following chapter, this new flexibility will be exploited for accurate analysis of probe 

pulses with strongly modulated group delay. The photophysics of pyrene will be investigated 

further in chapter 4.  
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3 Characterizing Broadband Dielectric Mirrors 

from UV to NIR Using the Coherent Artifact 

In this chapter a novel method to characterize broadband dielectric mirrors in a transient 

absorption (TA) pump probe experiment is presented. Accurate fitting of coherent artifacts 

using the novel parameterization introduced in the previous chapter facilitates precise 

determination of the time origin 0t (λ)∆  for each spectral component of variably chirped 

probe pulses. This enables a direct measurement of the coating induced group delay (GD) 

using a source that is sensitive to pulse deformation and splitting. With recent advances in 

broadband coating technology, this will become increasingly interesting as GD data is often 

kept a secret by vendors for fear of plagiarism.  

In the following, the GD characteristics of selected dielectric coatings are extracted from TA 

measurements on solid substrates. Examples from the ultraviolet to the near infrared spectral 

range will be presented to highlight advantages and as well as limits of this novel method. 

3.1 Dielectric Mirrors Introduce Group Delay 

Dielectric mirrors are composed of thin layers of dielectric materials. Their reflectivity is due 

to constructive interference of waves reflected by individual layers: High refractive index 

layers are interleaved with low index material such that the optical path length difference 

upon reflection matches the wavelength of the incident light. This condition can only be 

fulfilled for a limited wavelength range with a single stack. Broadband mirrors are usually 

realized by combining stacks for different wavelengths. To realize ultra broadband reflectors, 

more than 100 layer pairs are combined. Typically the outer layers of the coating are designed 

thinner than the ones closest to the substrate. This way the bluest components most prone to 

material dispersion do not penetrate deep into the coating. As a consequence, the red part of 

the spectrum is delayed with respect to the blue part.  

The reflected field outE ( )ω  is related to the incident field inE ( )ω  via [Die96]: 

 [ ]out s inE ( ) R ( ) exp i ( ) E ( )ω = ω ⋅ − ⋅ Φ ω ⋅ ω   (3.1) 

Upon reflection spectral components of the incident light will not only experience an 

amplitude modulation according to the mirror’s reflectivity 2R ( )ω  but also acquire 

different spectral phases s ( )Φ ω . 
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In the time domain, this translates to 

 [ ]out in s
1E (t) R ( ) E ( ) exp i( t ( )) d

2

+∞

−∞
= ω ⋅ ω ⋅ ω − Φ ω ω

π ∫   (3.2) 

Taylor expanding the phase around a carrier frequency cω  leads to 

 
( )[ ]

( ) ( )
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1E (t) exp i t ( ) R( ) E ( )
2

1exp i t ( ) ( )( ) d2

+∞

−∞
= ω − Φ ω ⋅ ω ⋅ ω

π

 ⋅ − ω − ω ⋅ − Φ ω − Φ ω ω − ω + ω 

∫ 

2

(3.3) 

where s1( )Φ ω  and s2( )Φ ω  represent the first and second derivatives of the spectral phase 

s ( )Φ ω  with respect to ω . While s0( )Φ ω  will merely result in a shift of the carrier envelope 

phase without affecting the pulse shape and delay, s1( )Φ ω  is a frequency dependent shift of 

the temporal pulse envelope, the group delay (GD), measured in fs. The second derivative 

represents the group delay dispersion (GDD), measured in 2fs . It is common amongst coating 

designers to only report GDD curves, since the GD is a relative quantity indicating the delay 

of a given spectral component with respect to another. The GD is however the more 

illustrative quantity - especially with respect to application in pump probe spectroscopy, 

where relative delays of spectral components in the chirped probe pulse have to be taken into 

account when evaluating the data. Coating induced phase modulations can cause significant 

pulse broadening, reshaping and even pulse splitting when the pulse length is comparable to 

the coating thickness [Die85, Wei85]. In addition the reflection from the outermost layer 

interferes with light reflected further within the coating and dispersion oscillations are 

observed. Hence, for use with ultrashort pulses the phase response has to be controlled as well 

as the reflectivity. Appropriate materials must be found and stack sequences carefully 

modeled in order to serve the respective application. Various concepts have been devised to 

overcome this problem and since the 1990s mirrors with controlled GD have become 

commercially available [Sci94, Mat99, Kaer01, Bau06, Hab16a, Raz17]. Applications include 

low GD broadband high reflectors and chirped mirrors for dispersion control in fs laser 

systems [Sci97, Kär01, Bau06].  

Due to inherent and unavoidable uncertainties in the coating process, it is imperative to 

experimentally verify a given mirrors GD (or GDD) characteristics before use in a sensitive 

experiment [Tru13].  
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3.2 The Standard Technique: White Light Interferometry 

Traditionally the response function of a mirror coating is measured using white light 

interferometry (WLI). Here a halogen lamp is used as a light source in a Michelson 

interferometer. After a reference measurement one or several mirrors are replaced by the 

dielectric mirrors under investigation. This method yields amplitude modulation and GDD via 

the Fourier transformation of spectrally resolved interference patterns [Die96, Gos05]. In 

addition the GD can be measured by careful evaluation of the shift of the interference 

pattern’s maximum for each wavelength [Kno88, Nag90, Amo09, Hab16, Sch16]. GD 

accuracies reach from few fs [Kan15] down to ~0.1 fs [Kov95, Did96] in the VIS/NIR. 

Toward the ultraviolet spectral region measurements become more challenging due to a 

higher required scan interval for the interferometer [Nag90] and the limited availability of 

high quality optics such as UV beam splitters. A rare example for a WLI measurement in the 

UV is Razskazovskaya et al. [Raz16]. 

An alternative approach called Resonance Scanning Interferometry (RSI) has also been 

proposed by Trubetskov et al [Tru13]. Promising results are shown in the NIR, but towards 

the UV the measurement accuracy decreases just like in WLI. 

Interferometric techniques enable coating characterization to high accuracy without the need 

of expensive pulsed light sources. The technique presented here is not meant to replace these 

established tools, but to enable groups with access to state of the art pump probe setups to 

evaluate the optics at their disposal using the very pulses that are being used in their pump 

probe experiments.  

The pump probe method yields ±1 fs accuracy in the determination of the GD over a wide 

spectral range down to the UV and has the added capability of being sensitive to pulse 

deformation and splitting. Thereby it provides a simple test to determine the applicability of a 

mirror at hand for measurements on a given timescale. Measurements described in this work 

will concentrate on the UV/VIS spectral region, but it should be noted that this technique is in 

principle also applicable in the NIR, using white lights generated according to Riedle et al. 

[Rie13, Bra14a].  
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3.3 From Pump Probe Setup to Group Delay-Meter 

Making use of the coherent artifact and the model described in Chapter 2, the transient 

absorption setup presented in [Meg09] and [Bra14] can easily be transformed into a group 

delay measurement device. All that is needed are four additional reflections in the probe beam 

path. A removable stage was developed that facilitates four added reflections under 45° 

without changing the downstream beam path (cf. Fig.3.1). Rear loaded mirror mounts are 

used to ascertain reflection in the same plane irrespective of the thickness of the mirror’s 

substrate. Substrates are held in place by spring steel clips applying pressure from the back. 

This removes alignment uncertainties arising from screwing onto their often imperfect side 

surfaces. 

 

 

Fig. 3.1: Top: Transient absorption setup for mirror characterization measurements.  

PC: Prism Compressor. Bottom: Image of the removable reflection stage. 
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After traversing the reflection stage, the white light probe is focused and overlapped with a 

~25 fs pump pulse featuring a peak intensity of 330 GW/cm2 in a thin solid medium, where 

nonlinear effects lead to the delay time dependent signal called coherent artifact (cf. 

Chapter 2). For the experiments presented in this chapter, solid plane parallel HOYA L42 and 

Schott B270 glass substrates are used at the sample position. Substrates are approximately 

200 µm thin and oriented perpendicular to the probe’s propagation direction. A typical 

transient dataset S( , t)λ ∆  is shown in Fig. 3.2a. Due to its generation in bulk CaF2, the probe 

white light is chirped. This is why the pump pulse interacts with different spectral 

components of the probe at different delay times ∆t. At negative delay the positively chirped 

probe precedes the pump. As the pump probe delay is scanned towards positive ∆t the artifact 

moves from the blue to the red part of the recorded spectrum. The artifact shape changes with 

detection wavelength (right panel in Fig. 3.2a). Toward the visible spectral range cross phase 

modulation (XPM) replaces two photon absorption (TPA) as the dominating effect, causing 

the artifact’s shape to deviate from a Gaussian. Changing shapes must be reproduced by the 

model in order to obtain a reliable fit for the time origin 0t (λ)∆ , where a certain spectral 

component λ  of the probe temporally overlaps the pump pulse. The model presented in 

Chapter 2 facilitates determination of 0t (λ)∆  with an error of less than 1 fs from purely 

Gaussian artifacts to oscillating signal shapes observed in strongly chirped white light. 

After a reference measurement using four metallic Qioptiq RAL UV mirrors which are 

assumed to add negligible delay to the white light (Fig. 3.2a), one or more mirrors can be 

exchanged for the dielectrics under investigation (Fig. 3.2b). In this example four Qioptiq 

UVBB HR 240-400 are used, which feature high reflectivity over the entire range displayed, 

but are not GD optimized for use with fs pulses. Slight changes in alignment manifest as a 

subtle change in the wavelength calibration for the CCD camera pixels. This is managed by 

recalibration and interpolation of the sample to the reference wavelength axis after separate 

fitting of 0t (λ)∆ . The reference 0t (λ)∆  is subtracted from the interpolated sample 0t (λ)∆ . 

Thereby all GD modulations inherent to the system vanish, leaving only the contribution to 

the delay induced by the mirror coating (Fig. 3.2c). The modulation in this example is quite 

large, for some wavelengths the artifact is not only shifted but appears distorted and even 

inverted (cf. red line in Fig. 3.2b and c). How to understand and deal with such strong 

modulations will be discussed later in this chapter. For fs mirrors with controlled GD 

characteristics, modulations are usually much smaller. In the following, raw data will always 

be shown with the reference 0t (λ)∆  subtracted for better visibility (cf. Fig. 3.2c). 
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Fig. 3.2:  Coherent artifact in 50 µm Sapphire using a pump pulse at 230 nm at 180 nJ and 

white light generated by the frequency doubled CPA at 389 nm in 5 mm CaF2. 

Right panels: Lineouts taken at positions indicated by color coded vertical lines. 

(a) Reference measurement. (b) 4x Dielectric Qioptiq UVBB HR240-400 mirrors 

inserted. (c) Reference 0t (λ)∆  subtracted. Raw data provided by Elias Eckert.   
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3.4 Femtosecond Precision Despite Use of Much Longer Pulses 

Several factors must be considered in order to determine the measurement accuracy. 

Uncertainties introduced by the fitting of 0t (λ)∆  were quantified in Chapter 2 to less than 

±1 fs. Secondly, alignment uncertainties must be quantified. Fig. 3.3a shows the difference in 

0t (λ)∆  after removal and reinsertion of all four metallic reference mirrors. The result is 

constant within 1 fs over the measured spectral range, the standard deviation is 0.70 fs. To 

remove the influence of noise at the relatively low 100 nJ pump energy used, the dataset was 

smoothed, resulting in a standard deviation of 0.57 fs. Since the GD is a relative quantity, the 

constant offset of 65 fs can be ignored. From this offset, one can infer a path difference of 

only 4.5 µm per mirror. Finally, overall alignment of the setup may change slightly on a daily 

basis due to temperature and humidity fluctuations. This can influence e.g. the pump pulse 

duration and the properties of the probe white light. The reproducibility of the measured GD 

is mostly below ±1 fs (cf. Fig. 3.3b), the standard deviation over the range displayed is 

0.75 fs. Data in Fig. 3.3b was taken at 1000 nJ pump energy, resulting in an improved signal 

to noise at the expense of a small stray light contribution around 465 nm, probably due to an 

imperfect spot on the sample. The comparable standard deviations in Fig. 3.3a and b indicate 

that a tradeoff between signal to noise and manageable stray light must be found for the most 

accurate measurement. Averaging over many scans can introduce errors due to temperature 

fluctuations in the laboratory. It is therefore advisable to keep the measurement time below 

30 min. The overall measurement accuracy of this method is estimated to be ±1 fs, which is 

comparable to common WLI setups. 

 

 

Fig 3.3: Measurements in 217 µm HOYA L42 glass at Epump = 100 nJ. λpump = 465 nm.  

(a) 0t (λ)∆ after reinsertion of all four metallic mirrors. Black: Smoothed data. (b) 

Difference between resulting GD from measurements at Epump = 1000 nJ on two 

consecutive days. 
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3.5 A Group Delay Optimized Broadband Mirror in the UV 

A 2D-UV spectrometer under development requires mirrors supporting a bandwidth from 

250 nm to 370 nm with controlled dispersion [Kre13]. This challenge was met by designing 

the “CMUV08” mirror coating, illustrated in Fig. 3.4a [Hab16b]. Figure 3.4b shows the 

coating put to the test in the pump-probe setup. Measurements using 385 nm and 775 nm 

pumped supercontinua were stitched together for this purpose [Rie13, Bra14a]. Measurements 

were performed using four CMUV08 to enhance precision. In contrast to the off-the-shelf 

solution presented in Fig. 3.2, between 250 nm and 370 nm the CMUV08 does not distort the 

pulse GD, but exhibits a controlled slope. Outside of the specified region one can observe 

large GD fluctuations as well as pulse distortions. The mirror features a reflectivity R > 96 % 

over the entire spectral range. 

Figure 3.4c shows that the fitted GD (red) obtained using the pump probe technique is in 

approximate agreement with the coating design curve (black) and an interferometric 

measurement (blue). The pump probe measurement actually reproduces the calculated slope 

better than the corresponding WLI measurement, though the oscillating features appear some-

what smoothed. Results from measurements in 389 nm pumped and 778 nm pumped white 

light were stitched together to obtain the GD over the entire bandwidth. The coating exhibits 

moderate GD fluctuations of a few fs on top of a negative linear chirp. Negative chirp will 

help keep the pulse compressed in the sample plane of the 2D-UV experiment. Any residual 

linear chirp can be compensated using a prism compressor already incorporated in the setup. 

There are slight differences between WLI and pump probe data, but both measurements 

clearly indicate the CMUV08 is well suited for use in broadband UV applications. 

Integrating the measured GD yields the spectral phase up to a constant. From the spectral 

phase the time domain pulse shape and phase after reflection on the mirror can be calculated 

for a Gaussian input pulse. Figure 3.4d shows a Fourier-limited 7.1 fs pulse (black dashes) at 

325 nm central wavelength as well as its calculated pulse shape after six reflections on the 

CMUV08 (blue). This represents the number of reflections in the planned 2DUV setup 

[Kre13]. Since only the relative GD was measured, the information on the absolute time delay 

experienced is lost. The integration constant was chosen such that the reflected pulse 

experiences no significant delay w.r.t. the incident pulse. The FWHM pulse duration has 

increased to 16.1 fs. Simulating a prism compressor by fit and subtraction of the second order 

phase, this pulse can be recompressed to 9.4 fs.  
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Fig. 3.4: (a) Coating design using SiO2 (red) and HfO2 (blue). Green dots indicate quarter 

wave thickness at wavelengths specified on top. (b) Pump probe GD measurement 

of four CMUV08 mirrors under 45° in s-pol using 385 nm and 778 nm pumped 

white light. Measurements stitched together at position indicated by dotted line. 

Excitation at 325 nm in 100 µm α-BBO using 100 nJ. (c) Fitted GD (red) of one 

CMUV08 compared to calculation (black) and interferometric data (blue). Green: 

coating reflectivity. Coating design and WLI data provided by F. Habel. (d) 

Calculated time domain pulse shape (top) and phase (bottom) of a Fourier-limited 

7.1 fs pulse centered at 325 nm before (black) and after 6 reflections (blue) on a 

CMUV08 coating. Recompressed pulse (red) obtained by fit and subtraction of a 

parabola (green) to the phase of the reflected pulse. Amplitudes normalized to 

Fourier-limited amplitude. 
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3.6 Ultrabroadband Reflectors in the VIS/NIR 

Recently, high reflectors covering the full visible and part of the UV and NIR spectral range 

have become commercially available. The Optics Balzers Diflex 1100 and 2000 coatings 

claim more than 99% reflectivity from 350 nm to 1100 nm and from 320 nm to 2000 nm, 

respectively. These coatings are not optimized for controlled GD, but nonetheless an 

interesting example to investigate.  

Figure 3.5 shows reflectivity measurements taken in a Shimadzu UV-2600 spectrophotometer 

equipped with an Ulbricht sphere. Figure 3.5 indicates that the reflectivity of the Diflex 1100 

(2000) decreases significantly below 325 nm (350 nm). A transmission scan shows the 

mirrors are not transparent in this region, therefore this is due to absorption in the coating 

material. Niobium- or zirconium oxide are examples of frequently used high index materials 

that absorb in this range [Fri03]. 

 

 

Fig. 3.5: Reflectivity and transmission of Diflex mirrors measured in a Shimadzu  UV-

2600 spectrophotometer with Ulbricht sphere. Below 325 nm the coating absorbs.  

 

Fig. 3.6: (a) GD integrated (black line) and extrapolated (red dots) from calculation.  

(b) Spectral phase integrated from GD. Integration constant chosen such that 

delay of reflected pulse is zero w.r.t. the incident pulse. 
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3.6.1 Calculation of Time Domain Pulse Shapes 

Optics Balzers generously provided a calculated GDD curve for the Diflex 1100 mirror, from 

which a theoretical GD could be obtained by integration. There is no information on the 

absolute time delay experienced by a pulse upon reflection. As before, the integration 

constant was chosen such that the reflected pulse experiences no additional delay with respect 

to the incident pulse. The GD shows large periodic poles of increasing amplitude. For the 

following simulations, the calculated data was extrapolated down to 400 nm (cf. Fig. 3.6a). 

From the calculated GD the spectral phase imprinted on an incident pulse can be obtained by 

integration (Fig. 3.6b).  

In order to investigate the coating’s effect on short pulses, time domain pulse shapes are 

calculated after one reflection on the Diflex 1100 using the spectral phase obtained. The 

central wavelength of the incident pulses was varied between 400 nm and 700 nm (Fig. 3.7a). 

Figures 3.7b and 3.7c show calculated pulse shapes before and after one reflection on a Diflex 

1100 assuming Gaussian pulses with 10 nm FWHM. The GD modulations dramatically affect 

these short pulses. In the blue, pulses are broadened and oscillations in the GD induce a time 

shift. Increasing GD modulations above 450 nm already cause significant pulse splitting, 

reminiscent of the results presented in [Wei85]. Above 600 nm satellite pulses are formed 

(red), drifting apart for increasing central wavelengths. The next sections illustrate how such 

strongly modulated GDs can still be analyzed by this pump probe technique. 

 

 

Fig. 3.7: (a) Normalized calculated time domain pulse shapes after one reflection of a 

10 nm FWHM pulse on one Diflex 1100 mirror for different central wavelengths.  

(b,c) Incident pulse (black dashes) and  pulse shapes after reflection for different 

central wavelengths (colored lines) as indicated by color coded cursors. 
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3.6.2 Pump Probe Group Delay Measurements on Diflex 1100 and 2000 

Figure 3.8 shows the pump probe data obtained after reflection of the probe on one Diflex 

1000 (a) as well as one Diflex 2000 mirror (d). A number of observations can be made 

straight from the raw data: Up to about 400 nm the coherent artifact slightly shifts in time, but 

the shape of the modulation does not change significantly (Fig. 3.8b and 3.8e). The mirror 

apparently introduces only moderate GD in this range, therefore extracting the GD trough a fit 

of 0t (λ)∆  is straightforward here.  

Modeling & fitting the signal becomes more challenging in the spectral range above 400 nm. 

Two effects contribute here. Firstly, the modulated delay time interval broadens towards 

longer wavelengths. This is most obvious in Fig. 3.8d. This broadening looks very similar to 

the pulse splitting observed in the calculation above (Fig. 3.7). One way to explain the 

broadened and highly structured signal is to consider splitting of the white light probe. 

Satellites preceding and following the main pulse would interact with the pump at different 

delay times, causing modulations of their own, thereby widening the effective modulated 

interval. Secondly, the CA flips sign for certain wavelengths (cf. Figs 3.8c and f). In fact, time 

domain signals oscillate increasingly fast towards longer detection wavelengths. 

 

 

Fig. 3.8: (a,d) Coherent artifact after reflection on one Diflex 1100 (a) and 2000 (d).  

(b,c,e,f) Time domain artifact shapes for detection wavelengths specified by color 

coded cursors. Excitation at 465 nm in 183 µm Schott B270 glass using 1000 nJ.  
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To better understand these signals, a simulation was conducted using the experimentally 

obtained white light spectrum (cf. Section 2.3). Its spectral phase was characterized by 

integrating the 0t (λ)∆  obtained from the reference measurement using metallic mirrors. 

Calculated time domain pulse shapes before and after reflection are shown in Fig. 3.9a. As the 

white light chirp is small in the red, these spectral components concentrate in a spike at the 

front of the pulse, while green and blue components are increasingly stretched in time. 

Indeed, reflection causes the front half of the probe to become severely structured, resembling 

a pulse train rather than a single probe pulse. The rear half carrying the green and blue 

spectral components is not significantly altered upon reflection. Figure 3.9b shows the 

simulated signal obtained with this probe pulse due to XPM in a thin solid. Considering the 

coating phase was modeled using an extrapolated design curve, the simulation resembles the 

experiment very closely. Artifact flipping as well as broadening toward the red is reproduced. 

Artifact fringes in Fig. 3.9c are somewhat overestimated. This has already been discussed in 

Section 2.3. Inverting and splitting of the signals render quantitative extraction of the GD 

challenging. Fortunately there is a simple workaround which will be presented below. 

 

 

 

Fig. 3.9: (a) Time domain pulse shape of pump (red) and probe before (yellow) and after  

one reflection on a Diflex 1100 (blue), calculated using experimental probe 

spectrum and GD. Dotted lines: probe multiplied by a factor of 5. (b) XPM 

induced CA simulated using extrapolated GD (gray). (c) Delay time domain 

artifact shapes for detection wavelengths specified by color coded cursors. 



 - 60 - 

3.6.3 Measurements in Highly Chirped White Light 

For an intuitive understanding of the artifact flipping one can rely on the models presented in 

Chapter 2. Assuming a linearly chirped pulse with a chirp coefficient β, the signal is expected 

to change sign when β changes sign, as can be easily seen from equation 2.19. This effect is 

also predicted by the more general Kovalenko model, but the approximate picture by Lorenc 

et al. introduced in Section 2.41 is sufficient here [Kov99, Lor02].  

A linearly chirped probe’s instantaneous frequency vs. time can be represented as a straight 

line with a slope β (cf. Fig. 3.10, blue lines). When upon reflection the coating strongly 

modulates the probe’s GD, the sign of the slope β may change sign for a finite wavelength 

interval (marked in yellow). If the slope was increased, at some point the same modulation 

would no longer be enough to reverse the sign of the slope, as is illustrated by solid lines in 

Fig. 3.10. It follows that increasing the white light chirp should remove the artifact flipping. 

Clearly a strongly modulated probe pulse can no longer be considered linearly chirped as a 

whole. The Lorenc model explicitly covers only moderate modulations, where β does not 

change sign [Lor02]. However, one can view the probe chirp as locally linear for finite 

wavelength intervals (marked yellow in Fig. 3.10). At the edges, where 0β = , the signal is 

not defined in the Lorenc model. These are the points where experimentally obtained and 

simulated signals seem to exhibit singularities (cf. Figs. 3.8 & 3.9). 

Testing the above hypothesis experimentally is straightforward. A 14.5 mm thick plane 

parallel BK7 chirper block is inserted into the white light before reflection by the Diflex 1100. 

The TA signal is then recorded in the same manner as before, except for a larger delay time 

scan interval due to an increased probe pulse duration (cf. Fig. 3.11). 

 

 

Fig. 3.10: Unmodulated (blue) linear probe chirp and modulation by a mirror coating (red). 

Dotted lines: effect of additional chirp. Yellow: intervals with flipped slope. 
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Fig. 3.11: (a,c) Coherent artifact after reflection on one Diflex 1100 (2000) mirror in white 

light chirped by a 14.5 mm BK7 block. Excitation at 500 nm in 183 µm Schott 

B270 glass using 1000 nJ. (b,d) Time domain signals for selected λ as indicated 

by color coded cursors.  

 

 

Fig. 3.12: Fitted GD of one Diflex 1100 (a) and 2000 (b) mirror compared to calculation 

(gray) measured in white light with (red) and without 14.5 mm BK7 chirper. 
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Indeed, flipping of the artifact can no longer be observed in Fig. 3.11. The width of the 

artifact has increased considerably and the shape has changed as described in Chapter 2. 

Thanks to the novel fitting model described therein, this drastically different shape does not 

represent a problem. In fact, the fit becomes more accurate due to the distinct modulation 

spanning many data points. Despite the large modulated interval of several 100 fs, the 

precision of the fitted 0t (λ)∆  is better than 1 fs (cf. Fig. 2.22b). Using the 14.5 mm BK7 

chirper block, the Diflex GD can be evaluated up to 600 nm for one Diflex 1100 

(cf. Fig. 3.12a). The modulations caused by the Diflex 2000 are even stronger than for the 

Diflex 1100 mirror. Pulse splitting inhibits reliable fitting of the signals above 480 nm. 

Differences in the fitted GD between measurements with and without chirper block are 

observed below 350 nm and above 450 nm (380 nm for the Diflex 2000). In this range artifact 

shapes deviate increasingly from the model and reliable fits can only be obtained for several 

isolated time traces. At the blue edge of the spectrum, artifacts become increasingly 

asymmetric, causing the fitted 0t (λ)∆  to deviate from the true value (cf. Section 2.5). In 

chirped white light this effect is less severe. The GD fluctuations are only qualitatively 

comparable to the calculated GD. Neither the position nor the amplitude of the poles is 

reproduced exactly, but one has to keep in mind that the dashed gray line is extrapolated from 

a design calculation. The coatings real GD likely differs somewhat from the ideal design, 

especially considering the large number of stacks needed for this ultra broad bandwidth. 

Officially, only the reflectivity is specified by the vendor (cf. Fig. 3.5).  

All measurements show a region in the blue with little GD fluctuations. This can be 

interpreted as light reflected from the outermost stack. This light does not penetrate deep into 

the coating and is therefore not significantly distorted (cf. Fig. 3.9a). Designing the coatings 

such that blue light is reflected first makes sense, since dispersion in the material will affect 

shorter wavelengths more strongly. It can be concluded that while a reflection on a Diflex 

mirror causes moderate GD in the blue, short pulses will be severely distorted when the 

incident spectrum exceeds 390 nm (370 nm for the Diflex 2000). Pulses will split and develop 

satellites on a timescale of approximately ±100 fs. The Diflex mirror can potentially still be 

used for measurements on longer timescales. The measurements in white light chirped using 

BK7 show that pulse splitting is less severe for longer pulses, as has been predicted by 

Weiner et al. [Wei85]. Furthermore, experiments using a BK7 chirper block illustrate that 

even strong GD modulations can be evaluated using this pump probe technique.  
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Results presented above demonstrate that chirping removes or at least reduces distortions 

inflicted on the probe by the mirror coating. Finally, a direct correlation between flipping of 

the signals observed without the chirper block (cf. Fig. 3.8) and the slope of the GD remains 

to be proven. In Fig. 3.13a the 0t (λ)∆  obtained from the reference measurement without 

additional chirp is plotted vs. wavelength (blue). This represents the white light’s inherent GD 

due to the chirp gained from its generation in bulk CaF2. When adding the measured Diflex 

1100 GD to this reference, the modulation is indeed just strong enough to locally change the 

slope from positive to negative (red line). This is emphasized by the first derivative w.r.t. λ, 

plotted in black. A yellow background marks regions where the modulated slope has turned 

negative. Figure 3.13b shows lineouts taken from Fig. 3.8 in the spectral domain at delay 

times coinciding with the artifact’s central peak (blue) and wing (red). Red areas mark 

intervals where flipped artifacts were observed in the experimental data. The remarkable 

correlation with the yellow areas proves that the observed flipping is indeed due to the GD 

modulation introduced by the Diflex 1100 mirror. 

 

 

Fig. 3.13: Correlation of measured GD and artifact flipping. (a) 0t (λ)∆  measured in white 

light without chirper block unmodulated (blue) and modulated by measured GD 

of a Diflex 1100 (red). Black dots: first derivative w.r.t λ of the modulated curve 

(scaled). Intervals with negative slope are marked yellow. (b) Amplitude of the 

artifact’s central peak (blue) and wing (red). Red areas mark wavelengths where 

flipped artifacts were observed.   
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3.7 A Group Delay Optimized Mirror in the VIS 

Even though artifact flipping and pulse splitting can be circumvented as shown in the 

previous section, there is a limit to this method that is not dictated by the magnitude of a GD 

modulation, but its curvature. Since the true GD of the mirrors in the previous example is 

unknown, these measurements are not suited to quantitatively test the measurement accuracy 

in the VIS. This example will illustrate exactly how fast GD modulations can become, if they 

are to be accurately reproduced by a fit of 0t (λ)∆  using the fit function Fcos (c.f. Section 

2.4.5). To this end, the Pervak PC5-L mirror was investigated, which exhibits a known & 

controlled GD in the VIS/NIR. The GD of the PC5-L looks very similar to the CMUV08 in 

the UV. A flat section is followed by a negative linear chirp as the wavelength increases. A 

matched pair of such chirped mirrors, one compensating the oscillating GD fluctuations of the 

other, can be used to compress NIR pulses [Mat99, Kär01, Kan15].  

 

 

Fig. 3.14: (a) Fitted GD of one PC5-L in white light with (red) and without (blue) a 14.5 mm 

BK7 chirper block compared to calculated design (black, data supplied by F. 

Habel). PC5-L reflectivity shown in green. (b) Same as (a), plotted vs. a 

reciprocal abscissa. Blue line: 0t (λ)∆ fitted to simulated data obtained using the 

PC5-L design curve. Gray dots indicate difference between fitted 0t (λ)∆  and 

design curve.  
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While in a first experiment signal distortions rendered a reliable fit challenging above 

550 nm, chirping the probe white light with a 14.5 mm BK7 block resulted in a ‘well 

behaved’ coherent artifact throughout the entire visible spectral range. The fitted 0t (λ)∆  

reproduces the mirror’s GD up to 600 nm within a measurement accuracy of ±1 fs (up to 

550 nm without chirper, cf. Fig. 3.14a). In the interval close to the pump wavelength 

(500 nm), a small stray light contribution is observed in the data taken without chirper block.  

In both measurements deviations from the true GD become increasingly severe towards 

longer wavelengths. Several factors may contribute to this increasing error. Firstly, the actual 

coating might deviate slightly from the design curve provided. Secondly, the signal to noise 

ratio decreases toward the NIR as the signal amplitude is roughly proportional to the probe 

frequency (cf. Eq. 2.19), while fluctuations in the probe light increase when detecting close to 

the white light’s fundamental at 778 nm. However, with help of a simulation, these factors 

can be ruled out and a systematic deviation is revealed. 

As in the previous section, the calculated mirror GD is input into the simulation using the 

experimental white light spectrum. The white light’s inherent chirp before reflection is 

modeled by the 0t (λ)∆  obtained from the reference measurement. As there is no noise on the 

time traces, a fit to the simulated data should recover exactly the input GD. The curve 

obtained, shown in blue in Fig. 3.14b, does so up to about 600 nm and then exhibits almost 

exactly the same deviation as the experimentally obtained data (red). While the general slope 

of the GD is reproduced, the oscillating modulation appears smoothed out. 

In an effort to replicate this effect, various GD modulations of different magnitude and shape 

were input into the simulation and subsequently fitted to retrieve the input GD. The absolute 

amplitude and sign of the GD could be ruled out as well as an increasing slope. Even for a GD 

proportional to 6λ  the fit accurately reproduces the input. Testing oscillating modulations 

yields two important observations. First, irrespective of the modulation amplitude, deviations 

occur when the frequency of the modulation increases beyond a certain limit. Second, when 

the modulation’s periodicity is constant w.r.t. probe frequency, deviations are constant 

throughout the entire spectral range observed. When, however, the modulation is defined vs. 

wavelength, deviations become increasingly severe towards the red. Modulations induced by 

the PC5-L mirror exhibit an almost constant periodicity vs. wavelength (cf. Fig. 3.14a), but 

fluctuations become faster towards the red when the same GD is plotted on a reciprocal x-axis 

(Fig. 3.14b). This explains why the deviation becomes worse in the red, but what is its origin? 
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The deviation originates from the curvature of the GD modulation, or in other words, the high 

nonlinearity of the white light chirp induced by the coating. As has been discussed at length in 

Chapter 2, the coherent artifact significantly changes shape when the white light chirp 

increases. This is often not noticeable by eye when looking at the raw data, but simulation of 

an extreme case nicely illustrates the detrimental effect of a sudden change in chirp. Figure 

3.15a shows a dataset simulated using two error step functions. Where the slope is large (i.e. 

the chirp is high), the CA exhibits significant fringes. Also, the central peak appears slightly 

broadened in the strongly chirped sections. Figure 3.15b shows the resulting 0t (λ)∆  when 

time traces (i.e. vertical slices) of the dataset are fitted using Fcos (red) and FGauß (blue) as 

defined in Section 2.4. The true GD assumed at the input of the simulation is shown in black. 

Irrespective of the fit function used, the fitted GD slightly washes out the abrupt change in the 

GD’s slope, FGauß performing only slightly better than Fcos. The dotted line shows the fit 

error is slightly larger around 500 nm. This is because the step functions were deliberately 

defined vs. wavelength, making the right step slightly more abrupt in the frequency domain. 

 

 

Fig. 3.15: (a) Simulated dataset using error step functions. (b) Assumed (black) and fitted 

GD using Fcos (red) and FGauß (blue). Black dots: fit error multiplied by two. 

(c,d) Effect of a broadening (thinning) signal. Red: signal. Gray: trace 

corresponding to true GD. Blue: center of red trace calculated by adding upper 

and lower edge and dividing by two. 
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Illustrations in Fig. 3.15c and 3.15d explain why the curvature is smoothed when the signal 

suddenly changes both slope and width. The broad red stripes represent a signal whose center 

is to be determined. While the gray line represents the ‘true center’ of the signal, the blue 

dashed line was calculated by considering vertical slices – as in the fitting algorithm. While it 

correctly reproduces the center at the edges of the depicted interval, the blue dashed line does 

not correctly reproduce abrupt changes in curvature. 

Note that in practice this is not an obvious effect, as fits still reproduce the signals very well 

throughout the entire spectral range tested. For smooth GDs this error is usually negligible, 

but for fast oscillations this effect can leads to an averaging of the modulation. Most of the 

time, however, one is most interested in the part of the spectrum exhibiting no significant 

fluctuations. In case of the PC5-L, these fast fluctuations will be compensated by a matched 

counterpart downstream. 

3.8 Summary: Making Good Use of an Undesired Effect 

The method presented above utilizes the coherent artifact, a usually unwanted disturbance of 

TA data, to determine the GD characteristics of dielectric mirrors with an accuracy of ±1 fs. 

While the pump probe method yields comparable accuracy to the standard technique WLI, it 

has the added capability of being sensitive to pulse deformation and splitting, providing a 

simple and, if needed, quantitative tool to determine the applicability of a mirror at hand for a 

given task. Measurements described herein concentrate on the UV/VIS spectral region, but 

this technique is in principle applicable from 225 nm to at least 1600 nm using white lights 

generated according to [Rie13]. 

Instead of immediately dismissing a broadband high reflector for its unspecified GD, it can be 

worthwhile to take a closer look and quantify how bad the fluctuations really are in the 

spectral range needed for a specific application. For example in a TA setup Diflex 1100 

mirrors could be applied to guide the probe light to the detectors after interaction with the 

sample, where the temporal structure is no longer an issue. Also, short pulse applications may 

in fact be possible in the range up to approximately 450 nm.  

With recent advances in broadband coating technology as well as broadband spectroscopy, 

this will become increasingly interesting, since GD data is often kept a secret by vendors for 

fear of plagiarism.   
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4 Unraveling the Dynamics of the Pyrene Excimer 

and Covalently Linked Dimers 

Pyrene and its derivatives have been extensively investigated as chromophores over the past 

decades due to their attractive photophysical properties such as solvent and concentration 

dependent fluorescence, high fluorescence quantum yield (QY), long fluorescence lifetimes 

and high photostability [Foe55, Bir63, Bir63a, Pos71, Zac85, And91, Fig11]. Bipyrenyls and 

oligopyrenyls have attracted attention because of their largely modifiable conformations and 

tunable optical properties [Pos76, Zac78, Kre94]. Recently there has been increasing interest 

in pyrene as a building block for functionalized materials in organic electronic devices such as 

organic light emitting diodes (OLEDs), organic photovoltaics, organic field-effect transistors 

(OFETs), as well as lasers [Fig11, Jia04, Zha07, Mog06, Wan06, Lee11]. 

Despite its many applications and extensive use as a textbook example [Bir70, Tur91, Dyk98, 

Kla09, Tur10], pyrene’s excimer formation and decay dynamics are still debated to date 

[Zac85, Zac88, Dyk98, Win93, Fig11, Duh12, Han13, Yad15]. Probable reasons for lively 

debate were initially the absence of spectrally resolved detection techniques as well as the 

lack of pump pulses tailored to the compounds’ respective absorption spectra [Han13]. Using 

spectrally integrating or single-line techniques, overlapping contributions originating from 

different excited states are hard to discern [And91, And92]. Moreover, probing the triplet 

state population is challenging using fluorescence detection. Hence, the role of triplet states in 

the excimer dynamics of pyrene and its derivatives is still unclear. 

In this work a combination of comparable results from multiple broadband techniques and 

systematic variation of the molecular structure will remove long standing ambiguities 

concerning pyrene’s excimer dynamics. In a first step, earlier conclusions on the evolution of 

the fluorescence are revalidated using time resolved single line as well as broadband 

fluorescence detection.  

Secondly, a combination of broadband fluorescence and broadband transient absorption 

measurements provides direct insight into the triplet dynamics and oxygen quenching, both 

for pyrene as well as alkanediyl bridged pyrene dimers. A systematic approach to the 

functional linking of pyrene molecules provides insights on how pyrene porperties can be 

influenced and eventually tailored to better suit applications as a building block for 

functionalized materials in organic electronic devices as well as fluorescence microscopy. 



 - 70 - 

4.1 Introduction to the Photophysics of Pyrene 

4.1.1 Pyrene and its Derivatives 

Pyrene falls into the class of polycyclic aromatic hydrocarbons (PAHs), its structure is shown 

in Fig. 4.1a. Pyrene features four six membered aromatic rings, where all C atoms are sp2 

hybridized. Therefore each carbon atom contributes 3 valence electrons to planar σ bonds, 

which enclose an angle of 120° and give the molecule its characteristic structure. The fourth 

valence electron contributes to a conjugated π-system extending across the entire molecule 

[Bir70]. Even though the charge density is not distributed evenly, positions 1, 3, 6 and 8 are 

equivalent due to pyrene’s symmetry. The same is true for positions 4, 5, 9 and 10 as well as 

the pair 2 and 7.  

In order to understand the effects introduced by dimerization, a systematic step-by-step 

approach is taken, moving from simple to ever more complex configurations: first a methyl 

group is attached at the 1-position, which is subsequently extended to a propyl chain. To 

investigate the effects of a heavy substituent, 1-bromopyrene is also included in this study 

(cf. Fig. 4.1a).  

In a second step, a second pyrene unit is attached to the propyl chain (PY11-C3) and the chain 

length is doubled to address the influence of the linker length (PY11-C6, cf. Fig. 4.1b). In 

previous studies, a three membered chain was found to most effectively facilitate stacking, 

while shorter and longer linkers are less favorable (‘Hirayama’s Rule’) 

[Hir65, Zac84, Zac91, Zac99].  

Finally, directly linked pyrenes are investigated with the linker in the 1- (PY11) and 4- 

(PY44) positions as well as a “mixed” configuration (PY14), in order to address the 

dependence of the photophysics on the linker position (cf. Fig. 4.1c). Covalently linked 

pyrene dimers connected at the 1-position were synthesized before [Pos76, Rey90], but to our 

knowledge a link at the 4-position has only been reported once [Lor13]. The 1,3,6 and 8 

positions have a larger atomic orbital coefficient compared to the so-called “K-region” (4,5,9 

and 10), this should influence electronic interactions of the pyrene sub-units [Kre94, Lor13]. 

While pyrene and methylpyrene were purchased from Sigma-Aldrich (FLUKA TraceCERT®, 

99.2 ± 0.2%), all other compounds were synthesized specifically for this study by Dr. Ashok 

Keerthi from the group of Prof. Dr. Klaus Müllen, at the Max Planck Institute of Polymer 

Research, Mainz, Germany. 
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Fig. 4.1: Chemical structures of the pyrene derivatives studied. 

 

4.1.2 Excimers 

When two aromatic rings come into close proximity, their π-systems can interact. This can 

happen in a collision due to diffusion in a solvent or by conformational change of a molecule 

that carries multiple aromatic groups. A complex formed by one excited and one ground state 

(GS) molecule can be energetically favorable with respect to the separate molecules. Such a 

complex is called ‘excimer’ in case of two identical molecules or ‘exciplex’ if formed by two 

different species. Excimers are only stable in their excited state, in the GS the potential 

surface is entirely repulsive for the two monomer units. 

It is widely agreed that the pyrene excimer is formed by offset-sandwich-stacking an excited 

and a GS pyrene unit after a diffusion-limited encounter, thereby maximally overlapping their 

π-orbitals (‘π-stacking’). This is illustrated in figure 4.2. The interaction of π-orbitals gives 

rise to a concentration dependent fluorescence (cf. Section 4.1.3). 
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Fig. 4.2: (a) optimized geometries for the pyrene excimer obtained via time dependent 

density functional theory calculations and (b) example of stabilizing interaction of 

π-orbitals. Figures adapted from [Rei15]. 

Other conformers featuring partial overlap are also being considered [Rey90, Zac91, Win93, 

Yad15] in pyrene crystals and in compounds where the sandwich geometry is sterically 

unfavorable. In this thesis intermolecular excimers are considered to be formed by diffusional 

encounter of two separate pyrene units, while intramolecular excimers are formed via folding 

of a pyrene dimer or oligomer. Pyrene dimers and oligopyrenyls have attracted attention 

mainly because of their strong excimer formation [Duh12, Son88, Zac76, Kat97]. Dimers and 

oligomers do not have to rely on finding an excited partner via diffusional encounter, but can 

form intramolecular excimers by folding.  

The following gives a brief explanation of why pyrene excimers are stable based on Chapter 

2.2.3 of the book “Photochemistry of Organic Compounds” by Klán and Wirz [Kla09]. A trial 

wavefunction excΨ  for the excimer can be defined via 

 [ ]exc 0 A B* A* BC ±Ψ = ⋅ Ψ Ψ Ψ Ψ , (4.1) 

where 0C  is a constant, A,BΨ , A*,B*Ψ  are eigenfunctions of the separate molecules in the 

ground and the first excited singlet state, respectively. Then one can calculate the 

eigenenergies of the excimer using Rayleigh’s variation theorem [Atk99, Kla09]. It states that 

the expectation value for the energy 1E  given by an approximate wavefunction Ψ  is 

always larger than its true energy 1E : 

 1 1
Ĥ

E E=
Ψ Ψ

≥
Ψ Ψ

 (4.2) 
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Here Ĥ  is the Hamiltonian operator. To minimize 1E  one must calculate 

1 0E C 0∂ ∂ = . Nontrivial solutions only exist when the secular determinant equals zero, 

 11 12
21 22

H E H
0

H H E
−

=
−

, (4.3) 

with elements ij i jH H= Ψ Ψ . In case of an excimer formed from two pyrene molecules 

11 22H H E(pyrene) E(pyrene*)= = +  and the interaction energy 12 21H H= . The 

determinant then reduces to  

 ( )2 2
11 12H E H 0− − = , (4.4) 

yielding two solutions for exciton energies which are shifted from the eigenenergies of 

separated pyrene molecules by the interaction energy 12H± . This is illustrated in the top 

panel of figure 4.3a. This splitting of energy levels leads to a net stabilization for one GS and 

one excited state molecule (cf. Fig. 4.3b, right), but not for two GS molecules (left). 

 

    

Fig. 4.3: (a) orbital diagram for bound and unbound molecules. (b) electron configurations 

with both molecules in the ground state vs. the situation with one excited 

molecule. Figures adapted from [Kla09]. (c) potential surface along reaction 

coordinate r representing the distance between molecules, modeled as the sum of 

an attractive (V, violet) and a repulsive potential R (yellow), contributing in the 

same way to the ground  and excited state. Monomer (blue) and excimer 

fluorescence (green) are compared to the binding energy B of the excimer (red). 
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When the complex relaxes to the GS via fluorescence, the dissociative potential is causing 

individual molecules to separate again (cf. Fig. 4.3c). At room temperature most of the 

excimer fluorescence will originate from the potential minimum. Hence, the maximum of the 

excimer fluorescence spectrum corresponds to a photon energy Eexc (solid green arrow) 

[Bir70]. With the high energy cutoff of the monomer fluorescence Emon (solid blue arrow), 

 mon exc eqE E B R(r )− = + . (4.5) 

B can be determined by temperature dependent measurements, leading to ~0.4 eV [Bir65, 

Bir70]. Some calculations feature a shallow minimum in the GS, pointing to GS associated 

dimers [Hue08, Shi11]. Evidence of this has been found in crystals and in the gas phase 

[Win93]. To the author’s knowledge, with one exception previously published results provide 

little evidence for GS dimers in solution at room temperature for pyrene and the derivatives 

considered herein [Rey90, And91, And92, Shi11]. 

The above treatment only considers excitonic interactions. Alone, these are too small to 

account for the considerable stabilization of more than 0.4 eV [Bir65, Rei15]. A crude 

approximation of the excitonic interaction energy 12H  can be obtained via the transition 

dipole moment 0 1M → of the transition between pyrene’s GS and the S1 excited state. After 

all, a GS and an S1 excited state molecule are believed to form the pyrene excimer. Assuming 

a low molar extinction coefficient on the order of 3 1 110 L mol cm− −ε = , a typical linewidth 

of 4 10.3 10 cm−⋅  and an average frequency of 14 18.45 10 s−⋅  for the S1S0 transition, 

0 1M →  can be approximated to ~2.3 D via the formalism given in Chapter 2.1.4 of [Kla09] 

(see Appendix A1). The latest reported value for the equilibrium distance between pyrene 

units in the excimer is 3.38 Å [Rei15]. At this distance the reduction in potential energy 

resulting from the Coulomb interaction of two dipoles 0 1M →  amounts to a stabilization of -

0.175 eV. It is widely acknowledged that other contributions like charge transfer and possible 

molecular orbital overlap also contribute to 12H  [Kla09]. A net charge transfer is prohibited 

by symmetry arguments, but configuration interaction calculations confirm further stabi-

lization due to ‘charge resonance’ [Azu64a, Azu64b, Mur64]. These did not yet accurately re-

produce experimental fluorescence spectra, deviations were attributed to contributions from 

higher lying states [Bir68]. Recent calculations using time dependent density functional theo-

ry (TDDFT) attribute ca. 50% of the stabilization to non excitonic interactions [Shi11, Rei15]. 

An increased electrostatic contribution due to geometric effects, i.e. overlap of π-orb-itals and 

considerable electron delocalization between pyrene units has been discussed [Cor15]. 

Section 4.7.3 will add experimental insight to the  charge transfer character of the excimer. 



 - 75 - 

4.1.3 Steady State Absorption and Emission Properties 

Pyrene’s fluorescence spectrum depends on both solvent and concentration. The solvent 

dependence has led to the introduction of the pyrene scale for solvent polarity [Kal77, 

Don84]. The concentration dependent blue-green excimer fluorescence, was first observed by 

Förster and Kasper in 1955 [Foe55]. It finds important applications in studying the viscosity 

of micelles and also as a fluorescence marker for tracking transport of biomolecules in cells 

and biological membranes [Zac78, Alm82, Zac84, Con03, Con08]. Without question many 

insights can be gained by looking at the fluorescence spectra in depth. This work, however, 

focuses on the dynamics, so the discussion below concentrates on key features only. 

Figure 4.4 shows absorption and emission spectra of pyrene and linked pyrene dimers in 

cyclohexane at 5c 10 mol / l−≈ . All species show very similar vibronic features in the UV-

visible absorption with strong maxima around 276 nm and 340 nm (Fig. 4.4a). These can be 

assigned to the 3 0S S←  and 2 0S S←  transitions in the pyrene monomer and the 

associated transitions in the linked dimers. The 1 0S S←  transition of pyrene is weak (black 

dots). While commonly this transition is considered symmetry-forbidden [Lap11, Sal83, 

Wan03, Han13, Kre13], a more recent study finds that this is not true in a strict sense. Instead, 

the weak S1 absorption comprises two electronic excitations with antiparallel transition dipole 

moments, causing them to effectively cancel out [Rei15]. It is possible to partially overcome 

this ‘destructive interference’ when substituents are attached to pyrene units at the right 

positions (cf. Section 4.7.4). PY11 and PY14 are examples of such species (cf. Fig. 4.4b). 

In linked dimers PY11-C3 and PY11-C6 the molar absorption coefficient ε  approximately 

doubles, due to the additive contribution from two pyrene units. The spectra are otherwise 

comparable to monomer pyrene except for a bathochromic shift of ~10 nm. This shift can be 

understood by viewing the second pyrene unit as a heavy substituent. A similar shift is 

observed in the absorption spectrum of bromopyrene (not shown). The absorption of PY11-

C6 (yellow) appears slightly less shifted than that of PY11-C3 (black), probably due to the 

mitigating effect of the longer linker. The absorption spectrum of the directly linked 

compound PY44 (blue) is very similar to PY11-C6, but the absorption of the 2 0S S←  

transition has weakened with respect to the 3 0S S←  transition. In PY11 (red) the influence 

of effective conjugation and intramolecular interaction is clearly visible from the red-shifted 

absorption onset at 403 nm (Fig. 4.4b). PY14 (violet) represents an intermediate case. These 

findings indicate that the lowest excited states are influenced by the dimerization more 

strongly than higher excited states.  
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Fig. 4.4: Steady state absorption (a, b) and emission excited at 340 nm (c, d) of selected 

compounds in cyclohexane at room temperature, 5c 10 mol / l−≈ . Gray: pyrene 

monomer. Gray dots: excimer fluorescence at 10 mM. Black dots: PY11-C3 

absorption magnified x20 to illustrate the weak 1 0S S←  contribution. 

Emission spectra were recorded at room temperature at 340 nm excitation (Fig. 4.4c,d). The 

known structured emission of the pyrene monomer is shown in gray. Relative heights of 

individual peaks depend on the solvent polarity [Don84]. The monomer fluorescence 

spectrum features a weak pedestal reaching far into the green. The pyrene excimer 

fluorescence gains appreciable intensity at c 0.5 mM>  showing as a broad unstructured 

band centered around 475 nm. Gray dots represent the excimer signal at c 10 mM= . The 

emission of PY11-C6 (yellow) is very similar to the monomer except for a different vibronic 

fine structure. PY11-C3 shows a comparable structured emission combined with an excimer 

band, slightly red shifted w.r.t. the excimer emission in pyrene (black). This excimer emission 

is observable irrespective of the concentration, because the pyrene units are linked. The stark 

difference between Py11-C3 and PY11-C6 is due to differing linker lengths. Chains with less 

than nine members generally prevent excimer formation with exception of the propyl chain, 

which sterically favours π-stacking [Hir65, Zac99]. For this reason PY11-C3 (a.k.a. 1,3-

dipyrenylpropane) is an excellent example for the study of excimer dynamics and has 

received a lot of attention in the past [Zac78, Sna83 ,Zac84, Zac85, Zac85a, Sie87, Zac88, 

Sie89, Rey90, Zac91]. The fluorescence spectra of directly linked pyrenes show little to no 

vibronic fine structure. A direct link leaves less freedom to the molecular conformations and 

prevents π-stacking, yet close proximity of the pyrene units apparently strongly affects their 

properties. Results from a time resolved study that will be discussed in Section 4.7.4 illustrate 

just how dramatic these changes can be.  
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4.2 Combining State of the Art Time Resolved Methods 

This section will provide an overview of the spectroscopic tools that were for the first time 

combined to yield a ‘full picture’ of the pyrene dynamics. The facilities at the chair for 

BioMolecular Optics (BMO) allow recording of time resolved broadband fluorescence and 

absorption data. Each individual technique has been described in detail elsewhere, the focus 

herein lies on measures taken to ensure the comparability of the results obtained.  

4.2.1 Streak Camera for Broadband Emission Kinetics 

For the spectrally resolved investigation of fluorescence dynamics on the ns timescale, a 

streak camera system (C5680-24 C; Hamamatsu GmbH) is employed. Essential parameters 

are given below. For detailed information on the streak camera setup refer to [Rys11].  

Femtosecond UV pulses are focused by a 75 mm fused silica plano-convex lens onto a 2 mm 

flow cuvette (0.5 mm for some samples). The spot size in the sample is 20 µm. Compounds 

are dissolved in cyclohexane such that an OD of approximately 0.3 is reached. The target is 

illuminated from the back. The fluorescence is captured by an achromat (f = 80 mm, 20 mm 

diameter, Type OUV 4.20; Bernhard Halle Nachfl. GmbH) and transmitted through a wire 

grid polarizer (UBB01C, diameter 36 mm; Moxtek Inc. ) set to magic angle. Subsequently a 

second achromatic lens (f = 75  mm NUV, 25 mm diameter; Edmund Optics) focuses the 

fluorescence onto the entrance slit of a spectrograph. The spectrograph (Princeton Instruments 

Acton SP2356) features a 50 lines/mm grating blazed at 600 nm and f = 300 mm. 

  

Fig. 4.5: Streak camera measurement of 10 mM pyrene in cyclohexane. Color coded 

vertical and horizontal lines mark positions of lineouts in the spectral and 

temporal domain shown in the top and right panels, respectively.  
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Finally, the focal plane of the spectrograph is imaged on to the photocathode of the streak 

camera. The pump energy is set to 130 nJ and slit widths are 5 µm (spectrograph entrance, 

spectral plane) and 10 µm (streak camera, temporal plane) unless otherwise indicated. This 

corresponds to 0.7 nm spectral and sub-350 ps temporal resolution. A typical dataset is shown 

in Figure 4.5. The maximum streaking window of this system is 32.3 ns. Dynamics on longer 

timescales were confirmed using a single line method described in Section 4.2.5. 

Additional time resolved photon counting experiments on the µs timescale were carried out 

with a similar setup at the University of Regensburg. Here, a Ti:Sapphire amplifier laser 

system (Libra, Coherent) provides pulsed laser light at 800 nm that feeds into a collinear OPA 

(TOPAS-C, Coherent), generating the excitation pulses at the desired wavelength with a pulse 

duration of typically 80 fs. The fluorescence was collected front-face from a 10 mm cuvette at 

ca. 30° to the excitation path via a toric mirror (r1 = 205 mm, r2  = 191 mm; f =  99 mm; 

α = 15°; d = 75 mm) and detected with a streak camera (C7700, Hamamatsu) combined with 

a Bruker 200is spectrograph. Due to electronic jitter, the IRF is ca. 20 ps FWHM in the 10 ns 

and 8 ns In the 500 ns streaking window. The streak images were recorded on a CCD camera 

(ORCA-CR, Hamamatsu), the spectral resolution in this configuration is 2.5 nm. A 2 mm spot 

size and excitation energies between 200 nJ and 700 nJ were used. Here, samples were 

degassed via five freeze-pump-thaw cycles in a 10-5 mbar vacuum and sealed samples were 

stirred continuously via a magnetic stir bar. 

4.2.2 Multiscale Transient Absorption Spectroscopy 

The dynamics of pyrene and its derivatives range from femtoseconds way into the 

microsecond regime. The multiscale transient absorption (TA) setup utilized is based on a 

combination of two independent and fully synchronized 1 kHz pump beams (cf. Fig. 4.6). As 

broadband probe, a CaF2 white light is used, generated from the Ti:Sapphire amplifier 

fundamental at 778 nm (CPA2001; Clark-MXR, Inc.) [Meg09]. Probing is possible from 225 

up to 1700 nm [Rie13], in this work the 290 – 1100 nm range is used. Channels are spectrally 

calibrated using colored glass filters and dielectric mirrors with characteristic transmission 

oscillations. In the region around the CPA fundamental an appropriate blocking filter is 

employed, resulting in ~60% less counts on the CCD, leading to a smaller signal-to-noise 

ratio in the range between 700 nm and 830 nm. The probe chirp and therefore the time origin 

do exhibit a discontinuity at the CPA fundamental wavelength, but this is only relevant on the 

femtosecond timescale. The white light chirp is corrected in postprocessing according to 

[Meg09].  
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Fig. 4.6: Combined fs/ns transient absorption setup with synchronized Clark CPA 2001 and 

EKSPLA NT242 frequency doubled OPO. NOPA: two-stage noncollinearly 

phase-matched optical parametric amplifier. PC: prism compressor. PS: prism 

spectrograph. NOPA output frequency doubled in a 50 µm BBO. L1, L2: D-

shaped focusing lens f = 1500 mm and f = 400 mm. pol: Thorlabs GL10 polarizer.  

To record dynamics on the fs/ps timescale, sub-30 fs pump pulses are generated from a 

noncollinearly phase-matched optical parametric amplifier (NOPA) pumped by the second 

harmonic of the Ti:Sapphire amplifier. The tunable NOPA output is compressed in the sample 

plane via a fused silica prism compressor. The pump is frequency doubled in a 50 µm BBO, a 

λ/2 plate before the crystal facilitates attenuation of the pump energy. Finally the pump is 

mechanically delayed in 20 fs steps using a linear delay stage with sub 10 fs accuracy (M-531 

PD; Physik Instrumente GmbH). The pump polarization can be set via a second λ/2 plate.  

To access ns/µs dynamics, the tunable fs pump can be replaced by a ns pulse generated by an 

EKSPLA NT242 Optical Parametric Oscillator (OPO) [Rie13]. It is electronically 

synchronized to less than 200 ps w.r.t. the probe and delayed using a Stanford Research Inc. 

DG 645 electronic delay generator. The EKSPLA output is first attenuated reflectively. Fine 

adjustment of pump power and polarization is possible via a λ/2 plate and a polarizer. 

Samples are diluted in 10 to 15 ml cyclohexane to yield an OD < 0.3 at 1 mm sample 

thickness. A pump circuit of our own design facilitates exchange of the probed sample 

volume between subsequent laser shots (cf. Section 4.2.5). The FWHM focal sizes of the 

pump spots are 100 µm and 200 µm for the fs/ps and ns/µs setups, respectively, and 30 µm 

for the white light probe. Pump energies were set to between 70 nJ and 200 nJ.  
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The TA signal is detected at 1 kHz using two prism spectrographs [Meg09, Bra14], dividing 

the sample’s transmission with pump by the transmission without pump for each channel 

averaging over 500 shots. Transmission changes down to 0.02 mOD can be resolved using 

referenced detection [Bra14].  

Fig. 4.7 shows sample data for the fs and ns timescales. Increased TA due to, e.g., excited 

state absorption (ESA) is plotted positive. The ground state bleach (GSB) as well as 

stimulated emission will manifest as a negative signal. Mimicking the inverted steady state 

absorption spectrum, the GSB reflects a decrease in the number of GS molecules, as a fraction 

of the molecules has been promoted to an excited state. Panels depicting spectral or temporal 

lineouts indicated by the color coded cursors in TA datasets are henceforth marked by a 

yellow background (cf. Fig. 4.7a,c,d,f). 

 

 

Fig. 4.7: Transient absorption data of 1mM pyrene in cyclohexane on the fs- (a-c) and ns 

timescale (d-f). Blue indicates negative, red positive contributions. Color coded 

cursors mark lineouts shown in the top and right panels, respectively. Top panel: 

transient spectra at different delay times. Right panel: time evolution of the GSB 

(black), the S2 ESA (purple), the S1 ESA (blue) and the triplet state (red). 
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4.2.3 Combining nanosecond and NIR Measurement Capabilities 

In the current layout of the laboratories at the chair for biomolecular optics, NIR probe white 

light and the electronically delayed OPO for ns/µs timescale measurements are not available 

in the same room. Only in the NIR the transient absorption spectrum of the pyrene excimer 

can be observed without overlapping contributions of other states clouding the dynamics. To 

confirm results obtained in the VIS, the ns setup is combined with the NIR probe in an 

adjacent laboratory.  

This is realized by coupling the output of the OPO into a 23.7 m long UV multimode fiber 

(Laser Components GmbH, FBP050070085) with 50 µm diameter. Two challenges had to be 

overcome, first the OPO output had to be attenuated by several orders of magnitude without 

causing thermal lensing in the attenuating optics. Second, the highly elliptical beam profile of 

the OPO has to be coupled into the circular fiber aperture. As most objectives and 

commercially available fiber couplers don’t transmit in the UV, a customized solution is 

needed. The scheme shown in Fig. 4.8 proved most effective, relay imaging the focal plane of 

the OPO onto the fiber entrance via lenses L1 and L2. After reflective attenuation to avoid 

thermal lensing, the OPO fundamental is blocked using a 3 mm thick Schott UG5 filter. The 

power at the fiber entrance is fine-tuned by a variable metallic neutral density (ND) filter to 

~1 µJ. The damage threshold of the UV fiber was not tested due to limited availability, fibers 

intended for the visible spectral range (Laser2000 GmbH, PLK-Patch-MM-FC-PC-25) 

showed no permanent damage up to 5 µJ pump power. At the fiber entrance, the resulting 

50 µm spot is perfectly circular. 

 

 

Fig. 4.8: Schematic of the fiber coupling assembly. M1, M2: coupling mirrors. L1, L2: 

Fused silica lenses. The fiber mount can be translated in x, y and z with µm 

precision. L1 and L2 are positioned 150 cm and 302 cm from the EKSPLA 

housing, respectively. 9.5 cm separate L2 and the fiber entrance. 
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This was confirmed for visible (460 nm) and ultraviolet (334 nm) light. A fiber transmission 

of  up to 85% in the VIS and at least 20% using the 334 nm pulses needed for experiments on 

pyrene were reached. At 334 nm the UV fiber attenuates 100 dB/km, resulting in an 

attenuation of 58%. The ideal numerical aperture (NA) needed for the fiber used is about a 

factor of four larger as is easily determined by shining a fiber checker through the fiber and 

observing the NA at the output. In a single mode fiber a too large or too small NA would 

significantly reduce the coupling efficiency, but for a multimode fiber a smaller NA is 

acceptable. Also, the focal length and hence the spot size would decrease with higher NA, 

increasing the risk of damage to the fiber.  

For use in the TA setup the divergent fiber output has to be imaged into the interaction plane 

of the TA setup. The required focal size is 200 µm FWHM. Combinations of specifically 

selected bestform lenses (Bernhard Halle Nachfl. GmbH) were tested for this purpose, 

however it could be shown that a single plano-convex 25 mm FS lens of 12.5 mm diameter is 

actually sufficient for this purpose, yielding a 208 µm FWHM in 145 mm distance from the 

lens (cf. Fig. 4.9a). Using a single lens is preferable, since this minimizes reflection losses. 

Speckle as well as diffraction on the fiber output significantly influence the beam profile. 

Measured beam profiles are reminiscent of Fresnel diffraction on a circular aperture (cf. Fig. 

4.9b, [Mes05]). This causes the focus to appear closer to a flat top than a Gaussian (cf. Fig. 

4.9c). This is advantageous because it facilitates a homogeneous pump distribution. 

 

 

Fig. 4.9: Beam profile vs. distance from the lens (a) compared to Fresnel diffraction on a 

round aperture (b) taken from [Mes05] with permission of Springer Nature. (c) 3D 

profile in the focal plane.  
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4.2.4 Data Analysis: From Single Line to Global Fit and Maximum Entropy 

Some assumptions have to be made in order to retrieve meaningful information from the time 

resolved data. It is assumed that the system can be modeled by a set of well-defined 

intermediate states with populations mN (t) . Starting from initial conditions defined at t 0= , 

these states are populated (or depopulated) at rates nmk  ( mnk ) parameterizing the transfer 

between individual states. The temporal change of each population is assumed to be 

proportional to its population at a given time, so that each state can be described by a set of 

first order ordinary differential equations. 

 ( )m
nm n mn mn

dN (t) k N k N
dt

= −∑  (4.6) 

For unimolecular processes the rates are independent of concentration and, hence, time. The 

solutions to these equations are then given by a linear combination of exponentials. The 

inverse of a rate corresponds to a 1 e  decay time constant τ . Time dependent rates, e.g. due 

to diffusion controlled excimer formation, will give rise to non-exponential decays that are 

commonly modeled by stretched exponentials. Also, the above assumption only holds as long 

as a constant spectrum iA ( )λ  can be assigned to each intermediate state, i.e. there are no 

significant time dependent spectral changes like broadening or shifting of bands due to 

cooling or solvation processes. This is rarely an issue for processes on the timescale of ns/µs. 

Under the assumption that all time traces can be reproduced by a linear combination of 

exponential decays, individual time traces can be fitted wavelength by wavelength. A single 

line fit function SL i if ( , A , , t)λ τ ∆  can be defined as 

 SL i i i i iif ( , A , , t) f (A , , t)λ τ ∆ = τ ∆∑ , (4.7) 

where i i if (A , , t)τ ∆  are single exponential decays with amplitudes iA  and decay times iτ , 

convoluted with the instrumental response function (IRF) of the setup 

 [ ]( ){ }i i i i iif ( , A , , t) IRF( t) ( t) * A ( ) exp t const CAλ τ ∆ = ∆ ⊗ Θ ∆ λ − ∆ τ + +∑ (4.8) 

Here, ( t)Θ ∆  is the Heaviside step function and CA is the coherent artifact described at length 

in chapter 3 of this thesis. The IRF is a Gaussian function  

 ( )
2

0
CCCC

2 ln 2 2 ln 2IRF( t) exp t t
   ∆ = − ⋅ ∆ − ∆ τπ ⋅ τ    

, (4.9) 

with an FWHM width CCτ . The statistical error in the fitted parameters is  
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 ( ) 1T
i(P ) J J

−
σ = σ ⋅ , (4.10) 

with the Jacobi matrix J and the standard deviation  

 ( )2
n nn Y f / (N q)σ = − −∑ , (4.11) 

where nY  are individual data points, nf  the respective fitted values, N the total number of 

samples and q the total number of fitted parameters. 

Basing the analysis on a select few individual time traces can lead to ambiguities when 

spectral contributions of different states overlap significantly. Harnessing the power of 

broadband techniques to disentangle overlapping signal contributions requires consideration 

of the entire spectrally resolved dataset. A global fit (GF) routine can be applied to matrix 

data sets S( , t)λ ∆ from TA or streak camera experiments based on the formalism detailed in 

[Sto04, Fit06, Meg11, Kut13]. The algorithm fits the time traces at all wavelengths with one 

common set of decay time constants iτ . Under the assumption that all time traces can be 

reproduced by a linear combination of exponential decays, the fit function is defined as 

 iGF i i i iif (A ( ), , t) A ( ) f ( , t)λ τ ∆ = λ ⋅ τ ∆∑  , (4.12) 

with a predefined number of exponential decays. Applying a Levenberg-Marquard algorithm 

to minimize the least squares error for all spectral channels simultaneously, the routine finds 

an optimal set for the iτ  as well as the decay associated difference spectra iA ( )λ  (DADS) 

corresponding to these decays. In DADS positive contributions indicate decaying features 

whereas negative signal corresponds to features growing in. Assuming a specific rate model, 

the species associated spectra (SAS) can be retrieved as linear combinations of the DADS and 

the GS absorption spectrum. The linear coefficients depend on the model assumed.  

Both methods described above yield optimized decay time constants iτ , but rely on the user’s 

judgement to pick the correct number of distinct exponential decays needed to model the data. 

This can become ambiguous when different states exhibit similar decay times. A method to 

determine the smallest set of decays needed to fully describe a transient dataset is a maximum 

entropy analysis [Lor07, Kut13]. Under the assumption that all time traces can be reproduced 

by a linear combination of exponential decays, the maximum entropy routine fits matrix data 

sets S( , t)λ ∆  starting from a distribution of decay rates 

 ME
0

f (p, , t) p( ) f ( , t)
∞

τ ∆ = τ ⋅ τ ∆∫  (4.13) 
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Two constraints must be fulfilled: First, the fit has to reproduce the data to a given accuracy. 

Second, the entropy of the distribution p( )τ  is maximized, i.e. p( )τ  should not contain more 

information than required to fit the data. Without a priori assuming a model, a maximum 

entropy analysis results in a distribution function that describes the probability of a given rate. 

Fig. 4.10a shows an example distribution obtained from 1 mM pyrene in cyclohexane 

(corresponding TA data shown in Fig. 4.7e). Peak widths in the τ domain are a measure for 

the uncertainty in these lifetimes (Fig. 4.10b). The blue curve in Fig. 4.10b shows the 

distribution around 360 nm where decay of the S1 excited state absorption (ESA) dominates 

with a decay time of approximately 100 ns. A subtle contribution of the excimer rise is also 

observed at τ = 30 ns, contributing a negative dip to the blue curve. At c = 1 mM the 

excimer’s ESA is weak compared to the other signals and is only revealed in the global 

analysis. Around 410 nm (red), the triplet state decay resides at ~3100 ns. The negative 

contribution at just below 100 ns is also due to the rise of the triplet ESA. When no excimer is 

present this feature coincides with the singlet decay time. Here it appears slightly shifted 

towards faster times since the triplet is fed by both the S1 state and the excimer. Spectra 

integrated over selected decay time intervals resemble the GF DADS associated with these 

decays (cf. Fig. 4.10c), except for the weak excimer contribution (green). 

 

 

Fig. 4.10: (a) Maximum Entropy analysis of the nanosecond measurement in 1 mM pyrene 

shown in Fig. 4.7. Decays correspond to positive features (red), negative features 

(blue) indicate exponential growth. (b) Lifetime density distribution at selected 

wavelengths. (c) Integrated lifetime density according to color coded cursors. 

Thin lines represent DADS obtained from a global fit with three decay time 

constants. The fit yields 1 37 nsτ =  (green), 2 99 nsτ =  (blue) and 2 3135 nsτ =  

(red), corresponding to the decay times of the S1, excimer and triplet states. 
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4.2.5 Degassing Control Using a Single Line Time Resolved Fluorescence Setup 

The oxygen concentration in the pyrene solutions probed dramatically affects the lifetime of 

observed singlet and triplet states [Gre94, Wil99, Bie14]. Under ambient conditions the 

pyrene triplet state has a decay time of approximately 1.8 µs [Sli70], while under properly 

degassed conditions up to millisecond decay times have been observed in a sealed container 

[Par62]. This also affects fluorescence intensity and decay times [Bir70]. Successful 

degassing is verified by repetitive measurement of fluorescence decays in a single line time 

resolved fluorescence setup (cf. Fig: 4.11). This setup also offers a relatively simple approach  

to determine fluorescence lifetimes of samples with known fluorescence spectrum, especially 

for lifetimes exceeding the streak camera’s detection window. 

The sample is illuminated “front face” by an appropriately attenuated laser source. Care must 

be taken to block the fundamental light of the oscillator or other generating light wavelengths, 

so that only photons of the desired energy reach the target. Some of the fluorescence emission 

is collected by a 1” diameter f = 50 mm FS lens. The fluorescence light is filtered by selected 

bandpass filters (FWHM ~ 10 nm) and is finally imaged via a f = 100 mm lens onto a 

photomultiplier tube (PMT – H5783-03; Hamamatsu GmbH). The PMT has a spectral 

sensitivity from 185 nm to 650 nm and an active area of 8 mm diameter.  

 

 

Fig.4.11:  (a) Single line time resolved fluorescence setup using EKSPLA NT242 frequency 

doubled OPO: UG11: Schott UG11 filter to block the OPO fundamental. ND: 

metallic neutral density attenuator. Al: aluminum mirror. L1, L3: f = 100 mm FS 

lens, L2: f = 50 mm FS lens. BP: set of different bandpass filters with 10 nm 

FWHM. PMT: photomultiplier tube. (b) Oscilloscope traces obtained in Pyrene 

with different BP filters using 65 nJ at 372 nm excitation at room temperature.  
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The signal from the PMT is read out by an oscilloscope (YOKOGAWA DL9040, 5GS/s, 

500MHz). Care is taken to stay in the linear response regime of the PMT by avoiding signals 

> 3 V. The signal from 2048 consecutive laser shots is averaged and the electronic 

background signal, originating from the Pockels cell of the EKSPLA OPO’s Nd:YAG pump 

laser, is subtracted. Exponential decays can then be fitted to the traces, yielding fluorescence 

decay times. For measurements on short time scales the instrumental response function (IRF) 

must be taken into account. The IRF consists of an asymmetric peak with a width of 2-4 ns 

for the EKSPLA OPO and a weak, nearly exponential tail decaying with approximately 20 ns.  

The target can be a flow cuvette, but samples can also be analyzed directly in the sealed 

sample container, provided the container is transparent in the respective wavelength range 

(Fig. 4.12a). Measurements in sealed containers prove useful in cases where the need of 

reliable degassing outweighs uncertainties due to possible photoproducts. This is especially 

convenient for quick verification of the degassing process [Bie14]. Measured decay times will 

increase and saturate when the sample is fully degassed. From the measured pyrene 

fluorescence lifetime τ  an estimate for the oxygen concentration in solution can be 

calculated using a version of the Stern-Vollmer equation 

 [ ]2
Q 0

1 1 1c O
k

 = ⋅ − τ τ 
. (4.14) 

0τ  is the ‘intrinsic’ fluorescence lifetime of the pyrene monomer and kQ the quenching rate. 

 

 

Fig. 4.12: (a) transmission of a 20ml CS Chromatographie Service Boerdelflask (black) and 

calculated transmission of one side (blue). (b) Regassing: Oxygen concentration 

in a flow cell with a running circuit vs. time. Right axis: Measured fluorescence 

lifetime of the pyrene monomer at c = 0.1 mM in cyclohexane.  
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When the oxygen concentration in the non-degassed solvent is known, oxygen quenching 

rates can be calculated from equation 4.14 using decay times measured under ambient and 

fully degassed conditions. Patterson et al. calculate a quenching rate kQS = 10 1 12.5 10 M s− −⋅  

for singlet quenching of pyrene in cyclohexane [Pat70, Mon06]. In pyrene kQ is one order of 

magnitude larger than the triplet quenching rate kQT [Pat70, Mon06, Tur10]. Patterson et al. 

used an oxygen concentration of 2 mM, and values of 20 nsτ =  and 0 450 nsτ = . 

However, according to newer data in [Mon06], the oxygen concentration in cyclohexane is 

2.4 mM under ambient conditions. Also, longer intrinsic lifetimes of the pyrene monomer 

have meanwhile been reported, the maximum value found in cyclohexane is 0 650 nsτ =  

[Del79]. Using these updated values and a lifetime 28 nsτ = , measured in the setup 

described above under ambient conditions, Biewald et al. determine a smaller quenching rate 

of ( ) 10 1 1
QSk 1.4 0.5 10 M s− −= ± ⋅ . In streak camera measurements a lifetime as short as 

19 nsτ =  was obtained without degassing. This leads to a slightly larger oxygen quenching 

rate of 10 1 1
QSk 2.0 10 M s− −= ⋅ . This value is accurately reproduced by a comparison of 

non-degassed and degassed streak camera measurements presented in Section 4.7.2 (cf. Table 

4.11). A probable reason for the slight discrepancy is that for short decay times the setup used 

in [Bie14] is less reliable than the streak camera. As a consequence, the oxygen 

concentrations given in [Bie14] are exaggerated and must be multiplied by 0.67. The minimal 

oxygen concentration reached by bubbling with nitrogen in a sealed container is therefore not 

16 µM [Bie14], but 11 µM. 

To avoid accumulation of photoproducts [Shi07], transient experiments were carried out using 

a flow circuit. While a perfectly air-tight flow circuit is hard to realize with reasonable 

experimental effort, triplet decay times can be reliably and reproducibly increased to up to ca. 

6 µs using the following approach. The circuit features double-walled air tight tubing (PTFE-

NO-OX; Knauer GmbH) as well as an inline degasser (V7620; Knauer GmbH). To reduce the 

amount of residual oxygen the pump circuit is flushed with degassed solvent before inserting 

the sample. The sample is degassed in a sealed container (CS Chromatographie Service, 20ml 

Boerdelflask 300040) by bubbling with nitrogen for 5 min. After insertion into the flow 

circuit the sample regasses slightly, but after ~10 min a stable equilibrium is reached at an O2 

concentration of less than 200 µM, less than 10% of the ambient value (cf. Fig. 4.12b). 

Hence, before every experiment 15 min are allowed for the system to stabilize.  
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4.3 Pyrene Dynamics Within the First Nanosecond 

The following gives an overview over effects that can be observed in pyrene within the first 

ns. Although pyrene does feature intriguing ultrafast dynamics, the focus of this work lies 

elsewhere, so sub-ns effects are covered only briefly in order to assess their possible 

contribution to the excimer dynamics. 

The S1 state of pyrene is only very weakly absorbing (cf. Fig. 4.4a). Therefore in most studies 

pyrene is excited into the stronger 2 0S S←  transition with its maximum absorption at 334 

nm [Foe55, Bir63]. After excitation into the S2 state, pyrene undergoes very effective internal 

conversion (IC) into the S1 state within the first 150 ± 50 fs [Fog95, Neu99]. More recent 

publications report a sub-100 fs IC [Kre13]. IC as fast as 85 fs can be observed in 

femtosecond TA experiments (cf. Fig. 4.6 a-c, [Kre13a]).  

The fast relaxation to the S1 state is shown in Fig. 4.13. To exemplify that exciting into higher 

lying states only affects the fast dynamics within the first ps, a sample was excited into the S3 

maximum at 273 nm (Fig. 4.13). The coherent artifact was subtracted as described in chapter 

2.5.3. Comparing figures 4.7b and 4.13a, a subtle change of the signal around 600 nm at very 

early times is observed, likely due to a contribution of the S3 ESA. Figures 4.13c and d 

compare transient spectra at pump probe delays of 250 fs (red), 1 ps (violet), and 2 ps (blue) 

from S3 and S2 excitation, as well as a TA spectrum taken from a ns-TA experiment at 5 ns 

pump probe delay (dashed). 

 

 

Fig. 4.13: (a) fs-TA data from 1 mM pyrene in cyclohexane, λex = 273 nm. Red (blue) 

indicates positive (negative) contributions. (b) Selected time traces marked by 

color coded cursors. Blue trace divided by 2 for comparability. (c) TA Spectra at 

∆t = 0.25, 1 and 2 ps (red, violet, blue). (d) same as (c) for λex = 334 nm. Gray: 

scaled spectrum at ∆t = 5 ns from ns-TA. 
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The observed spectra at ∆t = 1 ps, 2 ps and 5 ns are indeed identical within measurement 

accuracy, representing the S1 ESA as previously reported in [Kre13]. An exception is the 

preparation of ‘hot’ excited states, i.e. excitation in between absorption maxima. Here, within 

the first 100 ps band shifts of up to 3 nm are observed. Figure 4.14a illustrates the shift after 

excitation at 285 nm, the minimum between the S2 and S3 absorption bands. Green lines in 

Fig. 4.14b illustrate that the observed shift becomes less severe when the excitation is moved 

to 305 nm, closer to the S2 origin. Note that the latter dataset was taken in methanol, leading 

to a slightly blue shifted final position. The time dependence of the peak positions can be 

evaluated by parameterizing the transient spectra using Gaussian functions and performing a 

fit for each delay. The resulting peak position vs. time is shown in Fig. 4.14c. The ‘shifting 

time’ shiftτ  is determined via an exponential fit to the peak position. 

While the unambiguous determination of the origin of the observed shifts would benefit from 

a more systematic investigation, the excess energy dependence of this blue shift is a strong 

indication for vibrational cooling. Also, a cooling tim e close to 20 ps has been reported 

previously in cyclohexane [Hir91]. The relevant conclusion for this work is that irrespective 

of the excitation wavelength in ns pump probe experiments we expect to see either S1 

signatures or signatures of states the relaxation proceeds to from the S1 state. The tunable 

excitation can therefore be utilized to ensure a suitable OD of ~ 0.3 at a given concentration 

or sample thickness. 

 

 

Fig. 4.14: (a) TA Spectra at ∆t = 10 and 100 ps (violet, blue) obtained from 10 mM pyrene 

in cyclohexane at λex = 285 nm. Gray: spectrum at ∆t = 5 ns from ns-TA. (b) 

Same as (a), green curves obtained at λex = 305 nm in MeOH at c = 1 mM. (c) 

Fitted peak postitions at λex = 285 nm (blue) and λex = 305 nm (green) vs. delay 

time . 
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Fig. 4.15: (a) Evolution of the largest GSB band at 334 nm in 1mM pyrene in cyclohexane 

for parallel (blue), perpendicular (red) and magic angle (black) detection. (b) 

anisotropy r(t) and exponential fit. (c) Excitation wavelength dependence of τrot 

for pyrene in MeOH. Gray lines show pyrene absorption spectrum for orientation. 

One last effect worth mentioning here is pyrene’s surprisingly fast anisotropy decay. When 

linearly polarized light is used to excite a molecule in solution, the interaction probability 

depends on the angle between the molecule’s transition moment and the polarization of the 

pump and probe pulses [Fle76]. Rotational diffusion of the molecules between excitation and 

interaction with the probe leads to a delay time dependent change of the measured absorption. 

This is illustrated in Fig. 4.15a. From signals recorded with parallel (∥) and perpendicular (⊥) 

polarizations of the probe w.r.t the pump, the anisotropy r(t) can be evaluated [Fle76, Kla09]. 

Generally, for an isotropic sample of initially randomly oriented chromophores, r(t) can take 

values between 0.4 and -0.2, as [ ]2
rotr(t) 0.2 3cos ( ) 1 exp t= ⋅ θ − ⋅ − τ , where  

denotes an average over all possible orientations of chromophores. θ is the angle between the 

relevant transition dipole moments for excitation and whatever process is employed for 

detection [Kla09]. The transition dipole moment for absorption of pump and probe is the 

same for those probe photons also absorbed by GS molecules. Hence, for the GSB θ = 0 and 

the expected amplitude of r(t) is 0.4 (cf. Fig. 4.15b). Typical decay times for rotational 

diffusion range between 9 ps for perylene in methanol up to several hundreds of ps [Kle79]. 

An overview can be found in [Fle76]. For pyrene, values significantly below 9 ps are obtained 

both in methanol and cyclohexane (cf. Fig. 4.15c). This indicates that pyrene does not interact 

significantly with the solvents used, i.e. does not reside in a large solvent shell. This could 

also be connected to its high solubility in polar and unpolar solvents. When excited state 

populations are investigated, this effect is usually suppressed by choosing a ‘magic angle’ of 

54.7° between pump and probe polarizations (black line in Fig. 4.15a) [Les76].  
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4.4 Introduction to the Pyrene’s Debated Nanosecond Dynamics 

In the 1960s, fluorescence dynamics were most often probed using flash photolysis, where a 

flash lamp excites the sample and a photomultiplier is used to detect the emitted light vs. time. 

A combination of bandpass filters was employed to select a portion of the spectrum for 

detection. Gaining a clear picture of the pyrene dynamics using this technique is difficult for 

two reasons. First, as Hanlon and Milosavljevic recently pointed out, an appropriate choice of 

excitation wavelength is crucial since too high an absorbance results in inhomogeneous 

excitation of the sample volume, which can lead to fraudulent dynamics [Han13]. Many 

studies either used a broad excitation bandwidth [Foe55, Zac84] or an excitation wavelength 

well above the S2 origin. In this work particular attention was paid to excite very close to the 

origin in all measurements to avoid excess vibrational energy. Second, the streak camera 

measurements presented below confirm findings by Andriessen et al., indicating a significant 

overlap of monomer and excimer fluorescence bands down to below 380 nm [And91, 

And92]. This is a likely cause for double exponential fluorescence decay times observed for 

the monomer, depending on the detection wavelength [Bir63, Roy11].  

In studies on pyrene dimers linked at the 1- or 2- position, complex fitting models using up to 

four exponential decays attributed to different conformers have been discussed [Zac76, 

Zac78, Zac84, Zac85, Zac85a, Sie87, Zac88, Sie89, Rey90, Zac91, Win93, Tsu95]. The 

systematic approach to the functional linking of pyrene units presented here will help 

categorize linked dimers according to their dynamics and identify compounds with desirable 

or interesting properties.  

Figure 4.16 is adapted from a model shown in [Bir70], illustrating the most commonly 

assumed relaxation pathways for pyrene. In addition to monomer and excimer fluorescence, 

several interconnected relaxation pathways are postulated (cf. Table 4.1). Unambiguous 

assignment of rate constants is therefore not possible from the fluorescence alone, as only net 

decay rates Mk , Dk  and Tk  (right column) can be directly accessed. Assumptions about e.g. 

the role of the triplet state are usually made to obtain a complete picture.  

In the following sections, ambiguities in the models are removed by combining spectrally 

resolved broadband TA and fluorescence decay measurements, directly probing the monomer, 

excimer and triplet states. The redundancy of information on the decays of the S1- and 

excimer states as well as similarities between linked and unlinked compounds aid in the 

analysis of the debated dynamics.  
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Fig. 4.16: Jablonski diagram adapted from Birks et al., showing possible relaxation 

pathways in pyrene [Bir70]. Solid arrows indicate radiative transitions, drawn to 

scale according to TDDFT calculations [Rei15]. S1, S2: singlet excited states of 

the monomer. T1: triplet excited state of the monomer. D*: excimer.  

 

Table 4.1: Definition of rate constants depicted in Fig. 4.16 and abbreviations used below. 

rate description net decay rates 

krad,M monomer fluorescence  

} kM 
kIC,M internal conversion of the monomer 

kMT intersystem crossing (ISC) of monomer 

kMD⋅c excimer formation from monomer 

krad,D excimer fluorescence 

} 
kD kIC,D internal conversion of the excimer 

kDT triplet formation from excimer 

kDM dissociation of excimer   

kTM⋅ cT triplet triplet annihilation (TTA) 
  

kTD⋅cT excimer formation from triplet 

krad,T phosphorescence  } 
kT 

kIC,T internal conversion of the triplet 
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4.4.1 Approximate Energy Levels 

Table 4.2 shows estimates for the energy levels  of the states displayed in Fig. 4.16. Even 

though some values carry considerable errors, it is clear that at room temperature the excimer, 

stabilized w.r.t. the S1 state by more than 0.4 eV, is highly unlikely to dissociate. Excimers 

have been claimed to dissociate back into a singlet excited and a GS pyrene via kDM. Even at 

room temperature a value of 7 1
DMk 0.65 10 s−= ⋅  has been reported [Bir63], comparable to 

the fluorescence decay rates observed in millimolar solutions. This reversibility has been 

disputed in more recent publications [Bir70, Del79, Mar87, Mar88, Duh12, Han13]. As all of 

the following experiments are carried out at room temperature, kDM is assumed to be 

negligible for the work presented here, unless strong evidence to the contrary presents itself. 

Table 4.2: Rough estimates of pyrene energy levels (w.r.t. the monomer S0 state)  according 

to [Bir70], TDDFT calculations [Rei15] and observations of absorption and 

fluorescence band positions. 

Source: Bir70 (pp. 303,357) TDDFT calculationa absorption 

State E (eV) λ (nm) E (eV) λ (nm) E (eV) λ (nm) 

S2 3.65 341 3.91 317 3.72 334 

S1 3.33 372 3.64 341 3.37 368 

D* 2.92 425 2.58 481 2.64c 470 

T1 2.08 594 2.03 612 2.08b 594 
a courtesy Matthias Roos and Sebastian Reiter [Rei15]. b [Zan78]. c from fluorescence. 

4.4.2 Diffusion Controlled Processes 

Some of the rates in Fig. 4.16 are concentration dependent second order rate constants. The 

formation of the excimer D* relies on diffusional encounter of an excited and a GS pyrene, 

described by kMD. kTM and kDT represent the recovery of one singlet excited molecule or an 

excimer by triplet triplet annihilation (TTA). This depends on the concentration of excited 

triplets cT. TTA gives rise to pyrene’s delayed fluorescence, dubbed ‘p-type’ delayed 

fluorescence [Bir70, Bir75, Kla09]. Second order rate constants, given in L s-1mol-1, need to 

be multiplied by a concentration to obtain a rate parameter in s-1, as indicated in Fig. 4.16.  

A common way of modeling diffusion is combining Fick’s law of diffusion with the Einstein-

Smoluchowski relation. The diffusion coefficient is defined as 
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 Bk TD
6 r

⋅
=

π ⋅ η ⋅
, (4.15) 

where kB denotes Boltzmann’s constant, T the temperature in K, η the dynamic viscosity of 

the solvent and r the particle’s Stokes radius. The theory is based on the assumptions that a 

spherically symmetric concentration gradient around an excited (spherical) particle is set up, 

and that the rate of flow of particles in this concentration gradient is governed by Fick's law of 

diffusion [Smo17, Col49]. The theory is constantly being improved, useful reviews can be 

found in [Ric85, Bur04]. Most commonly the approximate relation for the diffusional 

quenching rate 

 diff
p Rk (t) 4 R p D 1

D t
⋅ ′= π ⋅ ⋅ ⋅ ⋅ + ′π 

 (4.16) 

is used, with R the sum of the stokes radii of the interacting partners, and D’ the sum of their 

diffusion coefficients. p is a factor for the interaction probability upon encounter. While Birks 

et al. report an efficiency p = 1 for the pyrene excimer formation [Bir63, Bir70], a more recent 

publications claims p = 0.4 [Han13]. This will be reviewed in Section 4.6. Equation 4.16 can 

be understood as a limiting rate diff ,limk  plus a time dependent variation proportional to t . 

The approximated rate therefore features a pole at t = 0 and asymptotically approaches 

diff ,limk for large t. A second time dependence of the rate ensues when the quencher is not 

present in excess and hence its concentration is significantly altered by the reaction. 

Whenever the rate parameter for a process is not constant, the differential equations 

describing the system can no longer be solved by simple exponential decays. The solutions of 

such systems are often approximated by stretched exponentials, however exact solutions are 

best obtained numerically [Mar87]. 

For the excimer formation in pyrene, pyrene itself is the quencher and in experiments where 

the number of excited molecules is at the per cent level, the concentration of the quencher can 

be regarded as constant. Birks et al. repeatedly claim that the time dependent term in 4.16, 

also called the ‘transient contribution’, is ‘normally on the order of unity’ [Bir 63, Bir70, 

Han13]. 

When all time dependencies can be neglected, the situation is commonly referred to as 

‘pseudo first order conditions’. The dynamics then follow classical rate equations and can be 

accurately described by a sum of exponential decays. The rate constants describing the 

diffusive process increase linearly with the concentration (cf. Section 4.6). 
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The following example will examine this for the case relevant to pyrene. For pyrene in 

cyclohexane at T = 295 K, assuming r = 8.9 Å (average of long and short axis) and a dynamic 

viscosity of 3 1 10.941 10 kg m s− − −η = ⋅ ⋅ (Dortmund Databank, ddbst.com), the diffusion 

coefficient is D = 25.8 Å2/ns and 9 1 1
diff ,limk 6.95 10 M s− −= ⋅ . Note that this is one order of 

magnitude slower than the singlet quenching constant of solvated oxygen, explaining the 

considerable enhancement of the excimer fluorescence upon O2 removal (cf. Section 4.2.5). 

Fig. 4.17 shows quenching rates k(t) calculated via equation 4.16 including the transient term 

for selected concentrations next to simulated fluorescence decay curves. The rate model used 

to obtain the fluorescence decays will be discussed in detail later in this chapter. Fig. 4.17b 

indicates that at early times the decay of the monomer as well as the excimer growth are 

significantly accelerated when the transient contribution is included. For all concentrations it 

takes 195 ns for diffk (t)  to stabilize to within 10% of diff ,limk . Thus, it is questionable 

whether the time evolution of the rate of diffusion can be ignored.  

The rate constant for TTA can be estimated via the above formalism. In contrast to the 

excimer that forms upon collision with any GS pyrene, a triplet excited molecule must collide 

with a triplet excited partner for TTA to occur. Assuming a typical 1% of molecules to be 

excited and a triplet quantum yield of 60% at c = 10mM, the rate of interaction is 
5 1

TM diff ,limk k 10mM 0.01 0.6 4.17 10 s−= ⋅ ⋅ ⋅ = ⋅ , which corresponds to rise times of 

several µs. Even in streak camera experiments on the µs timescale, no significant fluorescence 

is detected at room temperature. Therefore TTA processes are not relevant on the ns timescale 

and both TMk  and TDk  can be neglected here. 

 

Fig. 4.17: (a) Calculated diffusional quenching rate for pyrene in cyclohexane: r = 8.9 Å, 
3 1 10.941 10 kg m s− − −η = ⋅ ⋅ , D = 25.8 Å2/ns, 9 1 1

diff ,limk 6.951 10 M s− −= ⋅  

(b) Simulated monomer (blue) and excimer (green) fluorescence signals with 

(solid) and without (dashed) transient term for c = 10mM. 
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4.5 Single Line Fluorescence Decay Analysis Facing Overlapping Bands 

and Photoproducts 

The single line time resolved fluorescence setup described in Section 4.2.5 not only allows 

monitoring the degassing process, but can also serve to elucidate challenges faced by single 

wavelength fluorescence experiments, which are still an important source of information 

today [Han13]. Using the EKSPLA ns-OPO as a light source, the excitation wavelength can 

easily be tuned. 10 nm FWHM bandpass filters are used: ‘500 nm’ and ‘550 nm’ probe the 

excimer fluorescence, ‘380 nm’ and ‘390 nm’ are employed in an effort to single out the 

‘monomer region’. Fluorescence decays recorded by the photomultiplier are fitted using a 

sum of two exponentials (cf. Fig. 4.18). 

 

 

Fig.4.18: (a) Fluorescence traces from 1 mM pyrene in cyclohexane using λex = 334 nm and 

Epump = 230 nJ with double exponential fit (red dashes). (b) Fit amplitudes. 

Table 4.3:  Single line fluorescence decay analysis of 1 mM pyrene in cyclohexane.  

 λex = 334 nm 230 nJ λex = 372 nm 1245 nJ 

λdet 
(nm) 

τ1 
(ns) 

τ2 
(ns) 

A1 

(mV) 
A2 

(mV) 
A1/A2 

τ1 

(ns) 
τ2 

(ns) 
A1 

(mV) 
A2 

(mV) 
A1/A2 

380 35 82 62 427 0.14 10 81 245 331 0.74 

390 33 83 161 1224 0.13 9 79 975 965 0.99 

400 35 82 95 1745 0.05 6 79 1376 1182 -0.86 

450 34 85 -4561 4868 -0.94 36 85 -3347 3827 -0.88 

500 34 85 -5156 5367 -0.96 36 84 -4140 4403 -0.94 

550 34 84 -596 609 -0.98 36 83 -444 473 -0.94 
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The fitted decay times and their corresponding amplitudes are summarized in Table 4.3. For 

excitation into the S2 maximum at 334 nm, the resulting decay times show the excimer 

fluorescence rising with 34 ns and subsequently decaying with 85 ns. A1/A2 ratios close to 

unity in the excimer region indicate that there is no sudden step in the excimer’s fluorescence. 

Instead it grows from and decays back to zero. Preassociated dimers would cause a step-like 

increase [Rey90, And91, And92], this is not evident from the data. Both decay times are also 

found in the monomer fluorescence. Note that even at the bluest detection wavelength the 

35 ns decay contributes more than 10% to the fitted amplitude, (cf. Table 4.3). 

With feedback processes via DMk , TMk  and TDk  ruled out, according to the model in Fig. 

4.16 the monomer is expected to decay monoexponentially with a sum of rates 

 M rad,M IC,M MT MD
2

1k (c) k k k k c
(c)

= = + + + ⋅
τ

. (4.17) 

Birks et al. were first to offer a model for the excimer formation dynamics [Bir63, Bir70]. 

They include a reversibility of the excimer formation DMk 0≠ , leading to double 

exponentials with concentration dependent decay times and amplitudes. Many following 

reports on pyrene and pyrene derivatives base their analysis on variations of this model 

[Zac84, Zac85, Zac85a, Mar87, Win93, Han13]. However, at room temperature a reversibility 

is unlikely due to the large stabilization of the excimer (cf. Section 4.4.1). When DMk 0= , 

Birks’ model predicts single exponential monomer decays for all concentrations [Bir63].  

Other possible reasons for deviations from a monoexponential decay are inhomogeneous 

excitation of the sample volume or transient effects caused by diffusion neglected by Birks et 

al. [Mar87, Han13]. When pyrene units are linked, attached to larger molecules or in pyrene 

crystals, different conformers of the excimer were suggested to cause multiexponential 

fluorescence decays [Zac84, Zac85, Zac85a, Sie87, Zac88, Sie89, Zac91, Win93]. Simpler 

explanations, that seem to have been overlooked, are a nonzero overlap between monomer 

and excimer fluorescence bands as well as chemical impurities. These will be explored below. 

4.5.1 Overlapping Fluorescence Bands 

It has been pointed out before that there is in fact some overlap between monomer and 

excimer fluorescence to below 380 nm [And91, And92], but it appears the consequences of 

this overlap have not been seriously considered. A simulation was conducted to investigate 

the effects of overlapping excimer contributions on a single exponential ‘monomer’ trace. 
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Fig. 4.19: Amplitudes obtained by double exponential fit to calculated fluorescence traces 

F(t)  for increasing excimer amplitude AD and AM = 1. Dashed line: A1+A2. 

At a given concentration the excimer population at [D*](t)  obeys the relation 

 [ ] [ ]( )M
1 D M

M D

k (c)[D*](t) [S *](t 0) exp k t exp k (c) t
k (c) k

= = ⋅ − ⋅ − − ⋅
−

. (4.18) 

Here 1[S ](t 0)=  is the initial excited state concentration of the monomer and 

FD DG D DTk kk k+ +=  is the sum of all decay channels for the excimer. Equation 4.18 

holds for any intermediate in a sequential reaction X Y Z→ →  and represents an analytical 

solution to Birks’ model in the case DMk 0=  [Kla09, Bir63]. The observed growth of the 

signal always follows the faster rate. For M Dk (c) k>  the behavior is intuitive. When the 

excimer formation is slower than it’s decay ( M Dk (c) k< ) the denominator changes sign. 

This sign change is compensated by an exchange of the two exponentials in the brackets, 

leading to an all positive signal that grows with the excimers’ decay rate. This is the reason 

why for low concentrations the excimer signal grows faster than the S1-state decays. 

The fluorescence signal at a given detection wavelength can be modeled as a superposition of 

such a trace [D*](t)  and a monoexponential excimer decay 

 [ ]1 2M1 exp k (cF(t) A [S )](t 0) A [D*t ](t)− ⋅ + ⋅= ⋅ = , (4.19) 

with scaling factors AM and AD. Setting 1[S ](t 0) 1= =  and rearranging yields  

[ ] [ ]M D D
M M

M D
M MD M MD

k (c) k (c)exp k (c) t exF(t) A A A p k t
k (c) k k (c) k

  − ⋅ + − ⋅ − −
−


= , (4.20) 

a double exponential with a net amplitude AM. Figure 4.19 illustrates amplitudes of double 

exponential fits to F(t)  for increasing excimer amplitude AD and AM = 1. 
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Rates Mk 1 85 ns= , and MDk 1 35 ns=  were chosen to resemble the measured values. 

While the rates obtained from the fit reproduce the input values exactly, amplitudes A1 and A2 

are significantly affected by the growing excimer contribution. For A2 > 0.6, a rise and a 

decay are observed as is intuitively expected for the sum of a monomer and an excimer trace 

(cf. Fig. 4.19). However, when the excimer contribution becomes small, the fit results in two 

positive amplitudes (red arrow), just as observed in the experiment for 390 nm and 380 nm 

detection. A similar observation was made in [And91]. The simulation also accurately 

predicts the growth of A2 towards smaller fractions (i.e. wavelengths). A truly 

monoexponential decay is only observed at A2 = 0 and A2 = 0.6.  

It follows that even minute contributions from the excimer band may well be responsible for 

the double exponential decays observed. One must either select the detection wavelength very 

carefully, which requires the appropriate optical filters, or detect at several wavelengths and 

analyze the evolution of these fit parameters. The best choice is, of course, broadband 

detection, as presented in the Section 4.6. 

4.5.2 Impurities Due to Photodegradation 

Shifting the excitation into the S1 region (372 nm) reveals an anomaly. While the green 

excimer fluorescence shows the same dynamics as before, in the monomer region a sub 10 ns 

decay time (red) is found to contribute more than 70% of the fitted amplitude (cf. Table 4.3, 

right). An excitation scan reveals discrepancies between the samples absorption (black 

dashes) and excitation spectrum, pointing to an impurity in the sample (cf. Fig. 4.20a). The 

fitted decay times remain constant across the entire range evaluated and the amplitude A2 

(blue crosses), corresponding to the ~84 ns decay, reproduces pyrene’s S1 absorption 

spectrum (dashed line) quite nicely. However, A1 (blue circles), shows significant differences, 

especially around 370 nm.  

It follows that even though the purest available pyrene sample was used (Sigma-Aldrich 

FLUKA TraceCERT®, 99.2 ± 0.2%), fluorescence reveals a short lived impurity, likely due 

to a photoproduct caused by prolonged exposure to the excitation source or ambient light in 

the laboratory. This is despite the fact that sample containers were wrapped in aluminum foil 

and kept in the dark when not in use, in order to minimize exposure. Even after purification 

by collaborators in the chemistry department, the purity was found to quickly deteriorate 

again, as can be seen in Fig. 4.20b [Lan13]. Such short decay times were also found in 

[Zac84, Zac85, Zac88].  
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Fig. 4.20: Excitation scan at c = 1 mM and λdet = 380 nm. (a) fitted A1 (red) and  A2 (blue). 

Dashed line: scaled pyrene absorption spectrum. (b) τ1 (red) and τ2 (blue). (c) 

Condensed pyrene (bottom) & impurity (top) in a glass beaker, analyzed 24 h 

after purification. 

As it proves very hard to keep pyrene samples pure, the best approach is to quantify how 

strongly measurement results are affected by the photoproducts. A photoreaction causes a 

time dependent change in solute concentration h[Py](t ) , the index h signifies that these 

reactions typically proceed on a timescale of minutes or hours. Typical streak camera or TA 

measurements take up to 1 hour. 

 Ph
h 0 Laser Py h q

d N[Py](t ) [Py] A (t ) ,
dt N

= − ⋅ ⋅ν ⋅ ⋅Φ  (4.21) 

with 

 ex h( ) [Py](t ) dPy hA (t ) 1 10−ε λ ⋅ ⋅= − . (4.22) 

Here, Ph Pump exN E h c= ⋅λ ⋅  the number of photons per exciting pulse, laser 1kHzν =  is 

the pump repetition rate. A 0N V N [Py]= ⋅ ⋅  is the total number of molecules in the 

illuminated sample volume V. It is assumed that the entire sample volume is illuminated 

uniformly - the sample is exchanged effectively between laser shots by stirring or pumping. 

The conversion efficiency is given by the sample’s steady state absorption PyA  and the 

quantum yield of the photoreaction qΦ . This assumes that there is only one photoproduct, 

which does not absorb significantly at exλ . Further assuming that the OD at the pump 

wavelength is not significantly lowered by the photoreaction ( Py hA (t ) const.≈ ), a linear 

approximation is sufficient to describe h[Py](t ) . 

In an experiment with well-defined illumination the only unknown is the reaction quantum 

yield qΦ . It can be obtained from a fit to the measured change in sample absorption.  
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Fig. 4.21: Illumination setup [Ric14]. OAP: aluminum coated off-axis parabolic mirror.  

Table 4.4: Irradiation of Pyrene in DCM: selected concentrations and excitation parameters.  

c0 (mM) 0.01 1.38 

V (mL) 3.6 1.8 

λex (nm) 337 355 

EPump (mJ) 14 88 

duration (h) 1 1.3 

fitted λ (nm) 273 313 337 337 

fitted Φq (·10-3) 1.43  1.31  1.47  1.6  

Φq (averaged) (1.5 ± 0.2) * 10-3 

 

An ideally suited experimental setup is shown in Fig 4.21 [Ric14]. The output of a fiber 

coupled broadband halogen lamp (DH-2000 BAL, Ocean Optics GmbH, 215 nm– 2000 nm) 

is imaged into the 10 mm sample cuvette via two off-axis parabolas (OAP). Two further 

OAPs couple the transmitted light into the fiber of a micro spectrometer (USB2000, Ocean 

Optics GmbH, 200 nm– 850 nm), which is read out at selected time intervals. The sample is 

illuminated by, e.g., a tunable ns OPO (EKSPLA NT 242).The sample is constantly stirred via 

a magnetic rotor. Two automated shutters are used to block the probe during illumination and 

the pump while the transmission is recorded. 

Figure 4.22 illustrates that pyrene as well as 1-methylpyrene do exhibit photodegradation 

when exposed over extended time periods. Parameters used in this illumination study are 

shown in Table 4.4. qΦ  is determined via a linear fit at selected wavelengths for two vastly 

different concentrations and pump powers, yielding comparable results. Averaging the results, 

in methanol and dichloromethane (DCM) 4q (3.2 0.6) 10−Φ = ± ⋅ and 3q (1.5 0.2) 10−Φ = ± ⋅  

are obtained, respectively. 3q 1.8 10−Φ = ⋅  is reported for pyrene in DCM [Kub00, Shi07]. 
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Fig. 4.22: (a) Illumination of pyrene in DCM at c = 0.04 mM, V = 3.6 mL, ex 328 nmλ = . 

pumpE 14.3 J= m , t = 1.1 h. (b) 1-Methylpyrene in MeOH. c = 0.013 mM, V = 

3.2 mL, ex 341nmλ = , pumpE 11 J= m , th = 3 h [Ric14]. 

Table 4.5: Calculated fraction of photodegraded sample after ht 2 h= , V 3.5ml= , 

d = 1 mm, 32 10−Φ = ⋅ , 1 138000 Lmol cm− −ε = , ex 334 nmλ = , pumpE 1.5 J= m . 

c0 (mM) 0.1 1 2 5 10 

conversion (%) 10.0 1.7 0.9 0.3 0.2 

 

Pyrene derivatives exhibit similar yields. Resulting values for methyl- and bromopyrene in 

methanol are 4q (4.1 0.5) 10−Φ = ± ⋅  and 4q (2.5 0.3) 10−Φ = ± ⋅ .  

Upper limts for the conversion in a typical transient measurement can now be predicted by 

pessimistically assuming a quantum yield of 32 10−Φ = ⋅ , a measurement duration of two 

hours and excitation into the pyrene S2 maximum with 1 138000 L mol cm− −ε = , using a high 

pump energy of 1.5µJ at λ = 334 nm. Table 4.5 shows computed conversion ratios 

0[Py](2h) [Py]  for a typical sample thickness of d = 1 mm.  

The conclusion is that while for millimolar concentrations the obtained values are at or below 

the per cent level, photodegradation becomes quite significant at low concentrations. 

Photoproducts are even more likely for the high photon fluxes used in flash photolysis 

studies. Also, in fluorescence even tiny concentrations of a highly fluorescent product can 

contribute significantly to the measured dynamics. This can be circumvented by, e.g. 

significantly increasing the sample volume or, decreasing the pump power used.  
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4.6 Broadband Fluorescence Analysis: A More Complete Picture  

Broadband fluorescence decay measurements allow separation of overlapping fluorescence 

signatures. Streak camera measurements were performed with streaking windows from 5 ns to 

2 µs. For this measurement series 0.01 mM to 10 mM solutions of pyrene in cyclohexane 

were prepared in a sealed 1 cm cuvette containing a magnetic stir bar and degassed by 5 

cycles of freeze pump thaw using a 10-5 mbar vacuum. A typical streak dataset at c = 10 mM 

is illustrated in Fig. 4.23.  

Initially, a direct analysis of selected band integrals is performed. A typical streak dataset at 

c =10 mM is displayed Figure 4.23b. To avoid the region of possible spectral overlap, a 

spectral interval from 350 nm to 400 nm (60 pixels) is averaged to analyze the monomer 

dynamics (bright blue cursor). The range from 450 nm to 540 nm (100 pixels) is chosen for 

the excimer (bright green cursor). Figure 4.23c shows band integrals for selected 

concentrations, probed in the 500 ns streaking window. The IRF is obtained from scattered 

pump light detected by the streak camera (black). In the 500 ns streaking window, the IRF has 

a 8 ns FWHM width. 

 

 

Fig. 4.23: Streak data from pyrene in cyclohexane at c = 10 mM: (a) fluorescence spectra at 

selected delays averaged over 20 samples. (b) typical dataset in false color 

representation. Cursors indicate selected monomer (blue) and excimer (green) 

band integrals. (c) IRF (black) and normalized monomer band integrals, at 

c = 0.01 mM (blue), 0.1 mM (dark cyan), 1 mM (green), 2 mM (yellow) and 

10 mM (red). (d) same as (c) for excimer band integral. 
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Fig. 4.24: (a,b) biexponential fits to monomer (blue) and excimer (green) fluorescence band 

integrals. (c) Results from monomer band (circles), excimer (triangles) and global 

analysis (squares), compared to results from Birks et. al. at 293 K (black lines). 

In Fig. 4.24a and 4.24b fits of the selected band integrals are displayed. First, excimer traces 

are fitted using the difference of two exponentials, then the obtained decay times are used as 

starting values to fit the monomer trace.  

Figure 4.24c shows rate constants resulting from the monomer (circles) and excimer 

(triangles) band integrals vs. concentration. Similar rates are obtained from a global analysis 

(GA) of the entire streak dataset using two exponential decays (squares). For reference, 

results reported by Birks et al. are shown as black lines [Bir63]. Irrespective of the analysis 

scheme, the results are similar to those reported in [Bir63]. Double exponential decays are 

found at all concentrations except for the monomer band integral at 0.01 mM.  

From a rate model without feedback from the excimer ( DMk 0=  in Fig. 4.16), one concen-

tration independent excimer decay rate D rad,D IC,D DTk k k k= + +  and one monomer 

decay rate linear in c M rad,M IC,M MT MDk (c) k k k k c= + + + ⋅  are expected [Bir63]. While 

none of these properties are evident in Fig. 4.24, the following will present evidence that this 

is the consequence of band overlap and a transient contribution due to diffusion. 
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4.6.1 Decomposition of Overlapping Contributions via Spectral Analysis 

Global analysis allows the reconstruction of species associated emission spectra. At 

c = 10 mM, where the excimer fluorescence is most distinct, the obtained spectra clearly 

indicate a significant overlap of the fluorescence bands down to below 375 nm (cf. Fig. 4.25), 

even further than reported in [And91, And92]. At 380 nm the excimer contribution still 

amounts to up to 25% of the monomer’s amplitude.  

The fact that the excimer fluorescence reaches far into the blue does not necessarily imply 

that the excimers excited state potential minimum is close in energy to the excited monomer’s 

(cf. Section 4.1.2). Instead, the weak blue fluorescence tail can be interpreted as fluorescence 

from ‘hot’ excimers, where pyrene units were not able to fully optimize the overlap of their π-

systems before the fluorescence occurred. Theory predicts several possible more or less stable 

configurations, so when pyrene units collide there may well be contributions from less 

stabilized collision complexes (cf. Section 4.1.2., Fig. 4.3c). While this fluorescence tail 

disturbs the observed time evolution, it amounts to less than 10% of the excimer’s total 

fluorescence amplitude (cf. Fig. 4.25a). Assuming hot excimers have a fluorescence quantum 

yield D 0.75Φ =  comparable to regular excimers [Bir63], the fraction of ‘hot excimers’ is 

small and no significant recovery of singlet excited monomers is to be expected at room 

temperature. The confirmed band overlap indicates that double exponential decays observed 

in past studies have likely been caused by a small but significant fluorescence band overlap 

(cf. Section 4.5.1) [Bir63, Bir70, Han13]. 

 

 

Fig. 4.25: Species associated spectra for pyrene monomer (blue) and excimer (green) from 

global analysis using two exponentials. 
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Fig. 4.26: (a) fit of the transient spectrum (grey circles) at ∆t = 50 ns using three Gaussians 

and residual (bottom). (b) resulting time traces of individual contributions 

compared to raw signals at λ = 390 nm and 470 nm (gray).  

To disentangle dynamics of overlapping fluorescence bands, the broadband nature of the 

datasets is exploited. Instead of fitting single lines or averaging over wavelength intervals, a 

fit is performed in the spectral domain. parameterizing the spectra using a sum of Gaussians 

functions. While many global analysis techniques assume first order kinetics, no assumption 

regarding the dynamics must be made a priori. This parameterization can also handle shifting 

and reshaping bands, known to cause artifacts in common global analysis algorithms. 

Fig. 4.26a shows an example of a spectral decomposition for c = 2 mM using three Gaussians. 

One Gaussian is used to model the excitation stray light (orange), the other two parameterize 

the monomer and excimer fluorescence bands. Initially, band positions and widths are 

assigned to best fit a selected transient spectrum, where all contributions are well pronounced. 

The assigned central wavelengths of monomer and excimer bands are 390 nm and 472 nm 

with respective widths of 33 nm and 90 nm FWHM. Assuming that on the ns timescale 

processes resulting in significant band shifts and reshaping are irrelevant, these parameters are 

then kept fixed as the transient fluorescence spectra for each delay time are fitted by varying 

the amplitudes of the three Gaussians independently. Figure 4.26b shows resulting time traces 

for the monomer (blue) and excimer fluorescence bands (green). The spectrally decomposed 

temporal profiles differ slightly from raw fluorescence traces at λ = 390 nm and 470 nm 

shown in gray. 
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Fig. 4.27: Retrieved monomer (blue) and excimer (green) flourescence decays (normalized) 

under well degassed conditions with monoexponential (red) and biexponential fits 

(orange). Bottom panels show residuals, for monomer (blue) and excimer (green) 

plotted as a fraction of the respective signal maximum for better comparability. 
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Table 4.6: Fit results obtained after spectral decomposition. The assigned central 

wavelengths of monomer and excimer bands are 390 nm and 472 nm with 

respective widths of 33 nm and 90 nm FWHM. 

concentration 
(mM) 

τM 
(ns) 

AM 
(counts) 

τ1 

(ns) 
A1 

(counts) 
τ2 

(ns) 
A2 

(counts) 
-A1/A2 

τlim 

(ns) 

0.01 522 136.6 61 -3.8 478 8.3 0.46 14400 

0.1 413 232.4 60 -42.0 366 42.0 1.00 1440 
1 132 163.2 53 -316.4 119 330.7 0.96 144 
2 72 114.6 46 -484.1 84 506.7 0.96 71.9 

5 26 36.5 28 -180.7 65 182.7 0.99 28.8 
10 13 34.8 14 -115.2 63 116.2 0.99 14.4 

 

After spectral decomposition the monomer traces can (to a first approximation) be fitted well 

using a single exponential decay (cf. Fig. 4.27). Fitting the excimer traces independently, 

three rates and amplitudes for each concentration are obtained. All values are listed in (Table 

4.6). A decay time well above 500 ns at 0.01 mM indicates that oxygen has been removed 

quite effectively and excimer amplitude ratios close to unity indicate the absence of sigificant 

preassociation. 

The concentration dependence of the obtained rates is illustrated in in Fig. 4.28. The fitted 

excimer rise (green upward triangles) and decay (green downward triangles) rates exibit a 

similar concentration dependence as all pairs of rates in Fig. 4.24. The fitted monomer decay 

rate Mk (c) , however, shows a distinct evolution. For c < 2 mM it follows the excimer decay 

rate, while for c > 2 mM the monomer decays with the same rate as the excimer growth. This 

clarifies why the system is usually described using only two exponentials: the monomer decay 

rate is always similar to either the growth or the decay of the excimer signal.  

This is a direct consequence of the exchange of rise and decay in equation 4.18: the rise of the 

observed excimer signal is always characterized by the faster rate ( Dk  or Mk (c) ), so at low 

concentrations the signal rises with the excimer’s decay rate and decays with its growth rate, 

matching Mk (c) . As a consequence, for c ≤ 5 mM the excimer’s growth rate is faster than the 

monomer decay. 
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Fig. 4.28: Fitted monomer decay rate Mk (c)  (blue circles) and excimer rise (green upward 

triangles) and decay rates (green downward triangles) vs. concentration. Green 

line: excimer decay rate Dk . Black dashes: rate of diffusion diff ,limk  according 

to Section 4.4.2.  

As the concentration increases, the excimer decay asymptotically approaches 
7 1

Dk 1.64 10 s−= ⋅  (green solid line), corresponding to τD = 61 ns. Dk  can be interpreted 

as the intrinsic decay rate of the excimer, i.e. the sum of all radiative and nonradiative decay 

rates rad,D , TD IC D Dk kk k+ += . The excimer decay can never exceed this rate. The 

excimer growth rate (green upward triangles) approaches this value for low concentrations, 

but is always slightly faster than Dk . 

Note that the asymptote Dk  is approached to within measurement accuracy at both ends of 

the concentration range. According to the modeling applied by Birks et al. a back transfer 

from the excimer to the monomer would manifest as a deviation from this asymptote [Bir63, 

Bir70]. The absence of this effect is another indication that back transfer from the excimer can 

indeed be excluded at room temperature. 

An intuitive explanation of this behaivour is that for high concentrations the excimer 

formation is quite efficient, therefore the monomer decay and excimer buildup share the same 

rate. In the low concentration limit excimer formation is slow, yet as long as there are excited 

monomers present in the sample, some excimers will be formed, which leads to a slow decay 

of the excimer population with the monomer’s decay rate. Fitted excimer decays exceeding 

the monomer decay rate (c = 0.01-1 mM) must be regarded as a measurement error. Small 

drifts in the streaking field impact the results when evaluating very long decays. 
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4.6.2 Impact of the Transient Contribution of Diffusional Quenching 

 

 

Fig. 4.29: Monomer decay trace from spectral decomposition of well degassed pyrene in 

cyclohexane at c = 2 mM (blue circles) and monoexponential fits to selected delay 

time ranges. Red dashes indicate extrapolation. 

While the spectral decomposition in Section 4.6.1 provides a good intuitive picture, some 

discrepancies remain. In pseudo first order conditions diffusion controlled processes are 

expected to follow exponential kinetics with rates proportional to the concentration of the 

quencher - in this case pyrene itself (cf. Section 4.4.2). Yet, fits to the decomposed time 

evolutions at c = 2 mM and 10 mM in Fig. 4.27c&d exhibit small but systematic residuals on 

the order of 1%. Close inspection reveals that the time evolution of the monomer fluorescence 

at c = 2 mM is not perfectly exponential. Figure 4.29 shows fits to selected delay time 

intervals. The fitted decay time increases by almost 10% when the initial part of the trace is 

not included in the fit (red). The effect is noticeable up to about 150 ns (black). As discussed 

in Section 4.4.2 the first 150 ns are the time range in which the transient contribution to the 

rate of diffusion is significant. 

Secondly, for c ≥ 2mM, the monomer’s single exponential decay rate increases (to a first 

approximation) linearly with the concentration, with a slope 9 1 1
MDk 7.75 10 M s− −= ⋅ . Yet, 

this exceeds the upper limit given by 9 1 1
diff ,limk 6.95 10 M s− −= ⋅  for cyclohexane at room 

temperature (cf. Section 4.4.2) by more than. 10%. Excimers should not be formed at a rate 

faster than the rate of diffusional collision. At lower concentrations, monomer decay rates 

deviate significantly from this linearity, as shown in Fig. 4.30a. Here a fit to Mk (c)  taking 

into account only the range c < 2mM (blue dots) is plotted next to a fit to the entire 

concentration range (red dashes). 
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Fig. 4.30: (a) Monomer decay rates Mk (c)  (blue circles) and linear fits taking into account 

only c < 1,5 mM (dots) and all datapoints (red dashes). (b) same as (a) for 

c > 2 mM compared to rate of diffusion diff ,limk (black dashes), according to the 

Smoluchovski theory. (c) rates reported in [Han13] (red circles) and linear fit 

(solid red line) compared to values obtained by averaging over a 10 nm interval 

around 415 nm detection (turquoise). diff ,limk  for p = 1 shown in black. 

For c < 2 mM the fitted slope is only 9 1 1
MDk 5.71 10 M s− −= ⋅ . Figure 4.30b compares 

these fits to diff ,limk  (black).  

The smaller value obtained here for c < 2 mM corresponds to an excimer formation efficiency 

of MD diff ,limp k k 0.82= = . This is well within the range of values obtained for other 

compounds [Bir70]. The significant difference in the two values obtained for MDk  in 

different concentration ranges points to an underlying concentration dependent effect. 

A close match between MDk  and diff ,limk  was obtained by Birks et al., who concluded that 

the excimer formation is a diffusion-limited process with an efficiency of p = 1 [Bir63, 

Bir70]. A much smaller value for 9 1 1
MDk 3.11 10 M s− −= ⋅ , corresponding to p = 0.4, was 

recently reported [Han13]. Hanlon et al. evaluated exclusively below c = 2.3 mM at a single 

detection wavelength of 415 nm. The small MDk  can be explained by their choice of 

detection wavelength for the ‘monomer’ fluorescence. The rates obtained in [Han13] (dark 

red circles in Fig. 4.30c) can be accurately reproduced by analyzing an averaging over a 

10 nm spectral interval centered around 415 nm in the streak camera data (turquoise dots). 

The overlapping excimer fluorescence spectrum significantly impacts this wavelength (cf. 

Fig. 4.25). The conclusion is that not only the appropriate excitation as stated by Hanlon et al. 

[Han13], but also the choice of detection wavelength is crucial in the evaluation of Mk (c) . 
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Further evidence pointing to an efficiency p = 0.82 is gained by considering the decay rate of 

the pyrene monomer in absence of excimer formation Mk (c 0)= , the intercept yielded by 

the linear fit to Mk (c) . Reported values of Mk (c 0)=  vary slightly as they do depend on 

the concentration of other quenchers like oxygen. Birks et al. find 6 1
Mk (c 0) 2.25 10 s−= = ⋅  

and, assuming a fluorescence quantum yield of FM 0.65Φ = , calculate the radiative rate of 

the pyrene monomer to be 6 1
FM M FMk k 1.46 10 s 1 680 ns−= ⋅ Φ = ⋅ =  [Bir63]. This is in 

the vicinity of the, to our knowledge, highest reported fluorescence lifetime of 650 ns for 

pyrene in cyclohexane, obtained via degassing by freeze-pump-thaw [Del79]. Assuming the 

same FMΦ , this corresponds to 6 1
FMk 1.00 10 s−= ⋅ .  

Our result in the range below c = 2 mM is 6 1
Mk (c 0) 1.77 10 s 1 565 ns−= = ⋅ =  and 

assuming FM 0.65Φ =  this corresponds to 6 1
FMk 1.15 10 s 1 870 ns−= ⋅ = , which is 

closer to the rate reported in [Del79] than that reported in [Bir63], probably due to the modern 

degassing technique used. A fit to Mk (c)  up to 10 mM, however, yields 
6 1

Mk (c 0) 0.49 10 s−= = ⋅ , less than half of the smallest value reported [Del79]. It is unlikely 

that both Birks and Delouis et al. erred by more than a factor of 2, therefore the range above 

c ≥ 2mM requires closer investigation. The following section will offer an explanation for the 

abovementioned discrepancies by exploring the effect of the commonly neglected transient 

contribution to the rate of diffusion diffk (t)  in a simulation. 

4.6.3 Simulating Diffusion Including the Transient Contribution  

As was pointed out in the previous section, the monomer fluorescence decay rate 

M rad,M IC,M MT MDk (c) k k k k c= + + + ⋅  for c < 2mM suggests an efficiency p = 0.82 for 

the excimer formation. The significantly larger slope observed for higher concentrations may 

be due to an apparent acceleration of the observed decays due to the transient contribution of 

diffusion (cf. Section 4.4.2). To investigate this, a simulation was set up in Mathcad Prime 

3.1, where rate equations with a time dependent rate of excimer formation MD diffk k (t)=  

are solved numerically. 

Following considerations in Section 4.4, a reversibility of the excimer formation and excimer 

formation by encounter of two triplet molecules are neglected. When there is no feedback 

from the triplet into the S1 and D* states, the evolution of the triplet state has no impact on the 

excimer dynamics. Hence, the triplet state is not explicitly represented in the rate model used 

in the simulation. Radiative and nonradiative decays of the monomer and excimer are accu-

mulated in MGk  and DGk . This simplifies the Jablonski diagram as indicated in Fig. 4.31. 
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Fig. 4.31: Simplification of the Jablonski diagram previously shown in Fig.4.16. S1: singlet 

excited state of the monomer. T1: triplet excited state of the monomer. D*: 

excimer. Rates accumulated into deactivation of the monomer Mk (c 0)=  and 

excimer Dk . diffk (t) : time dependent diffusion rate according to Eq. 4.16. 

Table 4.7: Parameters for the simulation of the pyrene fluorescence dynamics. 

pyrene Stokes 
radius r 8.9 Å monomer 

decay rate Mk (c 0)=  1 565 ns  

diffusion 
constant 

D 25.8 Å2/ns  excimer decay 
rate Dk  1 61ns  

efficiency of 
excimer 

formation 
p 0.82 initial concen-

trations 0c  0.01 mM – 
10 mM 

 

Diffusion parameters were chosen analogous to the calculation in Section 4.4.2. The 

monomer and excimer decay rates as well at the efficiency of excimer formation p were 

chosen to resemble the experimentally determined values from Sections 4.6.1 and 4.6.2. All 

input parameters are listed in Table 4.7. 

The simplified rate model is defined using diffk (t) according to equation 4.16.  

 1 diff M 1
diff D

[S ](t) k (t) c k (c 0) 0 [S ](t)d
dt [D*](t) k (t) c k [D*](t)

− ⋅ − =     
=     ⋅ −     

 (4.23) 

First, we assume instantaneous excitation of 1% of a ground state concentration 0c  into an 

excited state S1 of the monomer 1 0[S ](t 0) 0.01 c= = ⋅ . The population 1[S ](t)  subsequently 

decays with a constant first order rate Mk (c 0)=  into the ground state and forms excimers 

via MD diffk (t) k (t) c= ⋅ 1 565 ns , where 0c 0.99 c= ⋅ . The minute change in ground state 

concentration due to the formation of excimers is neglected here. The population of the 

excimer [D*] decays into the ground state with a first order rate Dk . 
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Fig. 4.32: (a) calculated monomer populations 1[S ](t)  with (solid) and without (dashed)  the 

transient contribution for c = 0.1 mM (blue), 2 mM (green) and 10 mM (red). (b) 

same as (a) for the excimer population [D*](t) . (c) Single exponential fit (red) to 

the computed monomer population 1[S ](t)  (blue) and double exponential fit 

(yellow) to the computed excimer population (green) [D*](t) . (d) Residuals of fits 

shown in (c), as percentage of the maximum of the respective signal. 

The transient term in diffk (t)  is proportional to t  (cf. equation 4.16). Hence, it exhibits a 

pole a t = 0. To circumvent this, the simulation starts at t = 0.1 ns. This does introduce an 

error, yet equation 4.16 is also an approximation. In reality diffk (t 0)=  cannot be infinite. It 

has been pointed out that to realistically treat the very early times, one must consider that for 

an excitation by a pulse of finite width, the time origin is not the same for all molecules. 

Therefore one always finds a mixture of excited state species of different ‘ages’ [Mar87]. For 

this simulation targeting a timescale of tens and hundreds of ns, such considerations are 

disregarded. 

Fig. 4.32 shows solutions of the rate model 4.23 for selected concentrations with (solid lines) 

and without the transient term in diffk (t) . As expected, the transient contribution manifests 

as an accelerated decay of the S1 population as well as an accelerated growth of the excimer 

population (cf. Fig. 4.32a and 4.32b). When the transient contribution is neglected, the 

solutions to the rate model 4.23 are exponential functions and exponential fits reproduce the 

simulated signals perfectly. To judge the error introduced by an exponential fit of a trace 

severely affected by the transient term in diffk (t) , Figs. 4.32c and 4.32d illustrate the 

situation at c = 10 mM. Here exponential fits deviate from the simulated traces, leaving 

residuals of a few percent of the observed signal amplitudes. Deviations due to the transient 
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contribution decrease with time, after 100 ns they account for less than 0.5% of the observed 

signal maximum. This is roughly the time in which diffk (t)  stabilizes to within 10% of its 

limiting value diff ,limk . These findings are compatible with the residuals obtained in Fig. 4.27. 

Table 4.8: Results of exponential fit to simulated data neglecting the transient contribution.  

concentration 
(mM) 

τM 
(ns) 

AM 
(mM) 

τ1 

(ns) 
A1 

(mM) 
τ2 

(ns) 
A2 

(mM) 

0.01 548 0.0001 61 -3.88E-7 5485 3.88E-7 

0.1 428 0.001 61 -4.03E-5 428 4.03E-5 
1 135 0.01 61 -0.0062 136 0.0062 
2 77 0.02 61 -0.068 76 0.068 

2.5 63 0.025 62 -1.84 62 1.84 

3 53 0.03 54 -0.22 61 0.22 

4 41 0.04 41 -0.11 61 0.11 

5 33 0.05 33 -0.10 61 0.10 
10 17 0.01 17 -0.13 61 0.13 

 

Table 4.9: Results of exponential fit to simulated data including the transient contribution. 

concentration 
(mM) 

τM 
(ns) 

AM 
(mM) 

τ1 

(ns) 
A1 

(mM) 
τ2 

(ns) 
A2 

(mM) 

0.01 546 0.0001 49 -3.91E-7 564 4.08E-7 

0.1 417 0.001 48 -4.01E-5 436 4.18E-5 
1 122 0.010 45 -0.0049 140 0.0051 
2 66 0.019 40 -0.0215 89 0.0221 

2.5 54 0.023 37 -0.0312 79 0.0320 

3 45 0.028 33 -0.0397 74 0.0410 

4 33 0.037 27 -0.0526 68 0.0547 

5 26 0.046 22 -0.0626 66 0.0657 
10 12 0.091 11 -0.1058 63 0.1142 

Table 4.8 and 4.9 detail monomer and excimer decay times and amplitudes obtained from the 

exponential fits to simulated fluorescence decays. The concentration dependence of Mk (c)  is 

illustrated in Fig. 4.33. Neglecting the transient contribution results in a perfectly linear 
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increase of the monomer decay rate Mk (c)  (blue circles). As expected, the fitted slope 
9 1 1

MDk 5.68 10 M s− −= ⋅  (blue dashed line) equals 9 1 1
diff ,limk 6.95 10 M s− −= ⋅  

multiplied by the assumed efficiency p = 0.82 (cf. Fig. 4.33b). For reference, experimentally 

obtained rates from spectral decomposition of the data in Section 4.6.1 are shown as gray 

dots. The difference between the calculated Mk (c)  and experimentally obtained values 

increases significantly with the concentration. When taking the transient contribution into 

account, this deviation vanishes (red area in Fig. 4.33b). The fitted slope 
9 1 1

MDk 7.89 10 M s− −= ⋅  now closely matches the experimental value of 
9 1 1

MDk 7.75 10 M s− −= ⋅  and exceeds the theoretical diff ,limk  (dashed black line). Note 

that just as in the experiment the rates obtained including the transient term slightly deviate 

from linearity due to the increasing effect of the transient contribution towards higher 

concentrations. 

 

 

Fig. 4.33: Simulations neglecting and including the transient contribution. Rates obtained 

from experiment shown in gray for reference. (a) Mk (c)  (blue circles) obtained 

from monoexponential fits of caclulated time evolutions 1[S ](t)  and linear fit 

(blue dashes) without transient term. Black dashed line indicates diff ,limk  for 

p =1 according to Smoluchowski theory. (b) same as (a), compared to Mk (c)  and 

linear fit including the transient contribution (red). 
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Fig. 4.34: Simulations neglecting and including the transient contribution. Rates obtained 

from experiment shown in gray for reference. (a,b) upward and downward 

triangles signify rise and decay rates from double exponential fits of [D*](t)  

neglecting (green) and including (red) the transient contribution. Blue line 

indicates Mk (c) , green line indicates Dk . (c,d) fitted amplitudes as a fraction of 

the total amplitude without (green) and with (red) the transient contribution. 

The experimentally observed behavior of the excimer rise and decay rates is also reproduced 

well by exponential fits to [D*](t)  (cf. Fig. 4.34), exhibiting an asymptotic behavior toward 

Dk  (green line) and Mk (c)  (blue line) as discussed in Section 4.6.1. At the intersection 

between Mk (c)  and Dk  the difference between calculations with (red) and without (green) 

the transient term is most pronounced. While theory predicts an abrupt change in the slope as 

reflected by the behavior of the green triangles, the rates calculated including the transient 

contribution (red) display a smooth convergence toward Dk , just as observed in the 

experiment (cf. Fig. 4.28) and in [Bir63]. 

With the transient contribution included, the fitted growth rate is slightly overestimated (Fig. 

4.34a, red triangles). This is understandable, since deviations from the exponential fits are 

most severe for the increasingly accelerated growth of [D*](t)  at early times (cf. Fig. 4.32).  

Figures 4.34c and 4.34d show the fraction of the fitted rise and decay amplitudes of [D*](t)

w.r.t. the total fitted amplitude. When diff diff ,limk (t) k= , the rise and decay amplitudes are 

always exactly equal (green lines, cf. Table 4.8). With the transient contribution included a 

slight decrease in the amplitude of the fitted rise is compensated by a matching increase the 
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decay amplitude. This effect can be observed in the experimental data presented in Sections 

4.5 and 4.6.1 and is in accordance with observations made in [Mar87]. 

The above observations clearly indicate that the transient contribution to the rate of diffusion 

is a likely cause for the different MDk  observed at c ≤ 2 mM versus high concentrations. The 

transient contribution also explains the smooth convergence of the excimer rise and decay 

rates towards Dk . It follows that the excimer formation is a diffusion limited process with an 

efficiency p ≈ 0.82, yet at high concentrations exponential fits yield exaggerated rates. An 

efficiency less than unity can be explained by alignment constraints: molecules colliding at an 

angle unfavorable for π-orbital overlap may drift apart again without forming an excimer 

[Han13]. An equality of excimer fluorescence rise and decay amplitudes is a good indicator 

for the absence of preassociated dimers. Studies in which such were postulated solely on the 

basis of unequal rise and decay amplitudes should be double checked for transient 

contributions, indicated, e.g., by a smoothing around the intersection between Mk (c)  and 

Dk . This splitting and smoothing effect was observed by Birks et al. [Bir63], who wrongfully 

concluded a reversibility of the excimer formation and an excessive efficiency of p = 1.  

Exponential functions no longer represent solutions to dynamics significantly influenced by 

time dependent rates, i.e. at high concentrations. However, while the resulting rates are 

considerably increased, even at c = 10 mM time evolutions are still reproduced fairly 

accurately (cf. Figs. 4.27 and 4.32). Commonly, time dependent rates are parameterized by 

stretched exponentials, but for the dataset presented in the above study, the use of stretched 

exponentials does not significantly improve the fits. In fact a ‘stretch parameter’ of β = 1 is 

often found, which corresponds to a classical exponential. Fitting segments of time evolutions 

separately can help identify whether transient effects come into play (cf. Fig. 4.29). 

While the spectral decomposition presented in Section 4.6.1 has an advantage in being model-

free w.r.t. the dynamics, pseudo first order conditions allow the use of classical global fit (GF) 

algorithms that facilitate retrieval of the species spectra of the intermediates involved. To this 

end, being aware of the impact of the transient contribution studied above, exponential decays 

will be used to describe the TA data in the following sections, leading to ‘pseudo first order’ 

rate constants.   
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4.7 The Full Picture: Augmenting Broadband Fluorescence with 

Transient Absorption 

Broadband transient absorption (TA) measurements allow direct access to the S1, excimer and 

triplet dynamics and extraction of excited state spectra. The role of the triplet state in the 

excimer dynamics has been a matter of speculation in previous discussions [Bir63, Bir70, 

Par62, Med66, Mis80, Mar89, Boh90]. Overlapping signatures in the VIS often complicate 

data analysis [Pos71, Pos76, Tsu95, Fog95, Kat97]. This spectral congestion is disentangled 

in this, to our knowledge, first combined streak and TA study of pyrene and derivatives. 

Similar decay times are found in fluorescence as well as TA when a comparable O2 

concentration is maintained. Specifically, the decay time of the absorption band around 

360 nm is similar to the monomer fluorescence decay (cf. Table 4.10). This feature can be 

attributed to the S1 state’s excited state absorption (ESA) [Kre13]. With exception of PY11, 

all investigated compounds form triplet states with lifetimes of several µs. A TA dataset of 

PY11-C6 is shown in Fig. 4.35 as an example. The triplet ESA exhibits vibrationally struc-

tured features around 400 nm and 500 nm [Del79, Fog95], the latter overlapping the S1 ESA. 

Below 350 nm the ‘inverted’ absorption spectrum is imprinted as ground state bleach (GSB). 

 

 

Fig. 4.35: 0.1 mM PY11-C6 in cyclohexane: (a) TA spectra at selected delay times marked 

by cursors in (b). Red spectrum multiplied by 3. Gray: TA spectrum of pyrene at 

∆t = 100 ns. (b) False color representation of TA data. Blue implies negative, red 

positive signal. (c) time evolution of GSB (black), S1 ESA (blue), T1 ESA (red). 
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Table 4.10: Results obtained in a combined time resolved fluorescence and TA study. 

compound 
(c = ~ 0.1 mM in 

cyclohexane) 

excitation 
wavelength 

(nm) 

fluorescence 
decay time a 

(ns) 

S1 ESA 
decay time b 

(ns) 

triplet  
QY b 
(%) 

fluo. 
QYc 
(%) 

Pyrene 334 d 133 187 62 62 

1-Methylpyrene 343 130 130 44 62 

1-Propylpyrene 343 d 132 140 44  

1-Bromopyrene 345 2 2 98 9 

PY11-C6 343 101 140 33 30 

PY44 341 70 90 64 40 

Pyrene (10 mM) 357 9 12 no GSB  

PY11-C3 344 7 7 23 68 

PY14 342 d 17 11 20  

PY11 334 2 2 no triplet 93 
a from streak fluorescence data. b estimated from GSB amplitudes. c from sealed degassed 

cuvette in spectrometer using an Ulbricht sphere. d from single line time resolved fluorescence 

at λdet = 400 nm.  

The comparability of results is limited by the oxygen concentration in the samples, due to 

oxygen quenching of both singlet and triplet excited pyrene [Gre94, Wil99, Bie14]. A flow 

circuit employed to avoid photoproducts sets a lower limit to the residual oxygen 

concentration, even though it features air tight tubing and an inline degasser (cf. 

Section 4.2.5). As a consequence, S1 lifetimes of only 130 ns to 190 ns are observed here and 

oxygen quenching must be included in the modeling. In perfectly degassed conditions the 

lifetime of the pyrene S1 state reaches several hundreds of ns, depending on the concentration 

and the solvent. Fluorescence studies report values between 357 ns at c = 0.1 mM and 420 ns 

at 0.05 mM in cyclohexane. 445 ns were reported at 0.01 mM in decane [Bir63, Han13]. In 

the streak camera study presented in Section 4.6, where the freeze pump thaw method was 

used for degassing in a sealed cuvette, an even longer decay time 522 ns was achieved in 

cyclohexane at c = 0.01 mM. Streak camera measurements at the BMO do not allow delays 

exceeding 32.3 ns, so fitting of long decay times carries increased uncertainty. However, in 

most cases the resulting decay times are comparable to those obtained from the S1 ESA in 

TA, retrospectively validating the times obtained from the fluorescence. Triplet lifetimes of 

several milliseconds have been reported for pyrene in polar solvents in fully degassed 
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solutions [Med66, Par68], while in cyclohexane the longest reported life time is 180 µs 

[Sli70]. Herein a lifetime much larger than the singlet lifetime indicates a triplet state. 

Table 4.10 also lists triplet quantum yields (QY) and reference values for the fluorescence QY 

of all compounds. The sum of triplet and fluorescence QY in Table 4.10 differs from 100% 

for many compounds. This is a consequence of oxygen quenching of the S1 state in the TA, 

leading to increased triplet yields [Gre94, Wil99, Bie14]. The fluorescence QY were 

determined in well degassed conditions in a sealed cuvette by means of a spectrometer 

featuring an Ulbricht sphere (Hamamatsu C9920-02G). The OD was kept below 0.15 at the 

respective excitation wavelength to avoid reabsorption. No reliable result was obtained for 

pyrene at c = 10 mM due to the large OD. The triplet QY in Table 4.10 are obtained from the 

TA datasets in two ways: values in brackets are obtained from the observed GSB. Its 

amplitude carries information about the number of excited particles at a given delay time. 

Directly comparing the GSB amplitudes at times where only the initial (S1) or triplet (T1) 

excited state is populated yields an estimate for the triplet quantum yield (QY). In pyrene the 

S1 ESA overlaps the GSB region. To take this into account the steady state absorption 

spectrum is added to the TA spectrum at the selected times and scaled such that the GSB 

vanishes and a smooth, all positive ESA spectrum with no perceivable GS features remains 

(cf. Fig. 4.36). The scaling factors are then compared to yield the triplet QY. This is achieved 

without assuming any specific model and with no need of triplet sensitizers or quenchers. A 

concrete model for the pyrene dynamics is suggested in the following section.  

 

 

Fig. 4.36: (a) TA spectra of 0.1 mM PY11-C6 in cyclohexane at ∆t = 3 ns (blue) and 

∆t = 1 µs (red) and steady state absorption spectrum (black), scaled by a factor 

0.093. (b) Same as (a), with dotted lines showing the sum of the scaled absorption 

spectrum and the transient spectra.  
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Comparing the TA data the set of compounds can be subdivided into three categories: 

‘monomer-like’, ‘excimer-like’ and ‘novel photophysics’ (horizontal lines in Table 4.10). 

Each category will be investigated separately in the following sections. A typical monomer-

like TA dataset was shown above (Fig. 4.35). The TA spectrum of pyrene at 100 ns delay is 

shown as a gray area in Fig. 4.35a for comparison. It exhibits the same features as PY11-C6 

blue shifted by about 5 nm, which is in accordance with the shift observed in the steady-state 

absorption spectra. A complete pyrene dataset can be found in Fig. 4.7d-f. In the monomer-

like case the only decay channels are fluorescence, internal conversion and intersystem 

crossing into the triplet state. The excimer decay channel opens up when the concentration is 

increased or pyrene units are linked in a favorable configuration. An example of an excimer-

like dataset is shown in Fig. 4.37a. Here pyrene in cyclohexane at c = 10 mM was excited into 

the weaker S1 band in order to avoid inhomogeneous illumination [Han13]. Due to the high 

concentration no probe light was transmitted in the ground state absorption range below 

350 nm. Compared to the monomer-like case the decay time of the S1 ESA has shortened 

significantly and a ‘blurring’ of the ESA around 500 nm as well as an additional band in the 

NIR emerge.  

 

 

Fig. 4.37: (a) TA dataset of pyrene in cyclohexane at c = 10mM. Between 700 nm and 

830 nm amplitudes should be interpreted cautiously as only a small amount of 

probe light was transmitted by the fundamental blocking filter. (b,c) Global fit 

DADS for pyrene at c = 0.1 mM (b) and at c = 10 mM (c).  
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Fig. 4.38: Global fit of 0.1 mM and 10 mM pyrene in cyclohexane. (a,d) selected time traces 

at positions indicated by color coded cursors and global fits (gray). (b,e) false 

color representation of global fit residuals, z-scale set from OD = -0.001 to 

OD = 0.001. (c,f) residuals corresponding to (a,d), plotted offset by ±0.1%.  

Being aware of transient effects (cf. Section 4.6.2), a global fit (GF) algorithm using 

exponentials is employed in the analysis of the TA datasets in order to retrieve species spectra 

for the pyrene S1, excimer and triplet states. While the TA of monomer-like compounds can 

be accurately reproduced using only two exponential decays, a third exponential is needed to 

fully describe excimer-like dynamics. A maximum entropy analysis confirms this observation 

(cf. Fig. 4.10). Global fits are illustrated in Fig. 4.38. They reproduce the data fairly 

accurately even though diffusion controlled rate parameters play a role in both excimer 

formation and oxygen quenching. Figures 4.38b&c compare decay associated difference 

spectra (DADS) for a monomer-like dataset of pyrene at c = 0.1 mM (b) and an excimer-like 

dataset of pyrene at 10 mM (c). In (b) the perfect match of the negative contribution in the 

DADS associated with the S1 decay (blue) and the known triplet signature (red) reflects that 

the triplet feature grows with the S1 decay time of 187 ns. In (c) the DADS representing the 

accelerated 12 ns decay of the S1 state is negative over almost the entire spectral range, with a 

peak at 470 nm and a characteristic increase towards the NIR. This signifies the rise of a 

broad ESA signature with the S1 decay time. Interestingly, the DADS no longer features a 
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significant contribution from the triplet state. The new broad DADS (green) is a mirror image 

of the S1 DADS in the NIR and features a 52 ns decay – matching the excimer fluorescence 

decay in the corresponding streak measurement. Hence, the additional broad signature can be 

attributed to the pyrene excimer. Up to this point no specific rate model has been assumed. 

The following sections will feature model-specific considerations. 

4.7.1 One Model to Describe Them All 

Assuming a specific kinetic model, species associated spectra (SAS) can be reconstructed and 

QYs can be computed using the DADS displayed in Fig. 4.37. A Jablonski diagram 

illustrating the simplified kinetic model is shown in Fig. 4.39. Fluorescence and internal 

conversion (IC) to the ground state (GS) are aggregated into rates MGk , DGk and TGk . Due 

to the large stabilization w.r.t the S1 state (cf. Section 4.4.1), a hypothetical reversibility of the 

excimer formation is disregarded. Triplet triplet annihilation can also be ignored on the ns 

timescale (cf. Section 4.4.2). This leads to a system of first order differential equations for the 

concentrations 1[S ](t) , [D*](t)  and [T](t)  of the intermediate species: 

 
M1 1

MD D
MT DT T

k 0 0[S ](t) [S ](t)
d k [GS] k 0[D*](t) [D*](t)
dt

k k k[T](t) [T](t)

−    
    = ⋅ −        −    

 (4.24) 

 M MD MG MTk k [GS](t) k k= ⋅ + +  (4.25) 

 D DT DGk k k= +  (4.26) 

 T TG QTk k k [O2]= +  (4.27) 

 

 

Fig. 4.39: Simplified Jablonski diagram for the pyrene dynamics, drawn to scale according 

to TDDFT calculations. S1, S2: singlet excited states of the monomer. T1: triplet 

excited state of the monomer. D*: excimer. 



 - 126 - 

As in the previous chapters Mk , Dk  and Tk  represent the net decay rates of the S1, D* and 

T1 populations, which constitute the eigenvalues of this system of differential equations. 

These net decay rates correspond to the rates found in the global fit. Species associated 

spectra (SAS) can be reconstructed from the DADS using these three rates. Tk  includes a 

triplet oxygen quenching contribution [ ]QT 2k O . 

The most likely processes for oxygen quenching of a singlet pyrene result in a triplet pyrene 

[Gre94, Wil99, Bie14]. Hence, MT ISC QS 2k k k [O ]= +  and DT ISC,D QD 2k k k [O ]= + , 

represent triplet growth rates due to both inter system crossing (ISC) and oxygen quenching 

of the singlet populations of monomer and excimer via QS 2k [O ]  and QD 2k [O ] .  

The model 4.24 results in the following relationship between SAS and DADS 

 ( )1S 1 2 3
1S DADS DADS DADS GS

dc∗
= + + +  (4.28) 

( ) ( )
( )

M T D M DT
D* 2 1

MD MT D T MD DT

k1S DADS DADS GS
k [GS] k k [GS] k2dc∗
k − k k − k 

= + + k − k − ⋅ 
 (4.29) 

 
( ) ( )
( )1

M D D T
T 3

MT D T MD DT

1S DADS GS
k k [GS] kdc∗

k − k k − k 
= + k − k − ⋅ ⋅ 

 (4.30) 

Here, d represents the sample thickness and c* the excited state concentration. In the 

monomer-like case, where no significant excimer formation occurs, MDk  approaches zero 

and the rate model has only two eigenvalues corresponding to two DADS. Equations 4.28 and 

4.30 then simplify to  

 ( )1S 1 2
1S DADS DADS GS

dc∗
= + +  (4.31) 

 
( )

1
M T

T 2
MT

1S DADS GS
kdc∗

k − k
= +  (4.32) 

The DADS are difference spectra w.r.t the ground state absorption. An additional constraint is 

that all SAS must be strictly positive. The remaining unknowns can be therefore determined 

‘by eye’ as shown in the following sections. 
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4.7.2. Dynamics of the Monomer and Monomer-like Compounds  

The pyrene derivatives 1-methylpyrene and 1-propylpyrene exhibit dynamics very similar to 

the pyrene monomer both in emission and TA. 1-bromopyrene undergoes a faster ISC due to 

the heavy atom effect [Bir70], but it exhibits similar S1- and triplet signatures. The latter also 

applies to the linked compounds PY11-C6 and PY44, likely because the stacking of pyrene 

units is sterically inhibited [Hir65, Zac84, Zac91, Zac99]. Note that in emission PY11-C6 and 

PY44 do exhibit an additional signature with a few ns decay time. This was first attributed to 

an impurity, yet recent measurements on pyrene oligomers suggest it could also be the 

contribution of a less stable excimer, resulting from imperfect stacking (cf. Section 4.9). A 

closer look at the TA reveals a slight broadening of the S1 ESA around 500 nm, where an 

excimer absorption is typically observed, yet no additional time constant was found in the TA. 

Figure 4.40 exemplifies how the S1- and triplet SAS are determined from the pyrene DADS 

using equations 4.31 and 4.32. In equation 4.31, dc∗  is determined by adding the sum of the 

DADS (violet dots in Fig. 4.40a) to a scaled GS absorption spectrum. The scaling factor is 

chosen such that the ground state bleach (GSB) vanishes and a smooth, all positive S1 ESA 

spectrum with no significant GS features is obtained (cf. Fig. 4.40b, blue). The remaining 

feature at λ = 334 nm can be attributed to pump stray light. The resulting excited state 

concentration of 8c* 8.5 10 M−= ⋅ , is then used in Eq. 4.32, where the only remaining free 

parameter is MTk . To obtain an all positive triplet spectrum (red line in Fig. 4.40b), MTk  

must be fixed at TA/0.1mM 6 1
MTk 3.42 10 s−= ⋅ , corresponding to a total triplet yield 

MT MT Mk kΦ =  of ca. 64% in 0.1 mM pyrene.  

 

 

Fig. 4.40: (a) Decay associated difference spectra from biexponential global fit to 0.1 mM 

pyrene in cyclohexane. (b) Species associated spectra using Eqs. 4.31 and 4.32.  
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Fig. 4.41: Species associated spectra of the ground state (black), S1- (blue) and T1-states 

(red) with respective quantum yields. (a) Methylpyrene (solid lines) and 

propylpyrene (dotted lines), (b) Bromopyrene, (c) PY11-C6 and (d) PY44. 

SAS and corresponding values of MTΦ  for the remaining monomer-like compounds are 

presented in Fig. 4.41. The obtained MTΦ  are very similar to the triplet quantum yields 

obtained by direct evaluation of the GSB amplitudes (cf. Table 4.10). This indicates that the 

model is consistent with directly observed quantities. For the linked dimers the molar 

absorption coefficient ε of the transient ground state SAS is only half of the steady-state value 

(cf. Fig. 4.4). This signifies that only one pyrene moiety was excited in each molecule due to 

the moderate excitation energies used. In addition to the transient spectra, rough estimates for 

the impact of oxygen quenching on the respective QYs can be obtained by referencing the 

decay rates obtained from the global analysis to the well degassed streak camera study 

presented in Section 4.6. These computations are lengthy and therefore shown in Appendix 

A2. 

In brief, the fluorescence study shows that there is a slight excimer formation already at 

c = 0.1mM with a quantum yield of MDΦ  ≤ 10%, which does not contribute significantly to 
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the TA. Secondly, the increased singlet decay rate seen in the TA can be used to estimate a 

quenching rate TA/0.1mM 6 1
2QSk [O ] 2.93 10 s−= ⋅  and, hence, an oxygen concentration 

ca. 0.15 mM for the pyrene TA measurement. This is a realistic value in the pump circuit used 

(cf. Section 4.2.5). Knowledge of TA/0.1mM
2QSk [O ] facilitates subdivision of MTΦ  into 

singlet quenching and inter system crossing yields QSΦ  and ISC,MΦ , and also determines 

MGΦ . These yields correspond to ISC and combined fluorescence/IC rates of 
6 1

ISC,Mk 0.48 10 s−= ⋅  and 6 1
MGk 1.45 10 s−= ⋅  for pyrene.  

No fully degassed datasets exist for the pyrene derivatives, but comparison of the respective 

triplet decay rates yields an estimate for the oxygen concentration in each measurement. 

Results including oxygen quenching are listed in Table 4.11.  

Table 4.11: Estimated quantum yields of pyrene  and derivatives including oxygen quenching. 

compound MTΦ (%) 
from SAS 

QSΦ

(%) 
MDΦ  

(%) 
ISC,MΦ   

(%) 
MGΦ

(%) 

Pyrene 64 55 10 9 26 

1-Methylpyrene 47 36 7 11 46 

1-Propylpyrene 44 30 7 15 49 

1-Bromopyrene 95 0 0 95 5 

PY11-C6 36 28 7 8 57 

PY44 67 19 5 48 29 

Table 4.12: Predicted individual quantum yields of pyrene derivatives without oxygen 

quenching. 

compound ISC,MΦ  

(%) 
MGΦ  

(%) 

Pyrene 26 74 

1-Methylpyrene 20 80 

1-Propylpyrene 23 77 

1-Bromopyrene 95 5 

PY11-C6 12 88 

PY44 62 38 
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Using the monomer’s ISC rate QYs expected in a perfectly degassed environment can be 

estimated. ‘Oxygen corrected’ QYs are listed in Table 4.12. Here MGΦ  represents an upper 

limit to the fluorescence quantum yield due to the inclusion in internal conversion processes 

into MGk . Accordingly, the oxygen corrected MGΦ  are either larger or similar to the 

reference values for the fluorescence QY shown in Table 4.10. The inter system crossing 

yield ISC,MΦ  obtained for pyrene is slightly smaller than previously reported values of 0.33 

[Med66], 0.30 [Del79, Tur10], and 0.35 [Val01]. The differences can likely be attributed to 

the increased uncertainty of the rate constants due to the transient contribution to the rate of 

diffusion, which also affects the singlet quenching process. While the methyl and propyl 

substituents do not significantly affect the triplet yield, in bromopyrene nearly all excited 

molecules undergo ISC due to the heavy atom effect. Directly linked PY44 also features an 

elevated triplet QY, while for PY11-C6 the yield is surprisingly low.  

4.7.3 Excimer Dynamics and the Role of the Triplet State 

Excimer-like TA data and corresponding DADS obtained from pyrene at 10 mM are 

displayed above (Figs. 4.37a and 4.37c). As shown by the emission study in Section 4.6, at 

c = 10 mM the decay rate of the S1 state is limited by diffusion. It’s decaytime of 9 ns 

matches the growth of the broad green excimer fluorescence band, which subsequently decays 

with 52 ns, corresponding to 7 1
Dk 1.9 10 s−= ⋅ .  

 

 

Fig. 4.42: (a) Streak camera measurement of 0.05 mM PY11-C3 excited at 345 nm. (b) 

averaged temporal evolution from intervals indicated by color coded cursors. (c) 

global fit DADS corresponding to a 7 ns (blue) and 58 ns (green) time constants. 
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Fig. 4.43:  (a) Species associated spectra (SAS) for pyrene at c = 10 mM in cyclohexane. 

Dotted lines indicate SAS determined from the diluted (monomer) measurement. 

(b) SAS for PY11-C3 at c = 0.05 mM. Black dots show GS contribution. Above 

700 nm only a small amount of probe light was transmitted by the white light 

fundamental blocking filter. Amplitudes in this range carry increased uncertainty.  

At such a high concentration the entire probe light is absorbed in the range below 350 nm, so 

the GSB cannot be used to directly evaluate the triplet quantum yield from the raw data. 

Fortunately, the linked PY11-C3 closely mimics the dynamics of pyrene at 10 mM, forming 

excimers very efficiently already at c = 0.05 mM. As proof, Fig. 4.42 shows the 

corresponding streak camera measurement, resembling the data obtained from 10 mM pyrene 

very closely (cf. Figs. 4.5 and 4.23). The bottom panel shows the corresponding DADS from 

a global analysis, indicating overlap of the fluorescence bands as discussed in Section 4.6.  

To obtain the SAS, it is assumed that TA/0.1mM 6 1
MTk 3.42 10 s−= ⋅  as in the low 

concentration limit (cf. Section 4.7.2) and that the excimer formation rate at c = 10 mM is 
7 1

MDk 10 mM 7.68 10 s−⋅ = ⋅ , as obtained from the fluorescence study presented in 

Section 4.6. The remaining free parameters in Equations 4.28 to 4.30 are then dc∗  and DTk . 

SAS obtained from pyrene at c = 10mM for TA/10mM 6 1
DTk 3.85 10 s−= ⋅  are shown in Fig. 

4.43a. The S1- (blue) and triplet (red) signatures agree closely with those obtained in the 

monomer-case at low concentration (dotted lines). The GSB cannot be evaluated here because 

the sample absorbed the entire probe light in this region.  
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A TA measurement of 0.05 mM PY11-C3 allows evaluation of the GSB during excimer 

formation. The corresponding SAS in Fig. 4.43b show very similar features and amplitudes 

w.r.t. pyrene. The redshift of about 7 nm is similar to that observed in the steady state 

absorption spectra. Due to the moderate excitation energies used, only one pyrene moiety will 

be initially excited, thereby effectively halving the extinction coefficient of the linked dimer 

compared to the steady state absorption. This consistent with the similar signal amplitudes 

observed in TA for the pyrene monomer and the linked dimers. However, the correction of 

the GS absorption is not perfect. No value of DTk  could be found that would remove the 

dips originating from the triplet state in the excimer DADS and at the same time yield smooth 

spectra below 350 nm. Hence, DTk  was optimized for a smooth spectrum above 350 nm, 

while signatures reminiscent of the GS absorption remain.  

A likely reason for this is that the interaction between linked pyrenes changes when one of the 

moieties is excited, slightly altering the absorption spectrum of the remaining GS moiety. 

This altered absorption spectra will exhibit the same dynamics as the corresponding excited 

states and must therefore be viewed as a negative transient contribution that cannot be 

corrected by adding a scaled steady state absorption spectrum. Hence, the structures in the 

GSB region are not representative of the respective ESA. Given the good overall 

comparability of the obtained SAS, it seems quite likely that the pure S1- and triplet SAS 

behave similar to SAS obtained in the low concentration limit in the GSB region. 

 

 

Fig. 4.44: Excimer SAS obtained using VIS (green dots) and NIR (green line) probe 

compared to scaled excimer spectra from [Pos76] (dots) and [Kat97] (circles). 

Pyrene radical anion (blue) and cation (red) spectra from [Rei14]. 
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So far the transient spectrum of the pyrene excimer has not been reported in the VIS with high 

accuracy due to the many overlapping contributions [Fog95], but the literature agrees that it 

exhibits a characteristic rise toward the NIR, where neither the S1 nor the triplet state 

contribute to the signal [Pos71, Pos76, Kat97]. Figure 4.44 shows stitched excimer spectra 

(green) from TA measurements using visible 778 nm pumped as well as 1200 nm pumped 

NIR probe supercontinua (cf. Section 4.2.3).  

The excimer spectrum obtained is in good agreement with the spectrum reported by Post et al. 

in the NIR and reveals the excimer’s exact signature in the VIS [Pos76].  

This can be used to shed some light on the charge transfer character of the excimer. 

Normalized pyrene cation (red) and anion (blue) spectra from [Rei14] illustrate that, while 

their main signatures occupy the same spectral range, the excimer’s ESA is not just a 

superposition of the cation an anion signatures. More likely than a complete charge transfer 

between the two identical pyrene units is a stabilization due to charge resonance and electron 

delocalization between pyrene units [Rei15, Cor15]. The ion spectra were obtained via 

quenching experiments in acetonitrile (ACN) and methanole (MeOH), which will be detailed 

in the following section. 

The additional information obtained from TA also offers new insight into the role of the 

triplet state. Since at room temperature there is no back transfer from the triplet on the ns 

timescale, a distinct excimer triplet species as considered in [Med66] and [Bir70] would not 

change our model for the dynamics of the excimer formation. It would merely constitute a 

third decay channel for the excimer, which might exhibit a distinct spectral signature or decay 

time. At c = 0.1 mM the overwhelming triplet population is due to oxygen quenching of the 

excited singlet state. At c = 10 mM the monomer contributes only 26% of the observed 

triplets (including oxygen quenching), while 74% are generated from the excimer. 

Despite this difference, the triplet decay times obtained at c = 0.1 mM and c = 10 mM are 

equal (τ = 3.6 µs) and the triplet ESA signatures are very similar both in magnitude and 

spectral position. Fig. 4.45a shows the obtained triplet SAS. The difference in extinction 

coefficients is less than 10%, and a spectral shift of ca. 1 nm is observed. This is just within 

the margin of error of the wavelength calibration in this spectral range [Meg09].  
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Fig. 4.45: Comparison of triplet signatures from (a) global fit SAS and (b) averaging raw 

TA data over suitable delay time intervals. 

While the SAS do not suffer from overlapping contributions of other states, the SAS 

amplitude is dependent on the decay rates obtained from the GF, which are susceptible to 

slight changes in the oxygen concentration and the yields determined ‘by eye’ via the SAS. 

To rule out any discrepancies caused by the fitting procedure and modeling, normalized 

signatures directly obtained from the raw data averaged over suitable delay time intervals are 

shown in Fig. 4.45b. These spectra are affected by overlapping contributions from the 

excimer and S1 ESA, yet the peak positions fit perfectly. Normalization of the signals reveals 

slight differences in band shape and relative peak heights.  

In conclusion, a distinct triplet state of the excimer cannot be excluded completely, yet the 

evidence is far from compelling. Within measurement accuracy the triplets formed from the 

excimer have almost identical spectral features in the VIS and show no difference in their 

dynamics. A reason for slight discrepancies could be a difference in the direct environment of 

the excited molecule after ISC. While c = 10 mM is not enough to significantly affect the 

overall solvent polarity, it is certainly true that just after ISC from the tightly bound excimer, 

the second pyrene unit is still in very close proximity to the new triplet molecule. It is 

therefore more likely that ISC from the excimer results in one triplet monomer and one GS 

molecule, which subsequently drift apart. 
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Table 4.13: Estimated quantum yields of pyrene at c = 10 mM and PY11-C3 including oxygen 

quenching (top) and predicted values without oxygen quenching (bottom). 

compound QSΦ

 (%) 
MDΦ

 (%) 
MGΦ  

(%) 
ISC,MΦ

 (%) 
QDΦ  

(%) 
ISC,DΦ  

(%) 
DGΦ

(%) 

Pyrene 6 92 1.50 0.50 17.5 2.5 80 

PY11-C3 2 97 0.75 0.25 17.5 2.5 80 

Pyrene 0 98 1.60 0.53 0 3 97 

PY11-C3 0 99 0.75 0.25 0 3 97 

 

Table 4.13 summarizes quantum yields obtained the model 4.39. The calculations can be 

found in Appendix A3. For the pyrene excimer an inter system crossing rate of 
6 1

ISC,Dk 0.40 10 s−= ⋅  is found - quite similar to the ISC rate of the monomer. The 

combined fluorescence/internal conversion rate from the excimer to the ground state was 

determined to 7 1
DGk 1.55 10 s−= ⋅ , one order of magnitude larger than that of the 

monomer.  

As in the monomer case, the total triplet and fluorescence yields can be compared to the 

reference values in Table 4.10. For the pyrene measurement a total triplet yield from 

monomer and excimer of T1 0.25Φ =  and a total fluorescence yield of rad 0.75Φ ≤  are 

found. For PY11-C3, T1 0.22Φ =  and rad 0.78Φ ≤ . The directly measured total 

fluorescence yields are slightly smaller than the limits obtained. No reference value exists for 

the triplet yield in the pyrene measurement at c = 10 mM, since the GSB was not observed. 

Yet, for PY11-C3, the triplet yield closely matches the 23% obtained by direct evaluation of 

the GSB. As in the monomer case, the modeling is consistent with direct observations.  

4.7.4 Unprecedented Behavior in Pyrene 1-1 

Compared to the directly linked PY44, which can be counted among monomer-like species, 

the dynamics exhibited by PY11 are faster by almost two orders of magnitude – an impressive 

example of the linker position greatly influencing the dynamics. PY11 completely relaxes 

back to the GS within a few picoseconds and no triplet state with a microsecond life time is 

observed. PY14 represents an intermediate case with already significantly decreased decay 

times and triplet quantum yield (cf. Table 4.10). A TA measurement on the picosecond 

timescale is shown in Fig. 4.46a-c. Immediately after optical excitation at magic angle we 
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observe the GSB between 300 nm and 350 nm along with a sharp band around 375 nm, which 

decays with a 4 ps decay time. A previously unobserved broad ESA with a 1.73 ns lifetime is 

found above 500 nm, overlapped by a negative contribution that can be identified as 

stimulated emission via comparison with the fluorescence spectrum (gray dashes in Fig. 

4.46a). The fluorescence also disappears within a few ns and its unstructured spectrum is 

blue-shifted w.r.t. the known excimer fluorescence. The measured fluorescence QY of 93% is 

unusually large compared to other pyrene dimers. Global analysis reveals two decay times, 

3.95 ps as well as 1731 ps. Since the sample was excited slightly above what would usually 

be called the S2 maximum at 334 nm, the most straightforward interpretation is to assign the 

shorter time to the S2 population transitioning into the S1 state, followed by a – for pyrene - 

super fast fluorescence to the GS. Figure 4.46d shows SAS corresponding to this model. 

A possible explanation can be given via computed spin densities for the PY11 and PY44 

radical cations calculated via TDDFT (cf. Fig. 4.47). Pyrene carries twice as much spin 

density on its 1-position, than on the 4-position [Lor13]. One consequence is that significantly 

more effort is required to establish 4-4 links between the pyrene units [Fig11]. Secondly, 

pyrene units will arrange differently, dihedral angles obtained in the crystal phase are 

θ = 70.4° for PY44, θ = 68.2° for PY14 and θ = 64.1° for PY11. [Kee15]. According to the 

calculated spin densities in Fig. 4.47, a nodal plane can be drawn between the pyrene units in 

PY44, so there is no strong interaction of orbitals from separate units. The opposite is the case 

in PY11, where the pyrene units are oriented such that orbitals partially overlap, though no 

perfect π–stacking can be achieved for steric reasons. This interaction may disturb the system 

enough to cause an increased transition dipole moment for the 1 0S S←  transition. An 

increased transition probability would explain the reduction of the S1 state’s lifetime from 

hundreds of ns to 1.7 ns and is consistent with the observed change in the steady state 

absorption spectrum, where absorption in the S1 region is much more pronounced than in 

pyrene (cf. Fig. 4.4). The increase in the S2 state’s lifetime from ca. 0.1 ps to 4 ps could be a 

consequence of the detachment of a conical intersection between S2 and S1 state, slowing 

down the sub-100 fs internal conversion observed in pyrene [Fog95, Neu99, Kre13, Kre13a]. 

Recent theoretical calculations indeed predict an increased oscillator strength of 0.71 for the 

1 0S S←  transition while that of the 2 0S S←  transition is reduced to 0.01, while the 

respective values for pyrene are approximately 0.02 and 0.3 [Küb15]. 
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Fig. 4.46: TA dataset of PY11 in cyclohexane in the picosecond regime, excited with 200 nJ 

pulse energy at λ = 334 nm. Blue indicates negative, red positive contributions. 

(a) transient spectra at selected delay times and inverted fluorescence spectrum 

scaled by λ4 (gray dashes). (c) time evolution of GSB (black), short-lived ESA 

(blue), stimulated emission (orange) and long-lived ESA band (green). (d) Species 

associated spectra for short- (blue) and long-lived (red) component from global fit 

assuming a sequential reaction scheme S2  S1  GS. Dashed lines show GS 

(black) and stimulated emission (green). 

 

 

Fig. 4.47: Spin density distributions of PY44 (left) and PY11 (right) radical cations 

calculated via TDDFT. Figure courtesy Matthias Roos.  
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4.8 Summary: Broadband Analysis Reveals ‘Full Picture’ 

This chapter has revealed new information on the pyrene excimer dynamics, partially 

contradicting and augmenting the early models. These models are fundamental not only to 

publications from the 1960’s, but with pyrene’s many modern applications also to recent 

studies and textbooks [Bir63, Bir75, Win93, Tur10, Duh12, Han13]. 

Overlapping bands detrimentally impact the analysis of fluorescence decays. In combination 

with a disregard for the effects of the transient contribution to the rate of diffusion this lead to 

unnecessarily complex models for the excimer formation of pyrene. Combining broadband 

measurements of time resolved fluorescence and transient absorption facilitates the 

decomposition of spectrally overlapping signatures, which results in a much more complete 

picture of the dynamics. Simulations of fluorescence decays including the commonly 

neglected transient contribution to the rate of diffusion resolve inconsistencies in prior 

publications. 

The rate model used to describe the pyrene dynamics was significantly simplified compared 

to earlier studies. It accurately describes the dynamics of all investigated compounds at room 

temperature except PY11. There is no need to include a back transfer from the excimer or 

contributions due to different conformers in linked dimers to model the dynamics observed 

herein. Contributions from TTA can also be neglected on the ns timescale. Using the model, 

the TA spectrum of the excimer in the VIS/NIR was retrieved with high accuracy and 

additional information was obtained regarding the charge transfer character of the excimer 

and the role of the triplet state in excimer formation [Bir63, Mar89, Med66].  

Even though pyrene in cyclohexane does not strictly exhibit pseudo first order behavior, its 

dynamics can be described by a sum of exponentials to reasonable accuracy. When modeling 

with exponentials, the transient contribution to the rate of diffusion increasingly shortens the 

fitted decay times towards higher concentrations. Taking this into account, the 

monoexponential decay of the monomer fluorescence indicates an efficiency of the excimer 

formation for pyrene in cyclohexane of ca. p = 0.82, corresponding to an excimer formation 

rate 9 1 1
MDk 5.71 10 M s− −= ⋅  in cyclohexane at room temperature. The rise and decay rates 

of the excimer fluorescence are also affected. When the transient contribution is negligible the 

corresponding amplitudes have the same magnitude. Slight deviations from this equality may 

be indicative of preassociated dimers, but can also stem from the transient contribution to the 

rate of diffusion.  
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The evolution of the pyrene triplet state was studied in transient absorption experiments. A 

flow circuit was used to avoid photoproducts, limiting the residual oxygen concentration to 

ca. 0.15 mM. Despite the use of an inline degasser and oxygen tight tubing, residual oxygen 

severely impacts both the singlet and triplet dynamics. The overwhelming fraction of the 

observed triplets is generated by oxygen quenching of the singlet state. Despite this, triplet 

and fluorescence quantum yields for all compounds could be estimated by including oxygen 

quenching in the model. The resulting decay rates for the S1-state and the excimer are 
6 1

MGk 1.45 10 s−= ⋅  and 7 1
DGk 1.55 10 s−= ⋅ . The ISC rates are 6 1

ISC,Mk 0.48 10 s−= ⋅  

and 6 1
ISC,Dk 0.40 10 s−= ⋅  for monomer and excimer, respectively. At c = 10 mM the 

monomer has been replaced by the excimer as the main source of triplet molecules. 

PY11-C3 is a good model system for excimer formation and shows no sign of 

multiexponential decays due to different conformers in cyclohexane. Most of the other linked 

dimers tested follow dynamics very similar to the pyrene monomer, most notably the directly 

linked compound PY44, despite the close proximity of the pyrene units. While the linker 

length can favor or inhibit excimer formation, the position of the linker affects the dynamics 

drastically for directly linked compounds. PY11 exhibits fast dynamics on the few ns 

timescale previously undocumented for pyrene. 

A logical next step would be the development of a fit algorithm which takes into account the 

transient contribution to the excimer formation rate. A temperature dependent study could 

determine at what point a back transfer from the excimer to the excited singlet state becomes 

relevant. Early measurements reported by Birks et al. [Bir63], indicate interesting effects 

starting already at temperatures around 310 K, which have to be reevaluated in light of the 

new information obtained. The original interpretation of a significant backtransfer from the 

excimer still does not seem likely at this temperature. 

Secondly, with their tunable properties the pyrene dimers investigated here offer ample 

opportunity for future studies. More detailed calculations should be performed on PY11 and a 

chain length-dependent study could help clarify the nature and size of the disturbance causing 

the dynamics to change so drastically. PY44 maintains most of its properties despite the direct 

link, making it an interesting candidate for polymerization towards functionalized materials 

such as organic light emitting diodes (OLEDs), organic photovoltaics, organic field-effect 

transistors (OFETs), as well as lasers [Fig11, Jia04, Zha07, Mog06, Wan06, Lee11]. The 

outlook below provides a first glimpse at the properties of such 4-bridged oligomers. 
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4.9 Outlook: PY44 as a Candidate for Novel Materials 

Recently there has been increasing interest in pyrene as a building block for functionalized 

materials in organic electronic devices. However, when many pyrene units are connected, 

often the traits of the monomer are not preserved. In order to investigate how the properties of 

directly linked PY44 change when polymerized, the novel compounds shown in Fig. 4.48 

were synthesized by Dr. Ashok Keerthi from the group of Prof. Dr. Klaus Müllen, at the Max 

Planck Institute of Polymer Research, Mainz, Germany. Results below are preliminary. 

The absorption spectra of the oligomers feature similar redshifts as observed in the linked 

dimers. Changes to the features of higher lying states are less pronounced. At a first glance, 

all compounds feature monomer-like dynamics in transient absorption (TA) with S1 ESA 

features slightly shifted but similar to those observed in pyrene as well as long-lived triplet 

states. The obtained triplet life times are comparable to those of the monomer and the dimers. 

The known excimer TA signature is not observed for any of the compounds.  

 

   

Fig. 4.48: (a) structures of pyrene oligomers linked at the 4-position and their steady state 

absorption spectra compared to PY44 (b,c). nPY is a polymer with an average 

length of more than 30 units. Pyrene absorption shown in gray for comparison. 
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Fig. 4.49: GS (dots) as well as species associated spectra of the S1 ESA (dashed) and the 

triplet ESA (solid) obtained from double exponential global fits using the model 

detailed in Section 4.7.1. Spectra normalized to their respective GS maximum for 

comparability.  

Table 4.14: S1 ESA decay rate of pyrene oligomers connected at the 4-position excited into 

their respective  S2-origin with a pulse energy of 200 nJ, degassed, in flow circuit. 

compound 
(in cyclohexane) 

PY44  3PY  4PY  nPY 

S1 ESA (ns) 90 74  67 37 

triplet QY (%) 65 65 70 74 

 

Double exponential global fits reveal a decrease in the lifetimes of the excited singlet state 

with increasing chain length in favor of a faster and slightly more efficient ISC. Table 4.14 

lists the obtained times as well as triplet QY values obtained by applying the ‘monomer-like’ 

model presented in Section 4.7.1. Species associated spectra are plotted in Fig. 4.49, revealing 

that all observed ESA features broaden with increasing number of pyrene units.  

All compounds feature a blue fluorescence band reminiscent of the pyrene monomer, though 

with less fine structure (cf. Fig. 4.50a). Fitted decay times are similar to those obtained from 

TA listed in Table 4.14. In addition to the monomer-like fluorescence (blue line), nPY 

features a broad unstructured fluorescence with a short lifetime of only 2.7 ns (violet line).  
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Fig. 4.50 (a) Normalized time integrated fluorescence spectra compared to pyrene (gray) 

and (b) SAS obtained from global analysis of a streak camera measurement: 

2.7 ns (violet) and 21 ns (blue). For comparison the species associated spectra of 

short lived components obtained from PY11 (1.7 ns, red dots) and PY11-C6 

(1.7 ns, blue dots) are plotted, as well as the excimer signature obtained from 

PY11-C3 (58 ns, green dots).  

This new band appears blue shifted compared to the known pyrene excimer fluorescence 

(green line). A short lived unstructured fluorescence blue shifted from the classical excimer 

signature is also observed in the directly linked compounds PY11 and PY44. Furthermore, a 

similar feature with a few ns life time appeared in PY11-C6 (blue dots) where it was initially 

attributed to an impurity. Both for PY11-C6 and nPY no clear signatures with corresponding 

decay times can be found in TA. When an additional few ns decay is fitted to the nPY TA, it 

does not greatly improve the fit and the associated spectrum is not distinct, but reproduces the 

S1 ESA spectrum almost exactly.  

Fig. 4.50b compares all of the abovementioned fluorescence signatures. It seems as if a 

combination of the known green excimer fluorescence and the fluorescence signal obtained 

from PY11 could reproduce the observed nPY spectrum. An interpretation of this previously 

unobserved feature can be attempted by pointing out that pyrene units sterically inhibited 

from attaining the perfect sandwich geometry can still interact with one another. While the 

system will not be able to reach a stabilization as pronounced as the classical excimer (cf. 

Section 4.1.2), some excitonic splitting of the energies of the involved orbitals is conceivable. 

This would explain why the new signal appears closer to the monomer fluorescence. The lack 
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of structure indicates that there is no corresponding ground state minimum for this 

configuration. As discussed for PY11, the presence of the second pyrene unit will change the 

symmetry of the entire system, making the fluorescence more efficient and reducing its decay 

time. Polymers comprised solely of pyrene units linked at the 4-position are still uncommon, 

yet for other compounds helical structures have been reported [Fig11, Kee15]. 

The conclusion would be that when the chain becomes long enough, directly linked 

polypyrenes and dimers with a long spacer (like PY11-C6) can find configurations where 

their π-systems can somewhat interact, albeit at a larger distance and probably not in a 

perfectly parallel orientation, leading to ‘short-lived excimer’. Linking pyrene units at the 4-

position facilitates minimal interaction between neighboring units and preserves most of the 

features of the monomer, like the long-lived triplet state and a blue fluorescence with a life 

time of at least several tens of nanoseconds. While the S1 state lifetime drops by ca. 60% 

when polymerized, the triplet yield is only slightly increased w.r.t. the monomer. These 

features make pyrenes linked at the 4-position an interesting candidate for functionalized 

materials. 
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5 Conclusions and Future Perspectives 

This chapter summarizes the conclusions reached in Chapters #2 to #4 and outlines possible 

future directions for the respective projects. 

Researchers in transient absorption spectroscopy employ ever shorter pump pulses in order to 

resolve the fastest dynamics. The so-called ‘coherent artifact’ often obscures the early time 

dynamics. For chirped broadband probe pulses, such as bulk generated white light, 

simulations indicate that this unwanted distortion does not narrow infinitely with decreasing 

pump pulse duration. Instead, there is an optimum pump pulse duration beyond which the 

interval modulated by the artifact broadens due to spectral interference. For parameters 

typical of the setup used herein, this optimum is a pump pulse duration of ca. 27 fs, which can 

be readily achieved with a NOPA and prism compressor. Accurate modeling of the coherent 

artifact is crucial in order to extract meaningful information at early pump probe delay times. 

Chapter #2 illustrated the importance of cross phase modulation in the modeling of the 

coherent artifact in the VIS/NIR. Depending on the probe chirp, artifacts can exhibit 

interference fringes obscuring molecular dynamics up to several hundreds of fs. Analytical 

models for the cross phase modulation induced coherent artifact assume idealized pump and 

probe pulses. Yet, the artifact asymmetry is found to correlate with modulations in the probe 

spectrum. Hence, while they allow inference of meaningful pulse parameters, analytical 

models are ill-suited as fit functions for broadband TA signals. The novel parameterization 

Fcos presented in Chapter #2 removes this constraint. 
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Here, the fit parameters are 0 1A , A , , , Bτ Φ and the time origin 0t∆ . This is only one 

additional parameter w.r.t. to the commonly used combined Gaussian and derivative model. 

The frequency factor B and phase Φ  allow reproduction of artifact fringes independent of the 

signals envelope. For coherent artifacts generated by two photon absorption and cross phase 

modulation Fcos yields a better accuracy in the determination of 0t∆  than the commonly 

used Gaussian & derivative model, while reproducing the signals much more accurately.  
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The new parameterization will likely improve future data analysis, especially due to its very 

accurate reproduction of the varying artifact shapes for a wide range of experimental 

parameters. An obvious next step is the parameterization of propagation effects like group 

delay dispersion.  

While in the most common moderately chirped case the width of the artifact’s envelope and 

the cross correlation width are very similar, the simulations presented here suggest that the 

fitted width of the artifact is no longer an accurate measure when spectral interference 

contributes significantly. The new information obtained from the analysis herein provides an 

interesting perspective for future work: the best way to quantify the time resolution and its 

connection to the probe chirp and cross correlation width is not straightforward and remains a 

focus of current research [Pol10]. 

In Chapter #3 this new flexibility was exploited for accurate analysis of probe pulses with 

strongly modulated group delay. The method presented utilizes the coherent artifact to 

determine the group delay characteristics of dielectric mirrors with an accuracy better than 

±1 fs from the UV/VIS to the NIR. While this pump probe method yields comparable 

accuracy to the standard technique white light interferometry, it has the added capability of 

being sensitive to pulse deformation and splitting, providing a simple and quantitative tool to 

determine the applicability of a mirror at hand for a given task. Measurements described 

herein concentrate on the UV/VIS spectral region, but this technique is in principle applicable 

from 225 nm to at least 1600 nm using white lights generated according to [Rie13, Bra14a].  

Custom broadband high reflectors with controlled group delay were cross-examined using 

both interferometric and pump probe techniques and recent, commercially available 

ultrabroadband high reflectors were evaluated. Instead of immediately dismissing an off the 

shelf broadband mirror for its unspecified group delay, it can be worthwhile to quantify how 

bad its group delay fluctuations really are in the spectral range needed for a specific 

application. For example, Balzers DIFLEX 1100 mirrors could be applied in a TA setup to 

guide the probe light to the detectors after interaction with the sample, where the temporal 

structure is no longer an issue. Also, short pulse applications may in fact be possible in the 

range up to approximately 450 nm. With recent advances in broadband coating technology as 

well as broadband spectroscopy, mirror characterization will play an increasingly important 

role, since GD data is often kept a secret by vendors for fear of plagiarism. 

  



 - 147 - 

Chapter #4 revealed new information on the pyrene excimer dynamics, partially contradicting 

and augmenting previous models. These models are fundamental not only to publications 

from the 1960’s, but with pyrene’s many modern applications also to recent studies and 

textbooks [Bir63, Bir75, Win93, Tur10, Duh12, Han13].  

Overlapping bands detrimentally impact the analysis of fluorescence decays. In combination 

with a disregard for transient effects of diffusion this has lead to unnecessarily complex 

models for the excimer formation of pyrene. Simulations of fluorescence decays including the 

commonly neglected transient contribution to the rate of diffusion resolve inconsistencies in 

prior publications [Bir63, Del79, Han13]. Combining broadband measurements of time 

resolved fluorescence and transient absorption allows the decomposition of spectrally 

overlapping signatures, which results in a clearer and more complete picture of the dynamics. 

A new, simplified rate model describes the room temperature nanosecond dynamics of all 

compounds investigated herein except PY11. There is no need to include a back transfer from 

the excimer or contributions due to different conformers in linked dimers. Contributions from 

TTA can also be neglected on the nanosecond timescale. Using this model, the TA spectra of 

the S1-, excimer- and triplet states was retrieved in the VIS/NIR with high accuracy. New 

information was uncovered regarding the charge transfer character of the excimer and the role 

of the triplet state in excimer formation [Bir63, Mar89, Med66].  

Even though pyrene in cyclohexane does not strictly exhibit pseudo first order behavior, its 

dynamics can be described by a sum of exponentials to reasonable accuracy. When modeling 

with exponentials, the transient contribution to the rate of diffusion causes increasingly 

exaggerated rates towards higher concentrations. Taking this into account, the 

monoexponential decay of the monomer fluorescence indicates an efficiency of the excimer 

formation for pyrene in cyclohexane of ca. p = 0.82, corresponding to an excimer formation 

rate 9 1 1
MDk 5.71 10 M s− −= ⋅  in cyclohexane at room temperature. An efficiency less than 

unity can be explained by an alignment constraint: molecules colliding an angle unfavorable 

for π-orbital overlap can drift apart again without forming an excimer [Han13]. Transient 

effects also affect the growth and decay rates of the excimer fluorescence. The corresponding 

rise and decay amplitudes have the same magnitude as long as the transient contribution is 

negligible. Slight deviations from this equality may be indicative of preassociated dimers, but 

can also stem from the transient contribution to the rate of diffusion.  
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The evolution of the pyrene triplet state was studied in transient absorption experiments. A 

flow circuit was used to avoid photoproducts, limiting the residual oxygen concentration in 

cyclohexane to ca. 0.15 mM - a significant reduction compared to 2.4 mM under ambient 

conditions. Yet, despite the use of an inline degasser and oxygen tight tubing, residual oxygen 

is found to severely impact both the singlet and triplet dynamics. The overwhelming fraction 

of the observed triplets is generated by oxygen quenching of the singlet state. Despite this, 

estimates for triplet and fluorescence quantum yields for all compounds could be extracted by 

including oxygen quenching in the model. The resulting decay rates for the S1-state and the 

excimer are 6 1
MGk 1.45 10 s−= ⋅  and 7 1

DGk 1.55 10 s−= ⋅ . The ISC rates are 
6 1

ISC,Mk 0.48 10 s−= ⋅  and 6 1
ISC,Dk 0.40 10 s−= ⋅  for monomer and excimer, 

respectively. At c = 10 mM the monomer has been replaced by the excimer as the main source 

of triplet molecules.  

PY11-C3 is a good model system for excimer formation and shows no sign of 

multiexponential decays due to different conformers in cyclohexane. Most of the other linked 

dimers tested follow dynamics very similar to the pyrene monomer, most notably the directly 

linked compound PY44, despite the close proximity of the pyrene units. While the linker 

length can favor or inhibit excimer formation, the position of the linker affects the dynamics 

drastically for directly linked compounds. PY11 exhibits fast dynamics on the few ns 

timescale previously undocumented for pyrene.  

A logical next step would be the development of a fit algorithm which takes into account the 

transient contribution to the excimer formation rate. A temperature dependent study could 

determine at what point a back transfer from the excimer to the excited singlet state becomes 

relevant. Early measurements reported by Birks et al. [Bir63], indicate interesting effects 

starting already at temperatures around 310 K, which have to be reevaluated in light of the 

new information obtained. The original interpretation of a significant backtransfer from the 

excimer still does not seem likely at this temperature. 

Finally, with their tunable properties the pyrene dimers investigated here offer ample 

opportunity for future studies. When the chain becomes long enough, directly linked 

polypyrenes and dimers with a long spacer (like PY11-C6) can find configurations where 

their π-systems can somewhat interact, albeit at a larger distance and probably not in a 

perfectly parallel orientation. This leads to a less stabilized ‘short lived excimer’. While the 

properties of pyrenes linked at the 4-position do change when polymerized, they exhibit 

minimal interaction between neighboring units and preserve at least some of the features of 
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the monomer, like the long-lived triplet state and a blue fluorescence with a life time of at 

least several tens of ns. These features make them an interesting candidate for polymerization 

towards functionalized materials such as organic light emitting diodes (OLEDs), organic 

photovoltaics, organic field-effect transistors (OFETs), as well as lasers [Fig11, Jia04, Zha07, 

Mog06, Wan06, Lee11]. More detailed calculations should be performed on PY11 and a 

chain length-dependent study could help clarify the nature and size of the disturbance causing 

the dynamics to change so drastically. 
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A Mathematical Derivations and Supplemental Information 

A1 Excimer Stabilization Estimate 
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A2 Estimation of Quantum Yields for Monomer-like Compounds 

To assess the relative contributions of oxygen quenching and ISC to the total triplet yield, one 

can recall the results of the well degassed fluorescence study presented in Section 4.6. 

Therein, a monomer decay rate of ( ) 1lim 6 1
Mk 522 ns 1.92 10 s− −= = ⋅  is reached at 

c = 0.01 mM. We assume this to be the limiting value where no excimer formation or oxygen 

quenching ‘disturb’ the S1 state’s dynamics. Under the same conditions, the rate increases to 

( )0.1mM 1 6 1
Mk 413ns 2.42 10 s− −= = ⋅  at c = 0.1 mM. This is likely due to a subtle 

excimer formation, with a rate  

 0.1mM lim 6 1
MD M Mk 0.1mM k k 0.50 10 s−⋅ = − = ⋅ . (A1) 

All other parameters being equal, the difference between 0.1mM
Mk  and the rate measured in 

TA ( )TA/0.1mM 1 6 1
Mk 187 ns 5.35 10 s− −= = ⋅  must be due to oxygen quenching. Hence, 

the oxygen quenching rate TA/0.1mM
2QSk [O ] in this experiment was 

 TA/0.1mM TA/0.1mM 0.1mM 6 1
2 M MQSk [O ] k k 2.93 10 s−= − = ⋅ . (A2) 

According to equation 4.14 this corresponds to a residual oxygen concentration of ca. 

0.15 mM, which is a realistic value in the pump circuit used (cf. Section 4.2.5). 

The rates determined above lead to oxygen quenching and excimer formation yields of  

 TA/0.1mM
QS 0.55Φ =  and TA/0.1mM

MD 0.09Φ = , (A3) 

leaving only ca. 36% to the monomer decay, 0.1mM 0.1mM
MG ISC,M 0.36Φ + Φ = . The excimers do 

not contribute significantly to the TA because they decay much faster ( 7 1
Dk 1.9 10 s−= ⋅ , 

cf. Section 4.7.3) than they are formed under these conditions.  

According to Table 4.10 the fluorescence QY for ‘undisturbed’ pyrene lim
rad 0.62Φ = . The 

prompt fluorescence yield of the monomer at c = 0.1 mM in the presence of oxygen is then  

 TA/0.1mM lim
rad rad 0.36 0.22Φ = Φ ⋅ = , (A4) 

which limits the triplet yield from the excited monomer TA/0.1mM
ISC,MΦ  to ≤ 14% - about a 

fourth of the number of triplets generated by oxygen quenching. The maximum achievable 

total triplet yield is then limited to 

 TA/0.1mM TA/0.1mM TA/0.1mM
MT QS ISC,M 0.69Φ = Φ + Φ ≤ . (A5) 
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lim
radΦ  is the time integrated fluorescence yield, including possible contributions from TTA on 

longer timescales. In TTA two triplets result in one excited S1 and one GS pyrene. 
lim
rad 0.62Φ =  therefore constitutes an upper limit to the prompt fluorescence yield. If all 

fluorescence stemmed from TTA, TA/0.1mM
ISC,MΦ would increase to 0.36, yet this would 

require the prompt fluorescence to vanish. A strong prompt emission is observed, so the lower 

limit is the most likely.  

The total triplet yield obtained from the modeling is TA/0.1mM
MT 0.64Φ = . Assuming that 

the few excimers do not contribute significantly, the monomer’s ISC yield in this experiment 

was 

 0.1mM TA/0.1mM TA/0.1mM
MTISC,M QS 0.09Φ = Φ − Φ =  (A6) 

and the aggregate of fluorescence and internal conversion amounted to 

 0.1mM TA/0.1mM TA/0.1mM TA/0.1mM
MDMG QS ISC,M1 0.27Φ = − Φ − Φ − Φ = ,  (A7) 

corresponding to the rates 6 1
ISC,Mk 0.48 10 s−= ⋅  and 6 1

MGk 1.45 10 s−= ⋅ . 

Without oxygen quenching and excimer formation the ISC yield would have amounted to 
lim

ISC,M ISC,M Mk k 0.26Φ = = , which would imply lim
MG MG Mk k 0.74Φ = = .  

No fully degassed datasets are available for the pyrene derivatives. Yet, since conditions were 

comparable in TA and streak camera experiments, comparison of singlet decay rates obtained 

from TA with streak camera measurements under ambient conditions also allow a rough 

estimate of the oxygen quenching rates. The oxygen concentration in cyclohexane under 

ambient conditions is 2.4 mM [Mon06], while in the degassed pump circuit the concentration 

slightly varied across measurements. The O2 concentration for each TA measurement is 

estimated via the respective triplet decay time observed, assuming that all triplets are 

quenched with the same triplet quenching rate QTk . As a reference the pyrene data discussed 

above is used, where an oxygen concentration of 0.15 mM was determined and the triplet 

decay time is 3.52 µs. The literature claims an intrinsic triplet lifetime of 180 µs [Sli70], 

therefore the triplet quenching rate is ca.  

 ( ) ( )1 1
9 1

QT
3.52µs 180µs

k [O2] 1.95 10 s
0.14 mM

− −
−−

= = ⋅ , (A8) 

which is quite close to values reported in the literature [Pat70, Med06, Tur10]. Rearranging 

A8, the oxygen concentrations for all measurements can be computed via 
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( ) ( )1 1

triplet
2

QT

180µs
[O ]

k

− −τ −
= . (A8b) 

Respective decay times and corresponding oxygen concentrations are listed in Table 4.11. 

Finally, the obtained oxygen concentrations are used in conjunction with the respective S1 

decay rates Mk  to obtain the singlet oxygen quenching rate for each measurement via 

  
Fluo/ambient TA

TA M M
QS 2

k k
k

2.4 mM [O ]
−

=
−

, (A9) 

with Fluo/ambient
Mk 1 19ns= . The quenching rates are listed in Table 4.11. The rates for 

pyrene and PY11-C6 closely match the quenching rate calculated in Section 4.2.5, the slight 

variation in the remaining values might be due to slightly altered energy levels of the 

substituted compounds, leading to slightly slower or faster interaction with triplet oxygen. 

Non-degassed data is not available for propylpyrene, so it is assumed that the same QSk  as 

for methylpyrene applies. In analogy to the formalism described above (Equations A1 to A7) 

total as well as intrinsic quantum yields can be computed. Since at 0.1 mM a nonzero excimer 

formation rate was found (cf. Eq. A1), the same rate is assumed for all compounds. Its 

quantum yield is, however, less than 10%. As above, any triplet yield from this excimer 

contribution is neglected. The results with and without the oxygen contribution are 

summarized in Tables 4.12 and 4.13. Results from measurements with smaller oxygen 

concentrations are less affected by the assumptions made about the quenching process in the 

analysis above, which makes them more reliable than the others.  

Table A1: Parameters for the estimation of individual singlet quenching rates kQS of pyrene 

derivatives. The oxygen concentration in cyclohexane under ambient conditions is 

ca. 2.4 mM (cf. Section 4.2.5). 

compound 
(c = ~ 0.1 mM 

in cyclohexane) 

ambient 
fluo. decay 

(ns) 

S1 ESA 
decay time 

(ns) 

T1 ESA 
decay time 

(µs) 

c(O2) 
(mM) 

kQS 
(1010M-1 s-1) 

Pyrene 19 187 3.5 0.15 2.10 

1-Methylpyrene 25 130 2.8 0.18 1.46 

1-Propylpyrene -- 140 3.7 -- -- 

1-Bromopyrene 2 2 6.5 0.08 0 

PY11-C6 19 140 5.1 0.10 1.97 

PY44 15 90 6.0 0.08 2.40 
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A3 Estimation of Quantum Yields for Excimer-like Compounds 

In the analysis of the excimer-like TA measurements, oxygen quenching is taken into account 

using the same arguments as in the monomer-case (Section A5). For pyrene in well degassed 

conditions (cf. Section 4.6) the S1 lifetime reduced from lim
M 522 nsτ =  to 

10mM
M 12.7 nsτ =  at c =10 mM. 

It is therefore assumed that the excimer formation rate undisturbed by oxygen quenching is  

 10mM lim 7 1
MD M Mk 10 mM k k 7.68 10 s−⋅ = − = ⋅ . (A10) 

The S1 decay rate obtained in the partially degassed TA measurement is 
TA/10mM 1 7 1
Mk (12 ns) 8.33 10 s− −= = ⋅  and in analogy with Eq. A2 the oxygen quenching 

rate of the monomer is 

 TA/10 mM TA/10 mM 10mM 6 1
2 M MQSk [O ] k k 4.59 10 s−= − = ⋅ , (A11) 

corresponding to an oxygen concentration on 0.22 mM. The resulting quantum yields for 

oxygen quenching and excimer formation are  

 TA/10mM
QS 0.06Φ =  and TA/10mM

MD 0.92Φ = , (A12) 

leaving a maximum of 0.1mM
M 0.02Φ =  for the monomer branch. Without the oxygen, the 

excimer formation would only compete with lim 6 1
Mk 1.92 10 s−= ⋅ , leading to 98% excimer 

yield. 

Using MTk  from the low consideration limit the only free parameters in the model detailed 

in Section 4.7.1, are dc  and DTk . These can be determined by combining the DADS 

according to equations 4.28 to 4.30, while making sure that the obtained spectra are smooth, 

all positive and feature no signatures from other states. The resulting SAS are plotted in Fig. 

4.41a. The analysis leads to optimized values of TA/10mM
DT 0.2Φ =  and 

TA/10mM 6 1
DTk 3.85 10 s−= ⋅ . 

This yield includes a contribution from oxygen quenching of the excimer  

 TA/10mM TA/10mM
DT ISC,D QDΦ = Φ + Φ , (A13) 

where QDΦ denotes the triplet yield of the excimer due to oxygen quenching. In analogy to 

Equation A11, the rate for oxygen quenching of the excimer can be estimated by comparing 

the excimer’s decay times from degassed fluorescence and TA. The resulting excimer 
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quenching rate TA/10 mM 6 1
2QDk [O ] 3.36 10 s−= ⋅  is slightly smaller than TA/10 mM

2QSk [O ] . It 

follows that QD 0.175Φ =  and TA/10mM
ISC,D 0.025Φ = . The remainder of the excimer 

population relaxes via 7 1
DGk 1.55 10 s−= ⋅  and 5 1

ISC,Dk 4.03 10 s−= ⋅ . This corresponds 

to TA/10mM
DG 0.8Φ =  in the presence of oxygen, which is slightly larger than the excimer 

fluorescence yield of 75% reported in [Bir63]. When the oxygen is completely removed, 
TA/10mM
DGΦ  increases to 97.5%. As internal conversion was neglected, these values 

represent upper limits for the intermolecular excimer’s fluorescence QY. 

For linked PY11-C3, the monomer decay accelerates to 7 ns, matching the excimer rise. Well 

degassed measurements are not available here, yet, since most of its properties resemble 

pyrene very closely, we can assume the intrinsic decay rate lim
S1k  obtained for pyrene is still 

valid here. It is further assumed that the oxygen quenching rates are similar. For an oxygen 

quenching rate on the order of 6 1
2QSk [O ] 3 10 s−= ⋅ , the rate of excimer formation is 

 1 lim 8 1
MD QS 2Mk 0.05 mM (7 ns) k k [O ] 1.38 10 s− −⋅ = − − = ⋅ , (A14) 

almost twice as fast as for pyrene at c = 10 mM. The corresponding oxygen quenching and 

excimer quantum yields are  

 PY11 C3
QS 0.02−Φ =  and PY11 C3

MD 0.97−Φ = , (A15) 

leaving only 1% for the monomer branch. Using the model to reconstruct the SAS from the 

global fit DADS in analogy to the above treatment, PY11 C3
DT 0.2−Φ =  is found, the exact 

same value as for the intermolecular excimer. The resulting SAS for PY11-C3 are shown in 

Fig. 4.41b. Table A1 summarizes the resulting yields for the monomer and excimer branch of 

the Jablonski diagram 4.39. Values for oxygen-free conditions were calculated under the 

assumption that oxygen quenching rates are the same for Pyrene and PY11-C3. 

Finally the total triplet quantum yields are computed. The total triplet and fluorescence 

quantum yields rare given by  

 MDT1 QS ISC,M QD ISC,DΦ = Φ + Φ + Φ + Φ ⋅ Φ  (A16) 

Also, upper limits for the total fluorescence quantum yields are given by  

 MDMG DGradΦ ≤ Φ + Φ ⋅ Φ . (A17) 

Equations A16 and A17 yield T1 0.25Φ =  and rad 0.75Φ ≤  for pyrene and T1 0.22Φ =  

and rad 0.78Φ ≤  for PY11-C3.  
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A4 Pyrene Anion and Cation Spectra 

The pyrene anion spectrum in Fig. 4.42 was obtained via reductive quenching of pyrene by 

N,N-dimethylaniline (DMA) in acetonitrile (ACN) [Rei14]. This quenching method was first 

reported by Aalbersberg et. al. [Aal59]. A mixture of 0.4 mM DMA and 0.022 mM pyrene 

was selectively excited at the pyrene S2 maximum (334 nm), where DMA has no appreciable 

absorption (cf. Fig. A1a). The resulting transient absorption dataset is shown in Fig. A1c. In 

addition to the known pyrene S1 (blue cursor) and triplet ESA (red cursor), a strong feature 

appears at 495 nm (green cursor), featuring a distinct time evolution (right panel). It grows 

with a rate close to the observed S1 decay, and decays significantly faster than the triplet. 

Variation of the DMA concentration (cf. Fig. A1e) indicates this contribution is due to the 

diffusion controlled quenching of singlet excited pyrene molecules by DMA with a quenching 

rate 10 1 1
Q,anionk 3.1 10 mol s− −= ⋅ . The increasing deviation from the S1 decay rate could 

be due to the transient contribution to the rate of diffusion (cf. Section 4.6.2). In MeOH a 

weaker ion signal was detected, while in cyclohexane no ion signal was found. A higher 

solvent dipole moment is probably favorable as solvent molecules can effectively screen the 

DMA cation and the pyrene anion from one another, preventing prolonged inter-action and 

allowing them to separate. The nonpolar environment may also be affecting the energies of 

the involved states such that charge transfer is inhibited. The anion SAS retrieved from global 

analysis (cf. Fig. A2) is in agreement with prior results [Aal59, Sch73].  

The pyrene cation spectrum was obtained via oxidative quenching using the salt 4,4’-

bipyridinium chloride, a.k.a. ‘methyl viologen’ and ‘paraquat’ (PQ), which is somewhat more 

complex [Rei14]. In solution the PQ cation can accept an electron and form a PQ radical. PQ 

cations interact both with singlet as well as triplet pyrene. Quenching via the triplet state has 

been studied before [Das83, Nak99]. A mixture of 0.7 mM DMA and 0.026 mM pyrene in 

MeOH was selectively excited at the pyrene S2 maximum (334 nm), where PQ has no 

appreciable absorption (cf. Fig. A1b). The resulting TA dataset is shown in Fig. A1d. 

Pyrene’s triplet signature is hardly noticeable (red cursor), while strong long-lived features 

emerge after ca. 100 ns (green cursor). Variation of the PQ concentration results in three 

different quenching rates (cf. Fig. A1f). For the singlet and triplet decays 
10 1 1

S1k 1.57 10 mol s− −= ⋅  and 9 1 1
T1k 4.43 10 mol s− −= ⋅ . The cation signal 

grows with a slightly faster rate 9 1 1
catk 6.11 10 mol s− −= ⋅ , which is close to the value 

reported in [Das83].  
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Fig. A1: (a,b) absorption spectra of pyrene, DMA and PQ and the mixtures used in TA. 

(c,d) TA datasets of pyene+DMA and pyrene+PQ in false color representation, 

riht panels indicate time traces at positions marked by color coded cursors. (e,f) 

concentration dependence of the respective ions growth rate (green) as well as 

singlet (blue) and triplet decay (red) with linear fits.  
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Fig. A2: Retrieved spectra of pyrene anion (solid blue), cation (solid red) and PQ radical 

(solid yellow) compared to scaled spectra reported in [Sch73], [Bou09] and 

[Far73], respectively (dots). 

Such a detailed analysis is only possible in TA, since only the fast quenching of the singlet 

state is observable in commonly employed fluorescence quenching experiments. As in 

reductive quenching, the increasing deviation from the triplet decay rate could be due to the 

transient contribution to the rate of diffusion (cf. Section 4.6.2). In [Rei14] the dynamics are 

interpreted such that the product of the singlet quenching quickly relaxes to the GS and does 

not contribute significantly to the TA. Only ISC prior to the electron transfer makes detection 

of the ions possible, since the long lifetime of the resulting triplet complex allows the ions to 

drift apart. Both the PQ radical and the pyrene cation contribute to the observed ESA. Their 

lifetimes are similar, but can be disentangled via global analysis. The retrieved SAS of the PQ 

radical agrees well with the literature [Far73, Wat82] (cf. Fig. A2, orange line). The obtained 

pyrene cation SAS (red line) is quite similar to a spectrum reported in H2O ice [Bou09], 

where the authors assign the strongest peaks between 420 nm and 460 nm as well as the 

weaker bands below 375 nm to the pyrene cation. Additional features are found between 

375 nm and 400 nm. Here the perfect baseline reported in [Bou09] could not be reproduced 

without incurring negative signal above 500 nm. This as well as the broadened main peak 

may be due to the different environment, yet a product formed by the PQ radical and oxygen 

also absorbs in this range [Shi66, Pat77, Rei14]. 
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