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Optical injection up to now

» ldea: use additional laser pulse(s) to provide
some electrons with the necessary momentum
to cross the separatrix.

* Previous work:
— In perpendicular geometry, injection can be
caused by the transverse ponderomotive force
[1] or by the wake field of the 2" pulse [2].

In collinear geometry, the beatwave created by
2 additional pulses colliding in the wake can
lead to injection [3].

In collinear geometry, the beatwave created by
the collision between the main pulse and an
additional pulse can also inject electrons [4,5].

Laser pulse
Fluid orbit
Separatrix

[1] D. Umstadter et al., PRL 76, 2073 (1996)
[2] R. G. Hemker et al., PRE 57, 5920 (1998)
[3] E. Esarey et al., PRL 79, 2682 (1997)
[4] G. Fubiani et al., PRE 70, 016402 (2004)
[5] H. Kotaki et al., POP 11, 3296 (2004)
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‘Scale-1’ simulation of optical injection for LOA exp’t

Injection pulse
*A=0.8pum
°*45fs
* 3.5x10" W/cm?

X. Davoine et al.,
Phys. Plasmas 15, 113102 (2008)
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Cold injection principle: no momentum gain [1]

— Laser pulse

* Injection mechanism: —  Fluid orbit
Let electrons phase slip in the wake so they —  Separatrix
Ce:] can cross the separatrix with little longitudinal

momentum

« How can we help electrons ‘tunnel through’ the Sho 06 150 100 -
ponderomotive potential? xect (k)
< Collision with a counter-propagating pulse:

creation of an EM beatwave

 Electrons are trapped in the static and A,/2 long beatwave buckets
— Electron longitudinal motion is frozen while the pulse propagates
— They slip backward in the wake
— They are injected without momentum gain

[1] X. Davoine et al., PRL 102, 065001 (2009)
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A cold injection example in 2D

« Simulation parameters:
— Main pulse:
(e « A,=0.8 um ; a,=4 ; 30 fs ; w,=18 pm ; circular polarization (4.2 J)

— Colliding pulse:
* A\=0.8um; a=0.2; 63 fs; w,=5 pum; circular polarization

— Plasma:
* Ng=2510%n,=4.410" cm3
« parabolic density: n(r)=(1+r?/R?)n,, with R =27 ym

» Phase space plot during the pulse collision
(only electrons near the axis are plotted)
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A simple 1D model

« Condition 1
To effectively freeze the electron longitudinal motion, the beatwave
C@J force should be larger than the main pulse ponderomotive force:

Fy/ sin(2x) B '-[? ‘4‘1 -1
\ Bl 2(2) |z —t| A

 Condition 2
All this is effective if the main laser amplitude is not too small (say > 0.1)

Low ponderomotive force, wakefield

Ponderomotive force dominates

Beatwave force freezes motion

-100 0

X [1/k] Low ponderomotive force, fresh plasma
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A simple 1D model

« Condition 1
To effectively freeze the electron longitudinal motion, the beatwave
C@J force should be larger than the main pulse ponderomotive force:

Fy/sin(2z) | -1
| F| - 2In(2) |z — 1 :i(]

 Condition 2
All this is effective if the main laser amplitude is not too small (say > 0.1)

-100 0
x [1/k)

SILMI 2010




Additional conditions of occurrence

* The separatrix must cross the p,=0 axis.

— cold injection “region”: region where — Laser pulse
eSS the separatix is under the axis p,=0. . Separatrix

Cold injection
region
* The cold injection region must be long
enough to extend to the back of the
main pulse.
-250 -200 -150 -100

— Electron phase shift due to the x-ct (1/ky)
beatwave occurs only where the main
pulse exists.

« Wake inhibition [1] due to pulse collision must be kept low.

— The collision region (where pulses overlap) must be much smaller than
the wakefield bucket.

[1] C. Rechatin et al., POP 14, 060702 (2007)
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Application: production of a 3 GeV bunch with 1% AE/E

Cold injection provides high beam control at high energy:
— Use of low plasma density (below the self-injection threshold)
— Injection at the back of the “bubble” for larger dephasing length

Main pulse: A\y)=0.8 ym ; a,=4 ; 30 fs ; w,=18 um ; circular polarization (4.2 J)
Injection pulse: A,=0.8 ym ; a,=0.1; 30 fs ; w,=15 ym ; circular polarization
Plasma: n,, = 2.5 104 n_ = 4.4 10'7 cm3; n(r)=(1+r?/R?)n, with R =27 ym

el

_ Distribution after 3.8 cm
Beam parameters obtained (2D):

3 GeV, 50 pC,rms AE/E =1 %

— with a,=0.07:
« 28 pC
 rms AE/E =0.45 %
 Normalized rms emittance:

8.1 mm mrad ISR O v e
_ 95726 2.7 28 29 30 31 3.2
 rms duration: 4.8 fs Energy (GeV)

dN/dE (a.u.)
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Application: production of a 3 GeV bunch with 1% AE/E

 Cold injection provides high beam control at high energy:
— Use of low plasma density (below the self-injection threshold)
(e — Injection at the back of the “bubble” for larger dephasing length

Main pulse: A\y)=0.8 ym ; a,=4 ; 30 fs ; w,=18 um ; circular polarization (4.2 J)
Injection pulse: A,=0.8 ym ; a,=0.1; 30 fs ; w,=15 ym ; circular polarization
Plasma: n,, = 2.5 104 n_ = 4.4 10'7 cm3; n(r)=(1+r?/R?)n, with R =27 ym

el

Beam parameters Obtamed Distribution after 3.3 cm

— quasi-radial 3D code:
2.7 GeV, 59 pC,
rms AE/E = 2.2 %

2
Energy [GeV]
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2D view of the cold injection region

* Main pulse: A;=0.8 ym ; a,=4 ; 30 fs ; w,=18 pm ; circular polarization
« Plasma: n, =2.5 104 n_.=4.4 10" cm3; n(r)=(1+r?/R?)n, with R =27 pym

el

&0

* In 2D, transverse effects have to be taken in account.

» 2D quasi-static wake fields are obtained from the simulation.

— Electron trajectories can be calculated from the fields :
where can electrons be injected and still be trapped in the bucket?

Plasma density map and

trajectories of electrons inserted at rest Cold injection region in 2D
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The bunch longitudinal density can be tuned

* Injection near the axis
Forward bunch position
a,=0.2;60fs; w,=5 um

* Injection off-axis
Backward bunch position
a,=0.2;30fs; w,=15 uym

» Mixed injection
Longer bunch
a,=0.2;60fs; w,=15 uym
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Cold injection region in 2D

100 200 300 400 500 600 700 800
x (1/k,)




Cold Injection opens great perspectives for beamloading control

- — = Longitudinal bunch density
—— Wakefield

a,=0.2 ;60 fs ; w,=18 pm
a,=0.1;30fs; w,=15pum

200 250 300 350 400
x (1/K,)

* The longitudinal beam density can be tuned

« Tzoufras et al. [1]: high beamloading with low energy spread can be
achieved if the longitudinal beam density is properly tailored.

= The cold injection scheme enables us to optimize beamloading
and thus the electron beam parameters.

[1] M. Tzoufras et al., PRL 101, 145002 (2008)
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Conclusion

* A new optical injection scheme has been presented: cold injection.

Ce:] — Longitudinal electron motion is frozen in EM beatwave during pulse
collision

— Electrons cross the separatrix due to phase slippage
— This scheme does not rely on momentum gain

» High-quality beams can be produced
— Low energy spread
— High energy

— Cold injection is an interesting feature when propagation in low-density
plasma over long distance is the goal

» The longitudinal beam density can be tuned:
— Prospect for beamloading optimization

SILMI 2010




Cold injection producing
mono-energetic, high quality,
GeV electron beams

SILMI Workshop, Garching, March 2010

X. Davoine', A. Beck', V. Malka?, and E. Lefebvre'

'CEA, DAM, DIF, 91297 Arpajon, France
2LOA, Ecole Polytechnique/ENSTA/CNRS, 91761 Palaiseau, France

SILMI 2010




