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Free-Electron Lasers 
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General Optimization 



Electron Beam Parameters 

  Almost everything scales with the FEL parameter: 

  Assuming a round beam with similar emittance and symmetric 
focusing, the FEL parameter scales as (I/εn)1/3. 

  The characteristic length is the power gain length: 

  Increasing the current and/or reducing the emittances increase 
the performance and reduce the overall required length of  the 
FEL. 
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Degrading Effects 

Energy Spread Space Charge 

Effect 
Smears out micro 

bunching 
Work against Coulomb 
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At lower energies or very 
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Saturation Power and Brilliance 
  Saturation power: 

  For a given wavelength it favors a higher beam energy and thus a 
longer undulator period. 

  Peak Brilliance: 

  At saturation: 
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Undulator Optimization 

  Increasing aw increases the coupling between electron field and 
radiation field (aw/γ), however at very large values the energy has 
to increase to preserve the resonant wavelength (γ ~ aw). 

  A small undulator period reduces the overall size of  the FEL, 
however a strong undulator field would require a fraction of  the 
period as the gap: 
  Strong impact of  undulator wakefields (~gap-2) 

  Strong focusing to allow full transmission through the smaller aperture 

For very short periods an RF/laser 
wiggler is more feasible. 
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Optimizing the Focusing 

  Transverse betatron motion delays the particle with respect to the 
on-axis particle. The delay scales with the focusing strength: 

  RMS averaging over the beam the action variables are replaced by 
the normalized emittance (and the energy deviation by the energy 
spread) 

  Emittance effects are not disrupting the FEL performance if  the 
condition is fulfill: 
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Optimizing the Focusing II 

  Decreasing the β-function (increase focusing), increases the FEL 
parameter ρ. 

  Too strong focusing enhances the emittance effect and increasing 
the FEL gain length. 
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3D Optimization for SwissFEL 



Transverse Coherence (2D FEL Theory) 
  Diffraction Parameter: 

  Assuming electron size as radiation source size: 
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Transverse Coherence (2D FEL Theory) 
  Growth rates for FEL eigenmodes (r,φ-decomposition): 

Increased gain length 
due to strong diffraction 

Mode competition and 
reduced coherence 

Optimum growth 
rate of 1D model 

Optimum: 
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photon emittance 



SASE and Partial Coherence 
  Spontaneous radiation as seed 

couples to many modes. 

  Mode content visible in fluctuation 
of  instantaneous power: 

  Agrees (surprisingly) well with 
standard definition of  coherence: 

Z=20 m 
MT=3.8 

Z=45 m 
MT=1.3 

SASE Profiles (SwissFEL) 
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Case Study: 
High Current Beam 

Soft X-ray FEL 
Micro-Undulator 



Electron Beam Parameters 

  Minimum wavelength (emittance constraint): 

λ > 1 nm 

  Micro undulator: 

aw = 0.7, λu = 5 mm 

  Field and Gap Estimate (planar hybrid undulator): 

B=2.1 T, g = 0.5 mm 

(gap can be increased with kryogenic undulators) 

Energy 1 GeV 

Current 10 kA 

Emittance 1 mm mrad 

Energy spread 5 MeV 



FEL Performance (Ming Xie Model) 

  Strongly effected by the energy spread and sub-sequentially 
by the emittance. The simple 1D FEL parameter is about 2% 
but reduces by factor of  20 in the 3D model. 

  Requires 5 m long micro undulator. 

  Performance goes down (less power, reduced coherence) for: 
  Shorter wavelength / higher energy 

  Larger energy spread 

Effective FEL Parameter 0.1% 

Gain Length 0.23 m 

Saturation Length  4.8 m 

Saturation Power 9 GW 

Bandwidth 0.23 % FWHM 



Case Study: 
Ultralow Emittance Beam 

Hard X-ray FEL 
Laser Wiggler 



The Advantage of  Laser Wigglers 

  Counter-propagating laser fields have the same impact 
on the electron beam as an undulator field. (in electron 
rest frame, the undulator field becomes an EM wave). 

  The period can be reduced significantly while keeping a 
strong field (a ~1) 

  Avoids the boundary problems of  a magnetic 
undulator, which are: 
  Physical aperture between the poles 
  Strong wakefields within the undulator. 

  Tunability of  the a-value with the pulse energy. 



  Minimum interaction volume: 

  Within the interaction volume the field 
stability over the interaction time Lb/c has 
to be: 

  The absolute minimum Rayleigh length is 
(Mode stacking): 

  Fundamental transverse mode only: 

Requirement for the Laser Field. 
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  Goal: 1 Ångstrom radiation, using Ti:Saph laser wiggler 

  Electron beam: E = a . 50 MeV, εn = a . 10-9 m (!!!) 

  Beam source is most likely limited to current < 100 A. 

  Beta-function about 10 cm for tight spot of  r0=1 µm. 

  Additional problems with coherence and energy spread. 

Breaking the Angstrom Barrier... 
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Making Laser (based) Wiggler Realizable… 

  Relaxed condition for longer period (~100 µm): 
  THz Radiation (doubtful) 
  Laser Beatwave Plasma Wiggler (channeled, but very 

sensitive to spot size, requires even lower emittance) 

  Work with higher field strength (a>>1) to relax 
demands on electron beam emittance and allow higher 
beam currents. 

  Active control of  FEL parameter ρ: 
  Too small  field stability/energy spread requirements 
  Too high  reduced coherence 



Summery 

  Beam emittance defines the achievable wavelength: 
➟  Small emittance value 
➟  Lower beam energy 
➟  Shorter period length 
➟  Shorter saturation length. 

  Coherence seems to be the most limiting factor when going 
to shorter wavelength. 

  With current e-sources, 1 nm seems reasonable but 1 Å 
requires significant improvement in beam quality 

  Saturation power and peak brightness will be lower than X-
ray FEL facilities (XFEL, LCLS) 

  Micro undulators seem to be the preferred choice, laser 
wiggler have many technical issues, which needs to be 
resolved. 


