Das Proton - kleiner als gedacht

Internationales Forscherteam erhält unerwartet kleinen Protonenradius mittels hochpräziser Spektroskopie von exotischem Wasserstoff.

8. Juli 2010

Das Proton, einer der fundamentalen Bausteine der Materie, ist noch kleiner als bisher angenommen. Dies ergaben Messungen, die jetzt ein internationales Forscherteam am unter maßgeblicher Beteiligung von Wissenschaftlern des Max-Planck-Instituts für Quantenoptik in Garching bei München, der Ludwig-Maximilians-Universität München (LMU) und des Instituts für Strahlwerkzeuge (IFSW) der Universität Stuttgart am Paul-Scherrer-Institut (PSI) im schweizerischen Villigen durchgeführt hat (Nature, 8. Juli 2010).

Noch rätseln die Wissenschaftler, wie diese Diskrepanz zu deuten ist. Letztendlich könnte das Ergebnis sogar die Gültigkeit der fundamentalen Theorie der Wechselwirkung von Licht und Materie in Frage stellen, die bis heute jeder Überprüfung standgehalten hat; sie könnte aber auch eine Änderung der bislang am genauesten bekannten Naturkonstanten implizieren. Für die neue Messung erzeugten die Wissenschaftler eine exotische Variante von Wasserstoff, bei der statt eines Elektrons ein negativ geladenes Myon den Atomkern, das Proton, umkreist. Da das Myon rund 200 Mal schwerer als das Elektron ist, kommt es dem Proton viel näher und „spürt“ buchstäblich dessen Ausdehnung. Mit einem speziell dafür entwickelten Laser und einer neuartigen, vom PSI entwickelten Myonenquelle vermochten die Physiker diesen Effekt quantitativ zu bestimmen und den Protonenradius daraus mit höchster Präzision zu ermitteln.

Das Proton ist einer der drei Grundbausteine der Materie: zusammen mit dem Neutron baut es den Atomkern auf, der von Elektronen umkreist wird. Chemische Elemente definieren sich über die Zahl der Protonen im Atomkern. Wasserstoff ist das einfachste aller chemischen Elemente. Sein Atomkern besteht aus einem einzigen Proton, das von einem Elektron umkreist wird. Viele grundlegende Fragen der Physik ließen sich in der Vergangenheit durch eine Bestimmung der Eigenschaften von Wasserstoff beantworten. Während Elektronen und Myonen allem Anschein nach punktförmig sind, besteht das Proton aus Quarks und ist daher ausgedehnt.

Um den Protonenradius zu bestimmen, ersetzten die Wissenschaftler das einzelne Hüllenelektron im Wasserstoffatom durch ein ebenfalls negativ geladenes Myon. Myonen gleichen Elektronen, sind aber 200mal schwerer. Nach den Regeln der Quantenmechanik umkreisen sie daher das Proton auf einer rund 200mal engeren Bahn. Deren Eigenschaften hängen deshalb viel empfindlicher vom Durchmesser des Protons ab als in gewöhnlichem Wasserstoff: das Myon „spürt“ die Ausdehnung des Protons und passt seine Bahn daran an. „Genauer gesagt bewirkt die Ausdehnung des Protons eine Änderung der sogenannten Lamb-Verschiebung der Energieniveaus im myonischen Wasserstoff“, erläutert Dr. Randolf Pohl aus der Abteilung Laserspektroskopie von Prof. Theodor W. Hänsch (Lehrstuhl für Experimentalphysik an der LMU und Direktor am MPQ). „Daher konnten wir den Protonenradius über die Messung der Lamb-Verschiebung ermitteln.“

Bereits in den 70er Jahren kam die Idee auf, diese Untersuchungen an myonischem Wasserstoff durchzuführen, bei dem das Hüllenelektron durch ein Myon ersetzt ist. Dass von der Idee bis zur Realisierung eines solchen Experimentes fast 40 Jahre vergingen, liegt an den vielen Hürden, die auf diesem Weg zu nehmen waren. „Um überhaupt eine Chance zu haben, den gesuchten Übergang zu messen, mussten wir an der Verfeinerung mehrerer experimenteller Komponenten gleichzeitig arbeiten“, erklärt Dr. Franz Kottmann vom PSI, einer der Initiatoren des Experiments. „Wir brauchen für dieses Experiment langsame Myonen, damit die Wasserstoffatome Gelegenheit haben, die Teilchen einzufangen. Obwohl wir möglichst viele myonische Wasserstoffatome haben möchten, müssen wir mit verdünntem Wasserstoff arbeiten, weil die angeregten myonischen Atome sonst aufgrund von Stößen zu schnell zerfielen. Und schließlich brauchen wir, um den Übergang resonant anzuregen, einen Laser, dessen Frequenz sich in kleinen Schritten einstellen lässt.“ Prof. Thomas Graf vom IFSW ergänzt: „Die spezifischen Anforderungen an die Lasertechnik – die Lichtpulse müssen innerhalb von Nanosekunden nach der Registrierung eines Myons auf das Wasserstofftarget abgefeuert werden – wurden schliesslich durch die Stuttgarter Entwicklung eines Scheibenlasers erfüllt.“

In einem gemeinsamen Kraftakt mehrerer Forschergruppen, die jeweils ihre Expertise auf den Gebieten der Beschleunigerphysik, der Atomphysik sowie den Laser- und Detektortechnologien einbrachten, gelang schließlich der Durchbruch. Die ersten Messungen in den Jahren 2002, 2003 und 2007 waren allerdings nicht gerade ermutigend. Obwohl das Experiment im Prinzip funktionierte, gab es keine Anzeichen für die erwartete Resonanz. „Zunächst dachten wir, unsere Laser seien nicht gut genug. Deswegen bauten wir Teile des Lasersystems neu mit der Stuttgarter Scheibenlaser-Technologie auf. Doch dann zeichnete sich ab, dass wir schlicht an der falschen Stelle gesucht hatten: offenbar war die theoretische Vorhersage für die Frequenz des Übergangs falsch“, erläutert Dr. Aldo Antognini vom PSI.

Nach einer dreimonatigen Aufbauphase und drei Wochen Messzeit, am Abend des 5. Juli 2009, war es so weit: die Wissenschaftler konnten die gesuchte Resonanz klar nachweisen. Der daraus abgeleiteten Wert von 0,84184 Femtometern (1 Femtometer = 0.000 000 000 000 001 Meter) für den Protonenradius ist rund zehnmal genauer, aber in starkem Widerspruch zu dem bisher anerkannten Wert von 0,8768 Femtometern. Noch diskutieren die Wissenschaftler über die möglichen Ursachen der beobachteten Diskrepanz. Derzeit wird alles auf den Prüfstand gestellt: frühere Präzisionsmessungen, die aufwendigen Rechnungen der Theoretiker, und eventuell könnte sogar die am besten bestätigte physikalische Theorie, die Quantenelektrodynamik, angezweifelt werden. „Bevor wir aber die Gültigkeit der Quantenelektrodynamik in Frage stellen, müssen erst einmal die Theoretiker prüfen, ob sie sich nicht an der einen oder anderen Stelle verrechnet haben“, meint dazu Dr. Pohl. Einen Hinweis, welche Interpretation die richtige ist, wird möglicherweise das nächste, für 2012 geplante Projekt liefern. Dann wollen die Forscher myonisches Helium spektroskopisch untersuchen und dessen Kernradius bestimmen. Meyer-Streng(MPQ)/Piwnicki(PSI)

Filme über das Experiment: www.psi.ch/media/filme-protonenradius
Fotos zum Herunterladen:  www.psi.ch/media/fotos-protonenradius

An dem hier beschriebenen Experiment sind zahlreiche Einrichtungen aus verschiedenen Ländern beteiligt. Die wichtigsten sind: Max-Planck-Institut für Quantenoptik, Garching bei München, Ludwig-Maximilians-Universität München, Institut für Strahlwerkzeuge der Universität Stuttgart und Dausinger & Giesen GmbH, Stuttgart, Deutschland, Paul Scherrer Institut PSI, Villigen, Schweiz, Institut für Teilchenphysik, Eidgenössische Technische Hochschule ETH Zürich, Schweiz, Laboratoire Kastler Brossel, Paris, Frankreich, Departamento de Física, Universidade de Coimbra, Coimbra, Portugal, Departement für Physik, Universität Freiburg, Freiburg, Schweiz.

Kontakt:

Dr. Randolf Pohl
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1, 85748 Garching
Telefon: +49 (0)89 32905 -281 / Fax: -200
E-Mail:   randolf.pohl@mpq.mpg.de
https://muhy.web.psi.ch/wiki/

Prof. Dr. Theodor W. Hänsch
Lehrstuhl für Experimentalphysik, LMU München
Direktor am Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1, 85748 Garching
Telefon: +49 (0)89 32905 -702/712 / Fax: -312
E-Mail:   t.w.haensch@mpq.mpg.de

Prof. Thomas Graf
Universität Stuttgart, Institut für Strahlwerkzeuge
Pfaffenwaldring 43, 70569 Stuttgart
Telefon: +49 (0)711 685 66 840
E-Mail:   graf@ifsw.uni-stuttgart.de

Dr. Franz Kottmann
Paul Scherrer Institut, CH-5232 Villigen
Telefon: +41 (0)56 310 3502
E-Mail:   franz.kottmann@psi.ch

Dr. Aldo Antognini
Paul Scherrer Institut, CH-5232 Villigen
Telefon: +41 (0)56 310 4614 / +41 (0)79 355 0329
E-Mail:   aldo.antognini@psi.ch

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Telefon: +49 (0)89 32905 -213
E-Mail:   olivia.meyer-streng@mpq.mpg.de

original

Zur Redakteursansicht